
CS 561, Sessions 8-9 1

Administrativia

� Assignment 1 due tuesday 9/24/2002 BEFORE midnight

� Midterm exam 10/10/2002

CS 561, Sessions 8-9 2

Last time: search strategies

Uninformed: Use only information available in the problem formulation
� Breadth-first
� Uniform-cost
� Depth-first
� Depth-limited
� Iterative deepening

Informed: Use heuristics to guide the search
� Best first:
� Greedy search � queue first nodes that maximize heuristic �desirability� based on

estimated path cost from current node to goal;
� A* search � queue first nodes that maximize sum of path cost so far and estimated

path cost to goal.
� Iterative improvement � keep no memory of path; work on a single current state and

iteratively improve its �value.�
� Hill climbing � select as new current state the successor state which maximizes value.
� Simulated annealing � refinement on hill climbing by which �bad moves� are

permitted, but with decreasing size and frequency. Will find global extremum.

CS 561, Sessions 8-9 3

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, h.

Which node (use the node�s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

5

D

5

A

C

54

19

6

3

h=15

B

F GE
h=8h=12h=10 h=10

h=18

H

h=20

h=14

CS 561, Sessions 8-9 4

Depth-first search

Node queue: initialization

state depth path cost parent

1 A 0 0 --

CS 561, Sessions 8-9 5

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent

2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
1 A 0 0 --

CS 561, Sessions 8-9 6

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent

5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
1 A 0 0 --

CS 561, Sessions 8-9 7

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent

5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
1 A 0 0 --

CS 561, Sessions 8-9 8

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, h.

Which node (use the node�s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

5

D

5

A

C

54

19

6

3

h=15

B

F GE
h=8h=12h=10 h=10

h=18

H

h=20

h=14

CS 561, Sessions 8-9 9

Breadth-first search

Node queue: initialization

state depth path cost parent

1 A 0 0 --

CS 561, Sessions 8-9 10

Breadth-first search

Node queue: add successors to queue end; empty queue from top

state depth path cost parent

1 A 0 0 --
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1

CS 561, Sessions 8-9 11

Breadth-first search

Node queue: add successors to queue end; empty queue from top

state depth path cost parent

1 A 0 0 --
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2

CS 561, Sessions 8-9 12

Breadth-first search

Node queue: add successors to queue end; empty queue from top

state depth path cost parent

1 A 0 0 --
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2

CS 561, Sessions 8-9 13

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, h.

Which node (use the node�s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

5

D

5

A

C

54

19

6

3

h=15

B

F GE
h=8h=12h=10 h=10

h=18

H

h=20

h=14

CS 561, Sessions 8-9 14

Uniform-cost search

Node queue: initialization

state depth path cost parent

1 A 0 0 --

CS 561, Sessions 8-9 15

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted
by path cost so far; empty queue from top

state depth path cost parent

1 A 0 0 --
2 B 1 3 1
3 D 1 5 1
4 C 1 19 1

CS 561, Sessions 8-9 16

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted
by path cost so far; empty queue from top

state depth path cost parent

1 A 0 0 --
2 B 1 3 1
3 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
4 C 1 19 1

CS 561, Sessions 8-9 17

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted
by path cost so far; empty queue from top

state depth path cost parent

1 A 0 0 --
2 B 1 3 1
3 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
4 C 1 19 1

CS 561, Sessions 8-9 18

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, h.

Which node (use the node�s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

5

D

5

A

C

54

19

6

3

h=15

B

F GE
h=8h=12h=10 h=10

h=18

H

h=20

h=14

CS 561, Sessions 8-9 19

Greedy search

Node queue: initialization

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --

CS 561, Sessions 8-9 20

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
3 D 1 5 15 20 1
4 C 1 19 18 37 1

Sort key

CS 561, Sessions 8-9 21

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
7 E 2 7 10 17 2
6 H 2 9 10 19 2
8 F 2 8 12 20 2
3 D 1 5 15 20 1
4 C 1 19 18 37 1

CS 561, Sessions 8-9 22

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
7 E 2 7 10 17 2
6 H 2 9 10 19 2
8 F 2 8 12 20 2
3 D 1 5 15 20 1
4 C 1 19 18 37 1

CS 561, Sessions 8-9 23

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, h.

Which node (use the node�s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

5

D

5

A

C

54

19

6

3

h=15

B

F GE
h=8h=12h=10 h=10

h=18

H

h=20

h=14

CS 561, Sessions 8-9 24

A* search

Node queue: initialization

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --

CS 561, Sessions 8-9 25

A* search

Node queue: Add successors to queue, sorted by total cost.

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
3 D 1 5 15 20 1
4 C 1 19 18 37 1

Sort key

CS 561, Sessions 8-9 26

A* search

Node queue: Add successors to queue front, sorted by total cost.

