Last time: Problem-Solving

• Problem solving:

- Goal formulation
- Problem formulation (states, operators)

?

?

• Search for solution

• Problem formulation:

- Initial state
- ?
- ?
- ?

• Problem types:

- single state: accessible and deterministic environment
- multiple state:
- contingency:
- exploration: ?

Last time: Problem-Solving

• Problem solving:

- Goal formulation
- Problem formulation (states, operators)

?

?

• Search for solution

• Problem formulation:

- Initial state
- Operators
- Goal test
- Path cost

• Problem types:

- single state: accessible and deterministic environment
- multiple state:
- contingency:
- exploration: ?

Last time: Problem-Solving

• Problem solving:

- Goal formulation
- Problem formulation (states, operators)
- Search for solution

• Problem formulation:

- Initial state
- Operators
- Goal test
- Path cost

• Problem types:

- single state: accessible and deterministic environment
- multiple state: inaccessible and deterministic environment
- contingency: inaccessible and nondeterministic environment
- exploration: unknown state-space

Last time: Finding a solution

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(*problem, strategy*) returns a *solution*, or failure initialize the search tree using the initial state problem

 loop do
 if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

 if the node contains a goal state then return the corresponding solution else expand the node and add resulting nodes to the search tree

Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state.

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding).

Function General-Search(*problem*, *strategy*) returns a *solution*, or failure initialize the search tree using the initial state problem **loop do**if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add resulting nodes to the search tree

Strategy: The search strategy is determined by ???

Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(*problem*, *strategy*) returns a *solution*, or failure initialize the search tree using the initial state problem **loop do**if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add resulting nodes to the search tree

Strategy: The search strategy is determined by <u>the **order** in which the nodes</u> <u>are expanded.</u>

A Clean Robust Algorithm

```
Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure
   open ← make-queue(make-node(initial-state[problem]))
   closed \leftarrow [empty]
   loop do
         if open is empty then return failure
         currnode \leftarrow Remove-Front(open)
         if Goal-Test[problem] applied to State(currnode) then return currnode
         children ← Expand(currnode, Operators[problem])
         while children not empty
                           [... see next slide ...]
         end
         closed \leftarrow Insert(closed, currnode)
         open ← Sort-By-PathCost(open)
   end
```

A Clean Robust Algorithm

```
[... see previous slide ...]
         children \leftarrow Expand(currnode, Operators[problem])
         while children not empty
                   child \leftarrow Remove-Front(children)
                   if no node in open or closed has child's state
                             open \leftarrow Queuing-Fn(open, child)
                   else if there exists node in open that has child's state
                             if PathCost(child) < PathCost(node)
                                       open \leftarrow Delete-Node(open, node)
                                       open \leftarrow Queuing-Fn(open, child)
                   else if there exists node in closed that has child's state
                             if PathCost(child) < PathCost(node)
                                       closed ← Delete-Node(closed, node)
                                       open \leftarrow Queuing-Fn(open, child)
         end
```

[... see previous slide ...]

CS 561, Session 6

Last time: search strategies

Uninformed: Use only information available in the problem formulation

- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

Informed: Use heuristics to guide the search

- Best first
- A*

Evaluation of search strategies

- Search algorithms are commonly evaluated according to the following four criteria:
 - **Completeness:** does it always find a solution if one exists?
 - **Time complexity:** how long does it take as a function of number of nodes?
 - **Space complexity:** how much memory does it require?
 - **Optimality:** does it guarantee the least-cost solution?
- Time and space complexity are measured in terms of:
 - $b \max$ branching factor of the search tree
 - *d* depth of the least-cost solution
 - *m* max depth of the search tree (may be infinity)

Last time: uninformed search strategies

Uninformed search:

Use only information available in the problem formulation

- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

This time: informed search

Informed search:

Use heuristics to guide the search

- Best first
- A*
- Heuristics
- Hill-climbing
- Simulated annealing

Best-first search

• Idea:

use an evaluation function for each node; estimate of "desirability"

