Lecture 6: Low-Level Processing and Feature Detection.

Reading Assignments:

Chapters 7 & 8.
Remember: Vision as a change in representation.

At the low-level, such change can be done by fairly streamlined mathematical transforms:
- Fourier transform
- Wavelet transform

these transforms yield a simpler but more organized image of the input.

Additional organization is obtained through multiscale representations.
Biological low-level processing

Edge detection and wavelet transforms in V1: hypercolumns and Jets.

but…

- processing appears highly non-linear, hence convolution of input by wavelets only approximates real responses;

- neuronal responses are influenced by context, i.e., neuronal activity at one location depends on activity at possibly distant locations;

- responses at one level of processing (e.g., V1) also depend on feedback from higher levels, and other modulatory effects such as attention, training, etc.
Fourier Transform
Problem

- The Fourier transform does not intuitively encode non-stationary (i.e., time-varying) signals.

- One solution is to use the short-term Fourier transform, and repeat for successive time slices.

- Another is to use a wavelet transform.
Wavelet Transform

- Mother wavelet ψ: defines shape and size of window
- Convolved with signal (x) after translation (τ) and scaling (s)
- Results stored in array indexed by translation and scaling

$$CWT_x^\psi(\tau, s) = \Psi_x^\psi(\tau, s) = \frac{1}{\sqrt{|s|}} \int x(t) \psi^*(\frac{t - \tau}{s}) \, dt$$
Example: small-scale wavelet is applied
then larger-scale...
and even larger scale...
Result is indexed by translation & scale
Wavelet Transform & Basis Decomposition

We define the inner product between two functions:

\[< f(t), g(t) > = \int_{a}^{b} f(t) \cdot g^*(t) \, dt \]

then the continuous wavelet transform:

\[CWT_x^\psi(\tau, s) = \Psi_x^\psi(\tau, s) = \int x(t) \cdot \psi_{\tau,s}^*(t) \, dt \]

can be thought of as taking the inner product between signal and all of
the different wavelets (parametrized by translation & scale):

\[\psi_{\tau,s} = \frac{1}{\sqrt{s}} \psi \left(\frac{t - \tau}{s} \right) \]
two functions are orthogonal iff:

\[\langle f(t), g(t) \rangle = \int_{a}^{b} f(t) \cdot g^*(t) \, dt = 0 \]

and a set of functions is orthonormal iff:

\[\int_{a}^{b} \phi_k(t) \phi_l^*(t) \, dt = \delta_{kl} \]

with

\[\delta_{kl} = \begin{cases}
1 & \text{if } k = l \\
0 & \text{if } k \neq l
\end{cases} \]
Basis

If the collection of wavelets forms an **orthonormal basis**, then we can compute:

\[\mu_k = \langle f, \phi_k \rangle = \int f(t) \phi_k^*(t) \, dt \]

and fully reconstruct the signal from those coefficients (and knowledge of the wavelet functions) alone:

\[f(t) = \sum_k \mu_k \phi_k(t) = \sum_k \langle f, \phi_k \rangle \phi_k(t) \]

thus the transformation is reversible.
Edge Detection

Very important to both biological and computer vision:

- Easy and cheap (computationally) to compute.

- Provide strong visual clues to help recognition.

- Problem: sensitive to image noise.

 why? because edge detection is a high-pass filtering process and noise typically has high-pass components (e.g., speckle noise).
Laplacian Edge Detection

Edges are defined as zero-crossings of the second derivative (Laplacian if more than one-dimensional) of the signal. This is very sensitive to image noise; thus typically we first blur the image to reduce noise. We then use a Laplacian-of-Gaussian filter to extract edges.

Smoothed signal

First derivative (gradient)
Derivatives in 2D

Gradient:

\[
\frac{\partial f(x, y)}{\partial x} = \Delta_x = \frac{f(x + \delta_x, y) - f(x, y)}{\delta_x}, \\
\frac{\partial f(x, y)}{\partial y} = \Delta_y = \frac{f(x, y + \delta_y) - f(x, y)}{\delta_y},
\]

(42)

for discrete images:

\[
\Delta_x = f(i + 1, j) - f(i, j), \\
\Delta_y = f(i, j + 1) - f(i, j).
\]

(43)

magnitude and direction:

\[
M = \sqrt{\Delta_x^2 + \Delta_y^2}, \quad \theta = \tan^{-1}\left[\frac{\Delta_y}{\Delta_x}\right].
\]
Laplacian-of-Gaussian

Laplacian:

\[\nabla^2 f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}. \]
Laplacian of the Gaussian

Idea: Rather than smooth image first using a Gaussian & then computing the Laplacian of the result, we can derive a mask that does both operations simultaneously.

\[\nabla^2 G(r, c) = \frac{\partial^2 G}{\partial^2 r} + \frac{\partial^2 G}{\partial^2 c} \]

Note similarity to 3x3 Laplacian mask:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

L.O.G. mask computed by sampling the L.O.G. function on a discrete grid (mask size chosen to be identical to that of the corresponding Gaussian mask).
Another Edge Detection Scheme

- Maxima of the modulus of the Gradient in the Gradient direction (Canny-Deriche):
 - use optimal 1st derivative filter to estimate edges
 - estimate noise level from RMS of 2nd derivative of filter responses
 - determine two thresholds, Thigh and Tlow from the noise estimate
 - edges are points which are locally maximum in gradient direction
 - a hysteresis process is employed to complete edges, i.e.,
 - edge will start when filter response > Thigh
 - but may continue as long as filter response > Tlow
Marr-Hildreth Edge Detection Algorithm

Given: An input image I and a value for the variance σ

Steps:

1. Compute the L.O.G. mask corresponding to the desired value of σ
2. Apply the L.O.G. mask to image I
3. Compute zero crossings of the result
4. Label as edges all zero crossing pixels
5. Optional step: label as edges only those zero-crossings whose transition from + to - or from - to + is greater than a threshold

Input image

![Input image with zero crossings for $\sigma=1.0$ and $\sigma=5.0$]
Choosing the “Right” Scale??