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
6 E 2 7 10 17 2
7 H 2 9 10 19 2
3 D 1 5 15 20 1
8 F 2 8 12 20 2
4 C 1 19 18 37 1

CS 561, Sessions 8-9 27

A* search

Node queue: Add successors to queue front, sorted by total cost.

state depth path cost total parent
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
6 E 2 7 10 17 2
7 H 2 9 10 19 2
3 D 1 5 15 20 1
8 F 2 8 12 20 2
4 C 1 19 18 37 1

CS 561, Sessions 8-9 28

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, h.

Which node (use the node�s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

5

D

5

A

C

54

19

6

3

h=15

B

F GE
h=8h=12h=10 h=10

h=18

H

h=20

h=14

CS 561, Sessions 8-9 29

Last time: Simulated annealing algorithm

� Idea: Escape local extrema by allowing �bad moves,� but gradually
decrease their size and frequency.

Note: goal here is to
maximize E.-

CS 561, Sessions 8-9 30

Last time: Simulated annealing algorithm

� Idea: Escape local extrema by allowing �bad moves,� but gradually
decrease their size and frequency.

Algorithm when goal
is to minimize E.< -

-

CS 561, Sessions 8-9 31

This time: Outline

� Game playing
� The minimax algorithm
� Resource limitations
� alpha-beta pruning
� Elements of chance

CS 561, Sessions 8-9 32

What kind of games?

� Abstraction: To describe a game we must capture every relevant
aspect of the game. Such as:
� Chess
� Tic-tac-toe
� �

� Accessible environments: Such games are characterized by
perfect information

� Search: game-playing then consists of a search through possible
game positions

� Unpredictable opponent: introduces uncertainty thus game-
playing must deal with contingency problems

CS 561, Sessions 8-9 33

Searching for the next move

� Complexity: many games have a huge search space
� Chess: b = 35, m=100 ���� nodes = 100 35

if each node takes about 1 ns to explore
then each move will take about 10 50 millennia
to calculate.

� Resource (e.g., time, memory) limit: optimal solution not
feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding portions
of the search tree that cannot improve quality result.

2. Evaluation functions: heuristics to evaluate utility of a state
without exhaustive search.

CS 561, Sessions 8-9 34

Two-player games

� A game formulated as a search problem:

� Initial state: ?
� Operators: ?
� Terminal state: ?
� Utility function: ?

CS 561, Sessions 8-9 35

Two-player games

� A game formulated as a search problem:

� Initial state: board position and turn
� Operators: definition of legal moves
� Terminal state: conditions for when game is over
� Utility function: a numeric value that describes the outcome of the

game. E.g., -1, 0, 1 for loss, draw, win.
(AKA payoff function)

CS 561, Sessions 8-9 36

Game vs. search problem

CS 561, Sessions 8-9 37

Example: Tic-Tac-Toe

CS 561, Sessions 8-9 38

Type of games

CS 561, Sessions 8-9 39

The minimax algorithm

� Perfect play for deterministic environments with perfect information
� Basic idea: choose move with highest minimax value

= best achievable payoff against best play
� Algorithm:

1. Generate game tree completely
2. Determine utility of each terminal state
3. Propagate the utility values upward in the three by applying MIN and

MAX operators on the nodes in the current level
4. At the root node use minimax decision to select the move with the

max (of the min) utility value

� Steps 2 and 3 in the algorithm assume that the opponent will play
perfectly.

CS 561, Sessions 8-9 40

minimax = maximum of the minimum

1st ply

2nd ply

CS 561, Sessions 8-9 41

Minimax: Recursive implementation

Complete: ?
Optimal: ?

Time complexity: ?
Space complexity: ?

CS 561, Sessions 8-9 42

Minimax: Recursive implementation

Complete: Yes, for finite state-space
Optimal: Yes

Time complexity: O(bm)
Space complexity: O(bm) (= DFS
Does not keep all nodes in memory.)

CS 561, Sessions 8-9 43

1. Move evaluation without complete search

� Complete search is too complex and impractical

� Evaluation function: evaluates value of state using heuristics and
cuts off search

� New MINIMAX:
� CUTOFF-TEST: cutoff test to replace the termination condition (e.g.,

deadline, depth-limit, etc.)
� EVAL: evaluation function to replace utility function (e.g., number of

chess pieces taken)

CS 561, Sessions 8-9 44

Evaluation functions

� Weighted linear evaluation function: to combine n heuristics
f = w1f1 + w2f2 + � + wnfn

E.g, w�s could be the values of pieces (1 for prawn, 3 for bishop etc.)
f�s could be the number of type of pieces on the board

CS 561, Sessions 8-9 45

Note: exact values do not matter

CS 561, Sessions 8-9 46

Minimax with cutoff: viable algorithm?

Assume we have 100 seconds, evaluate 104 nodes/s;
can evaluate 106 nodes/move

CS 561, Sessions 8-9 47

2. αααα-ββββ pruning: search cutoff

� Pruning: eliminating a branch of the search tree from
consideration without exhaustive examination of each node

� αααα-ββββ pruning: the basic idea is to prune portions of the search tree
that cannot improve the utility value of the max or min node, by
just considering the values of nodes seen so far.