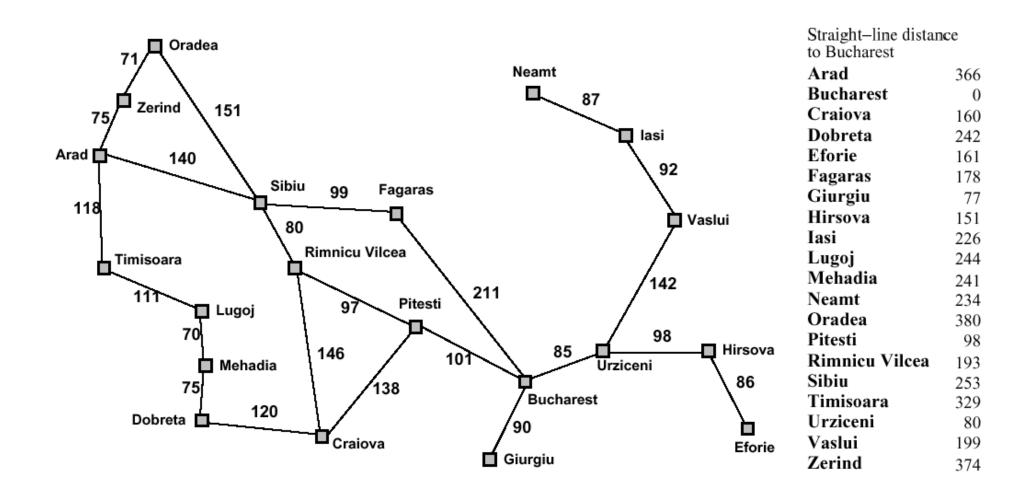
 \Rightarrow expand most desirable unexpanded node.

• Implementation:

QueueingFn = insert successors in decreasing order of desirability

 Special cases: greedy search
 A* search

Romania with step costs in km



Greedy search

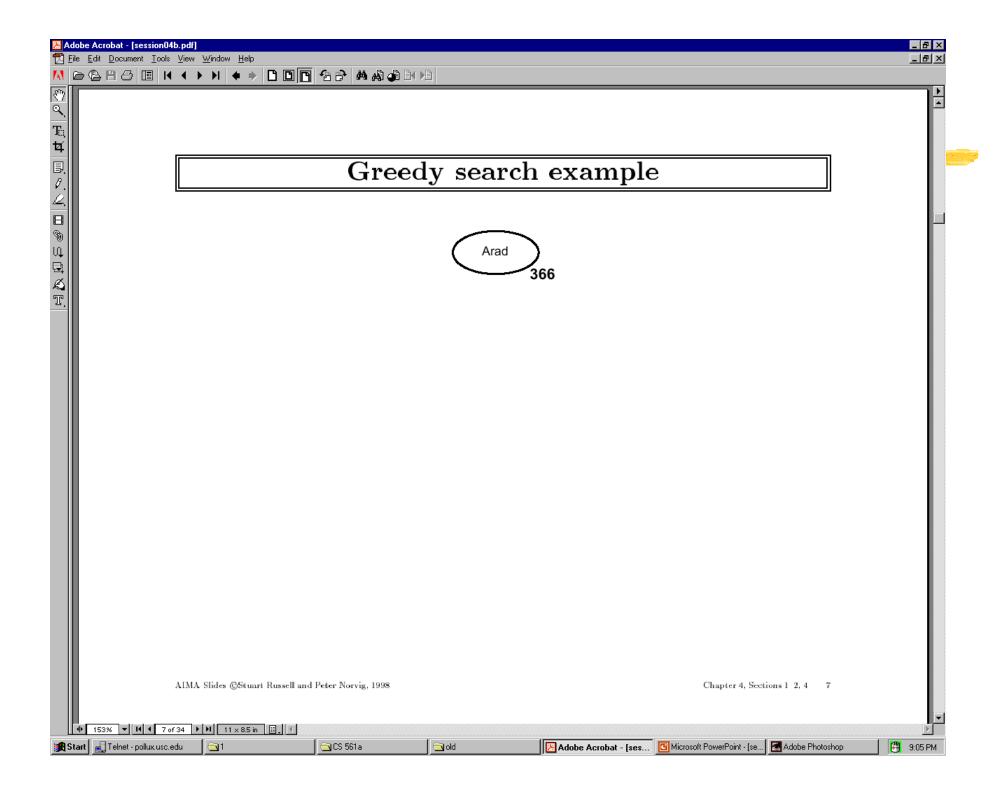
• Estimation function:

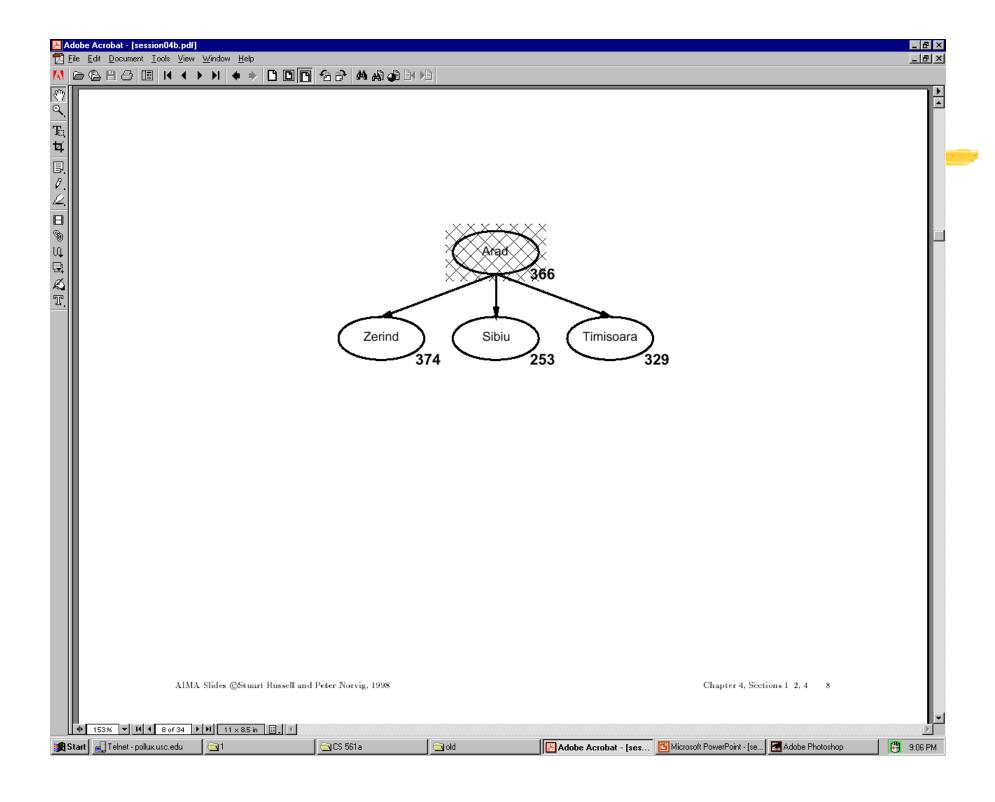
h(n) = estimate of cost from *n* to goal (heuristic)

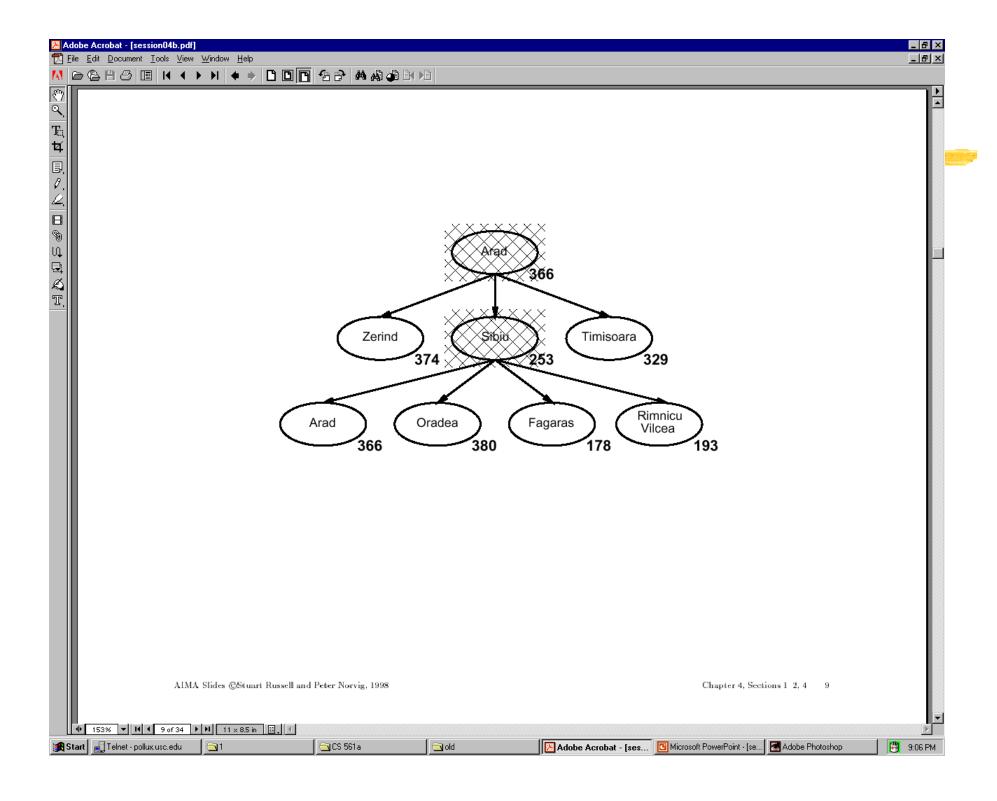
• For example:

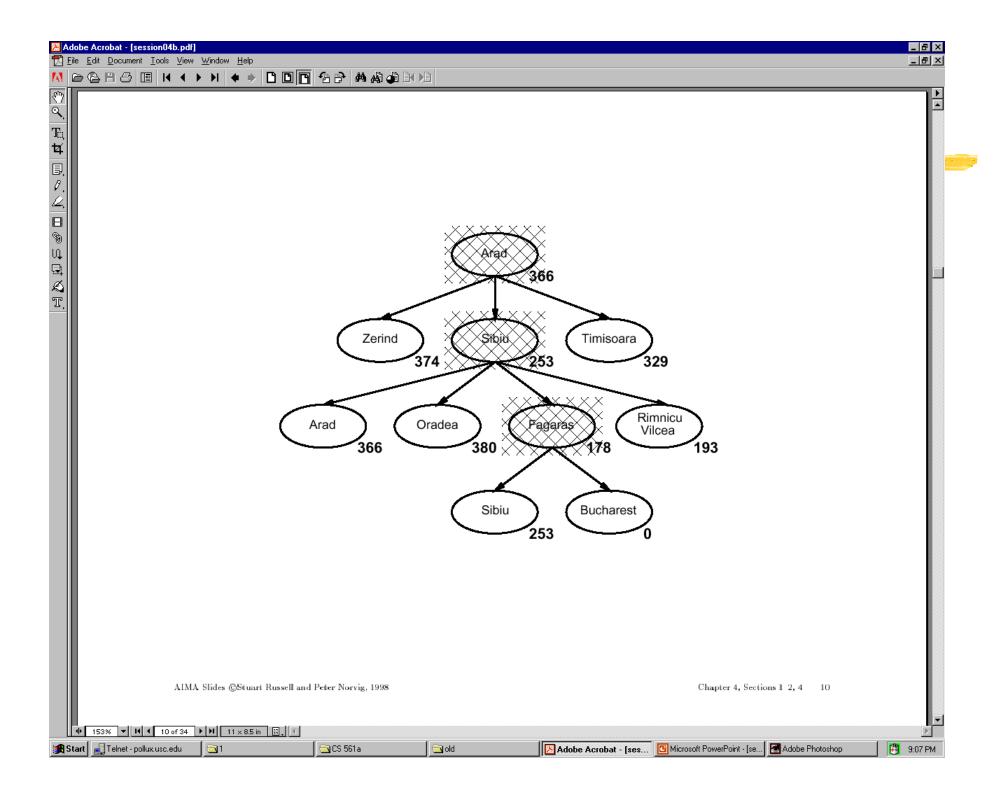
 $h_{SLD}(n)$ = straight-line distance from *n* to Bucharest

• Greedy search expands first the node that appears to be closest to the goal, according to *h(n)*.









Properties of Greedy Search

• Complete?

• Time?

• Space?

• Optimal?

Properties of Greedy Search

- Complete? No can get stuck in loops

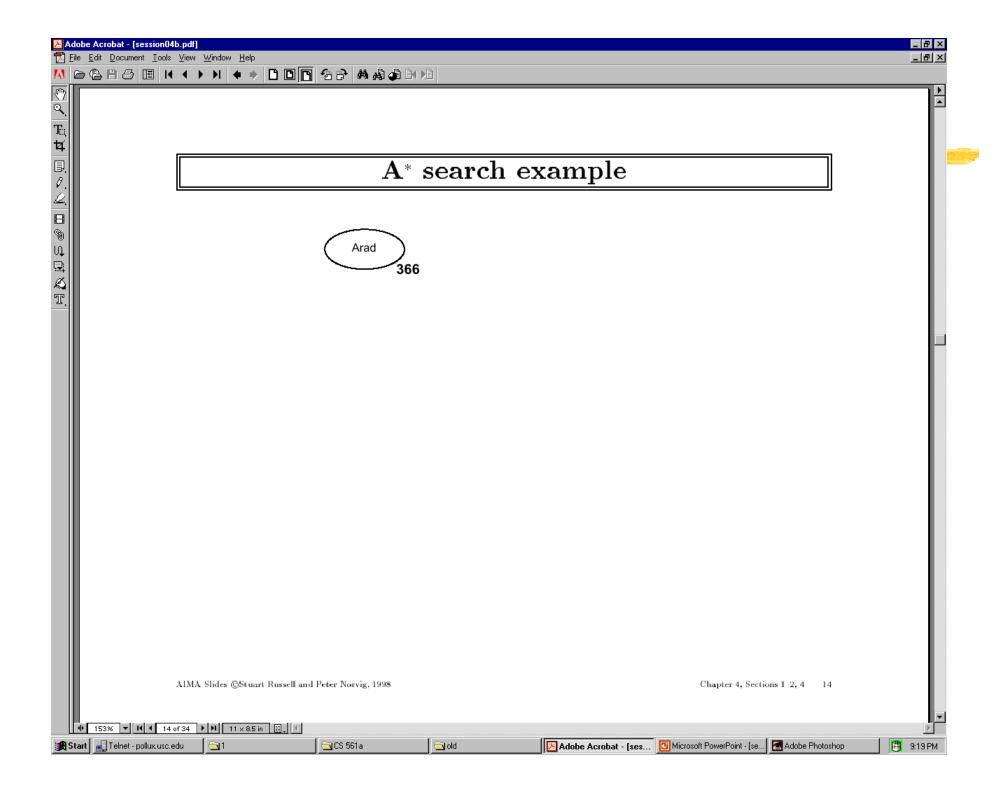
 e.g., Iasi > Neamt > Iasi > Neamt > ...
 Complete in finite space with repeated-state checking.
- Time? O(b^m) but a good heuristic can give dramatic improvement
- Space? O(b^m) keeps all nodes in memory
- Optimal? No.