Rather than trying to decide which scale to use, we can process images at all scales & examine how the resulting image changes with increasing values of σ.

Basic principles of scale-space approaches
- No single scale is “special”
- Treat s as a continuous parameter
- As s increases, we should obtain “simpler” images, i.e., no “new structures” should be created
- “Structures” that remain present for a broad range of scales signify “important” features in the image
Scale Space in 1D

smoothed signal (high σ)

smoothed signal (low σ)

input signal ($\sigma=0$)
Scale Space in 1D

Resulting Scale-Space Surface
Scale Space in 1D

Idea: As the 1D image gets increasingly smoothed, the position of zero crossings moves along the smoothed curve, creating trajectory curves.

- For the Gaussian function, trajectories form nested, upside-down U's.
- The Gaussian smoothing function is the only function that ensures no new zero-crossings are created as \(\sigma \) increases.
- Therefore, it is the only function for which zero crossing trajectories have the nesting property.
Scale Space in 2D

- Zero crossing contours form surfaces in $(r,c)-\sigma$ space
- No new zero-crossings created as σ increases
Image Pyramids

Idea: Represent NxN image as a “pyramid” of 1x1, 2x2, 4x4,..., 2^k x 2^k images (assuming N = 2^k)

level k (= 1 pixel)

level k-1

level k-2

...

level 0 (= original image)
Quad Tree: A Binary Image Pyramid

Idea---Represent binary image using a tree data structure:

- root = level k pixel
- 3 possible values for a node: white, black, gray

- ○ = all pixels in node’s footprint are white
- ● = all pixels in node’s footprint are black
- ⌂ = node’s footprint has black & white pixels

footprint of pixel b in level k-2 image

gray nodes always have 4 children
Building A Quad Tree

Two basic image operations need to be implemented:

- **REDUCE** operation:
 Map a level k-1 image (hi-res) to a level k image (low-res)

- **EXPAND** operation:
 Map a level k image (low-res) to a level k-1 image (hi-res)
Gaussian Pyramid

Idea: Represent an NxN image as a “pyramid” of 1x1, 2x2, 4x4, ..., 2^k x 2^k images (assuming N=2^k)

level k (=1 pixel)

level k-1

level k-2

level 0 (= original image)

Building A Gaussian Pyramid

Two basic image operations need to be specified:

- **REDUCE** operation:
 Map a level k-1 image (hi-res) to a level k image (low-res)

- **EXPAND** operation
 Map a level k image (low-res) to a level k-1 image (hi-res)
Building A Gaussian Pyramid

Basic idea of the REDUCE operation:
- If we smooth the level k-1 image appropriately, the resulting image will have less detail than the original.
 \[\Rightarrow \text{we can represent the result with a lower-resolution image!} \]

level k-1

\[\rightarrow \]

smoothed level k-1

level k = smoothed & sub-sampled level k-1

Laplacian Image Pyramid

Idea: Representing level k-1 image by a level k image & a "difference image"

level k-1

=

smoothed
level k-1

+ difference image
("Laplacian")

level k

= difference image
("Laplacian")

+ difference image
("Laplacian")
Biological Feature Extraction

Center-surround vs. Laplacian of Gaussian.
Using Pyramids to Compute Biological Features

- Build Gaussian Pyramid
- Take difference between pixels at same image locations but different scales
- Result: difference-of-Gaussians receptive fields
Illusory Contours

Some mechanism is responsible for our illusory perception of contours where there are none…
Gabor “jets”

Similar to a biological hypercolumn: collection of Gabor filters with various orientations and scales, but all centered at one visual location.
Non-Classical Surround

Method:
- Map receptive field location and size
- Check that neuron does not respond to stimuli outside the mapped RF
- Present stimulus in RF
- Compare this baseline response to response obtained when stimuli are also present outside the RF.

Result:
- stimuli outside RF similar to the one inside RF inhibit neuron
- stimuli outside RF very similar to the one inside RF do not affect (or enhance very slightly) neuron
Non-classical surround inhibition

(a)

(b)

Bottom-up feature extraction

to saliency map

DoG filtering

rectification
Example
Non-Classical Surround & Edge Detection

Holt & Mel, 2000
Long-range Excitation
Long-range

Stimulus outside RF enhances neuron’s response if placed and oriented such as to form a contour.
Modeling long-range connections

\[
\alpha = \frac{y_2 - y_1}{x_2 - x_1}
\]

\[
(90^\circ - \theta) + \alpha = (90^\circ - \alpha) + \phi
\]

\[
\phi = 2\alpha - \theta
\]

\[
\phi = -\theta \text{ if } \Delta x = 0, \Delta y = 0
\]
Contour completion

[Image of contour completion diagram]
Grouping and Object Segmentation

We can do much more than simply extract and follow contours…