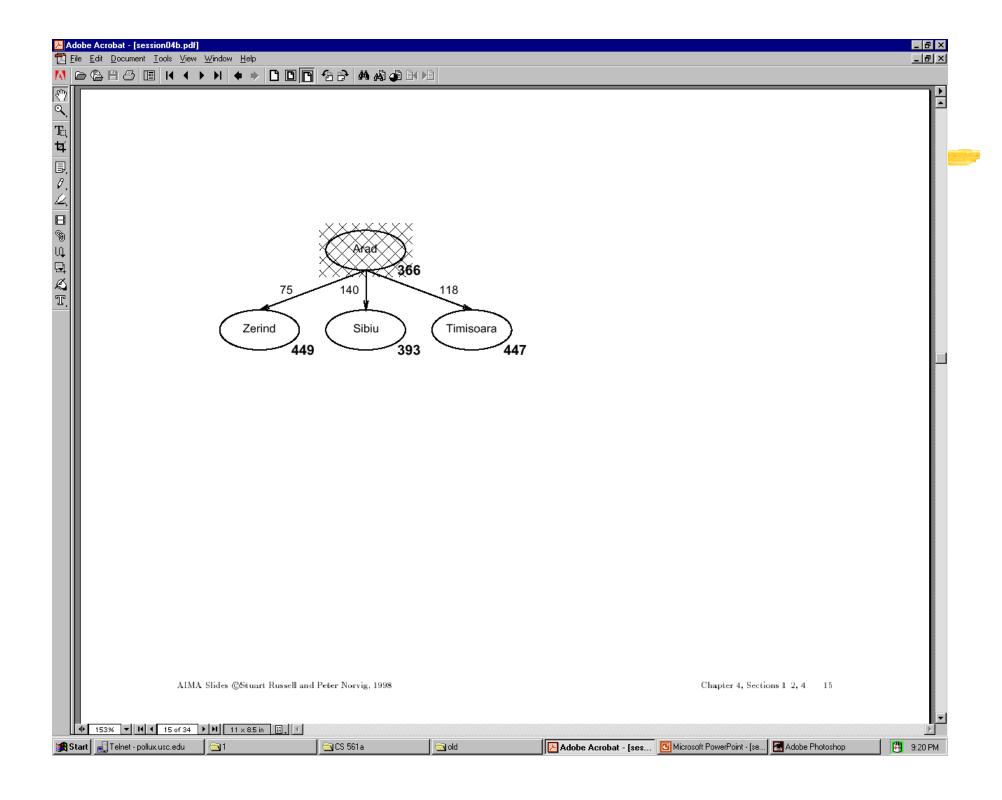
A* search

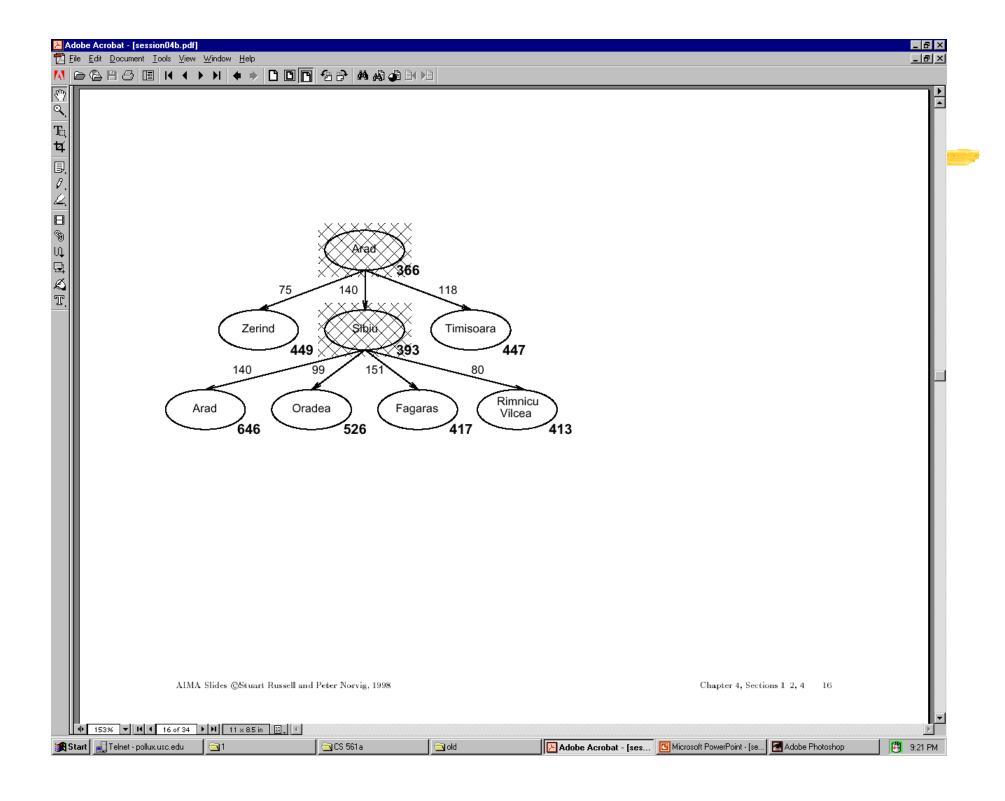
• Idea: avoid expanding paths that are already expensive

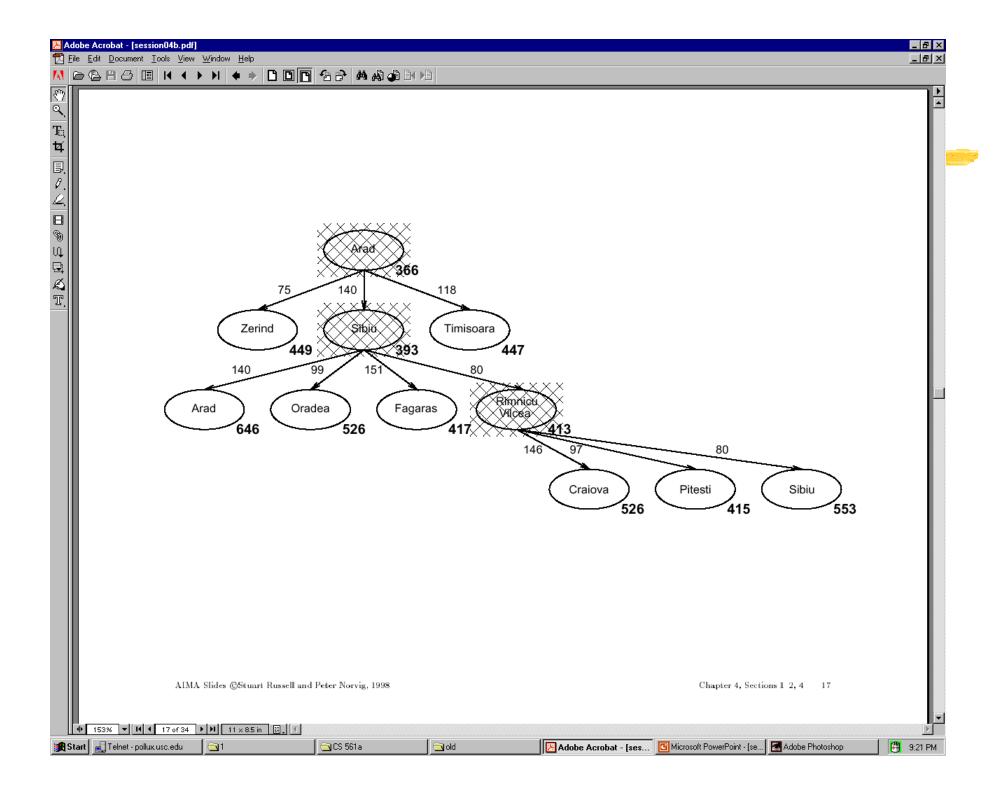
evaluation function: f(n) = g(n) + h(n) with: g(n) – cost so far to reach n h(n) – estimated cost to goal from nf(n) – estimated total cost of path through n to goal

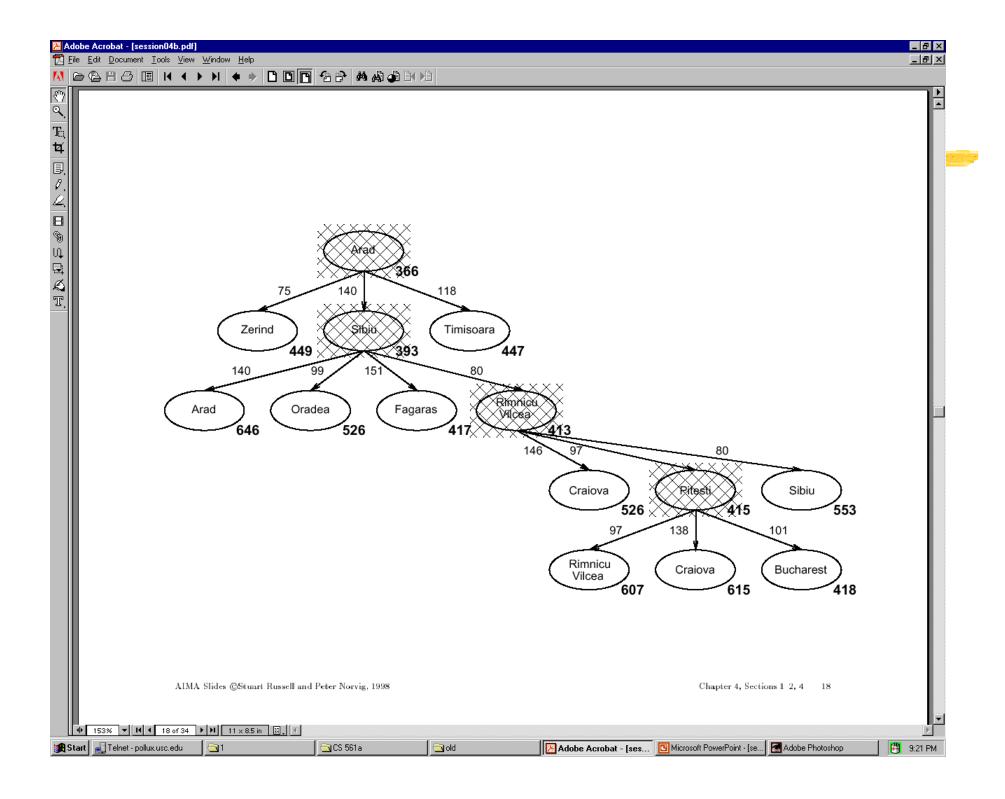
- A* search uses an admissible heuristic, that is, h(n) ≤ h*(n) where h*(n) is the true cost from n. For example: h_{SLD}(n) never overestimates actual road distance.
- Theorem: A* search is optimal

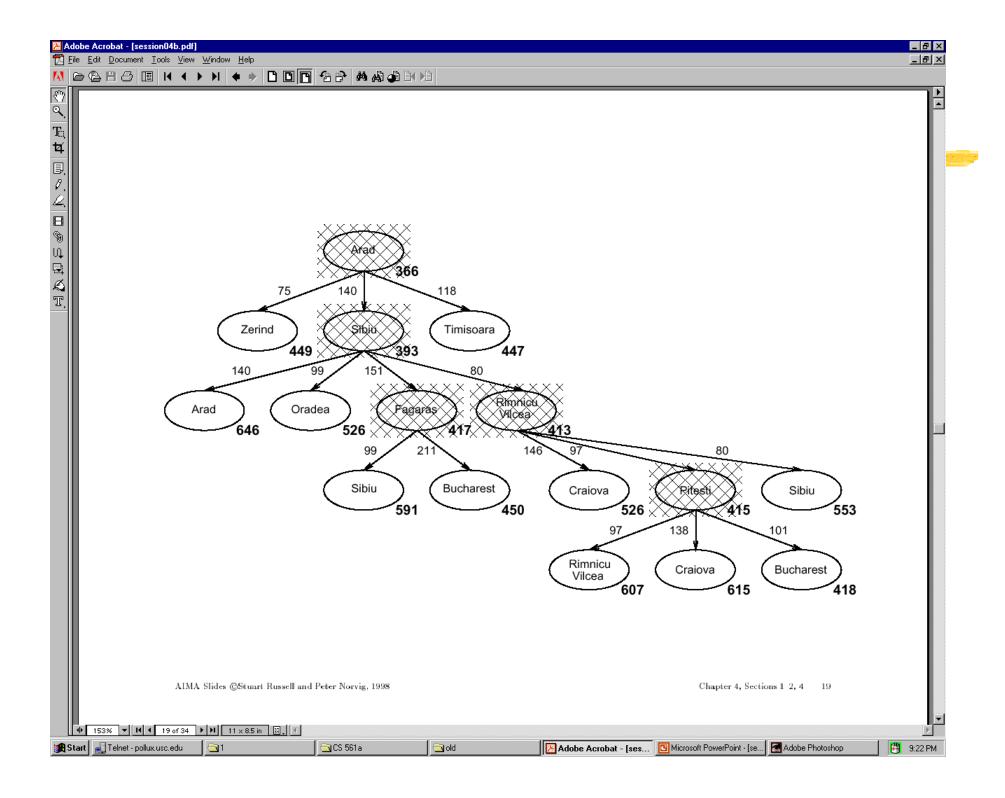






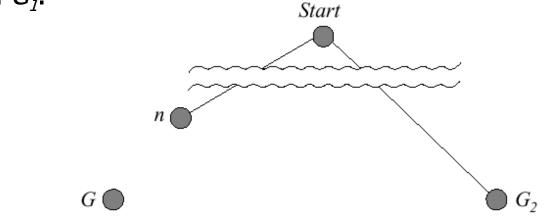






Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let *n* be an unexpanded node on a shortest path to an optimal goal G_1 .



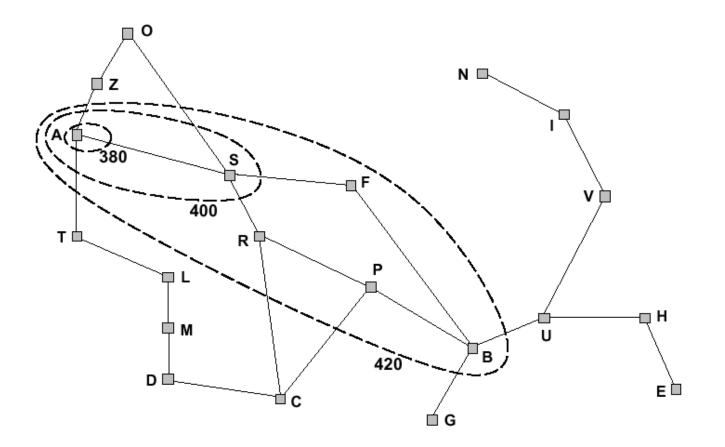
$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^{*} will never select G_2 for expansion 29

Optimality of A* (more useful proof)

Lemma: A^* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$



Properties of A*

• Complete?

• Time?

• Space?

• Optimal?

Properties of A*

• Complete? Yes, unless infinitely many nodes with $f \le f(G)$

• Time? Exponential in [(relative error in h) x (length of solution)]

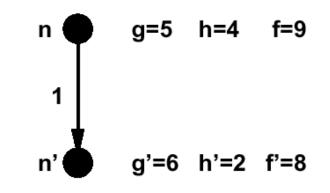
• Space? Keeps all nodes in memory

• Optimal? Yes – cannot expand f_{i+1} until f_i is finished

Proof of lemma: pathmax

For some admissible heuristics, f may decrease along a path

E.g., suppose n' is a successor of n



But this throws away information! $f(n) = 9 \Rightarrow$ true cost of a path through n is ≥ 9 Hence true cost of a path through n' is ≥ 9 also

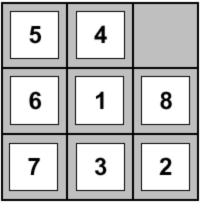
Pathmax modification to A*: Instead of f(n') = g(n') + h(n'), use f(n') = max(g(n') + h(n'), f(n))

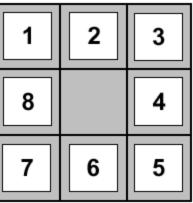
With pathmax, f is always nondecreasing along any path

Admissible heuristics

E.g., for the 8-puzzle:

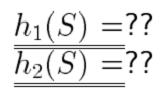
 $h_1(n) =$ number of misplaced tiles $h_2(n) =$ total <u>Manhattan</u> distance (i.e., no. of squares from desired location of each tile)





Start State

Goal State

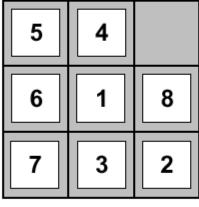


CS 561, Session 6

Admissible heuristics

E.g., for the 8-puzzle:

 $\begin{array}{l} h_1(n) = \text{number of misplaced tiles} \\ h_2(n) = \text{total } \underline{\text{Manhattan}} \text{ distance} \\ \text{(i.e., no. of squares from desired location of each tile)} \end{array}$



Start State

Goal State

6

2

8

7

3

4

5

$$\underline{\frac{h_1(S)}{h_2(S)}} = ?? 7$$

$$\underline{\frac{h_2(S)}{h_2(S)}} = ?? 2+3+3+2+4+2+0+2 = 18$$

CS 561, Session 6

Relaxed Problem

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution.

Next time

- Iterative improvement
- Hill climbing
- Simulated annealing