� Does it work? Yes, in roughly cuts the branching factor from b to
√b resulting in double as far look-ahead than pure minimax

CS 561, Sessions 8-9 48

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8

MIN

CS 561, Sessions 8-9 49

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2MIN

CS 561, Sessions 8-9 50

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2

5

≤≤≤≤ 5MIN

CS 561, Sessions 8-9 51

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2

5

≤≤≤≤ 5MIN

Selected move

CS 561, Sessions 8-9 52

αααα-ββββ pruning: general principle

Player

Player

Opponent

Opponent

m

n

αααα

v

If α > v then MAX will chose m so
prune tree under n

Similar for ββββ for MIN

CS 561, Sessions 8-9 53

Properties of αααα-ββββ

CS 561, Sessions 8-9 54

The αααα-ββββ algorithm

CS 561, Sessions 8-9 55

More on the αααα-ββββ algorithm

� Same basic idea as minimax, but prune (cut away) branches of the
tree that we know will not contain the solution.

CS 561, Sessions 8-9 56

More on the αααα-ββββ algorithm: start from Minimax

CS 561, Sessions 8-9 57

Remember: Minimax: Recursive implementation

Complete: Yes, for finite state-space
Optimal: Yes

Time complexity: O(bm)
Space complexity: O(bm) (= DFS
Does not keep all nodes in memory.)

CS 561, Sessions 8-9 58

More on the αααα-ββββ algorithm

� Same basic idea as minimax, but prune (cut away) branches of the
tree that we know will not contain the solution.

� Because minimax is depth-first, let�s consider nodes along a given
path in the tree. Then, as we go along this path, we keep track of:
� α : Best choice so far for MAX
� β : Best choice so far for MIN

CS 561, Sessions 8-9 59

More on the αααα-ββββ algorithm: start from Minimax

Note: These are both
Local variables. At the
Start of the algorithm,
We initialize them to
αααα = -∞∞∞∞ and ββββ = +∞∞∞∞

CS 561, Sessions 8-9 60

More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5 10 6 2 8 7

Min-Value loops
over these

In Min-Value:

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

Max-Value loops
over these

CS 561, Sessions 8-9 61

More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5 10 6 2 8 7

In Max-Value:

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = 5
ββββ = +∞∞∞∞Max-Value loops

over these

CS 561, Sessions 8-9 62

In Min-Value:More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5 10 6 2 8 7
αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = 5
ββββ = +∞∞∞∞

αααα = 5
ββββ = 2 End loop and return 5

Min-Value loops
over these

CS 561, Sessions 8-9 63

In Max-Value:More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5 10 6 2 8 7
αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = 5
ββββ = +∞∞∞∞

αααα = 5
ββββ = 2 End loop and return 5

αααα = 5
ββββ = +∞∞∞∞

Max-Value loops
over these

CS 561, Sessions 8-9 64

Another way to understand the algorithm

� From: http://yoda.cis.temple.edu:8080/UGAIWWW/lectures95/search/alpha-beta.html

� For a given node N,

α is the value of N to MAX
β is the value of N to MIN

CS 561, Sessions 8-9 65

Example

CS 561, Sessions 8-9 66

αααα-ββββ algorithm:

CS 561, Sessions 8-9 67

Solution

NODE TYPE ALPHA BETA SCORE
A Max -I +I
B Min -I +I
C Max -I +I
D Min -I +I
E Max 10 10 10
D Min -I 10
F Max 11 11 11
D Min -I 10 10
C Max 10 +I
G Min 10 +I
H Max 9 9 9
G Min 10 9 9
C Max 10 +I 10
B Min -I 10
J Max -I 10
K Min -I 10
L Max 14 14 14
K Min -I 10 10
�

NODE TYPE ALPHA BETA SCORE
�
J Max 10 10 10
B Min -I 10 10
A Max 10 +I
Q Min 10 +I
R Max 10 +I
S Min 10 +I
T Max 5 5 5
S Min 10 5 5
R Max 10 +I
V Min 10 +I
W Max 4 4 4
V Min 10 4 4
R Max 10 +I 10
Q Min 10 10 10
A Max 10 10 10

CS 561, Sessions 8-9 68

State-of-the-art for deterministic games

CS 561, Sessions 8-9 69

Nondeterministic games

CS 561, Sessions 8-9 70

Algorithm for nondeterministic games

CS 561, Sessions 8-9 71

Remember: Minimax algorithm

CS 561, Sessions 8-9 72

Nondeterministic games: the element of chance

3 ?

0.50.5

817

8

?

CHANCE ?

expectimax and expectimin, expected values over all possible outcomes

CS 561, Sessions 8-9 73

Nondeterministic games: the element of chance

3 5
0.50.5

817

8

5

CHANCE 4 = 0.5*3 + 0.5*5Expectimax

Expectimin

CS 561, Sessions 8-9 74

Evaluation functions: Exact values DO matter

Order-preserving transformation do not necessarily behave
the same!

CS 561, Sessions 8-9 75

State-of-the-art for nondeterministic games

CS 561, Sessions 8-9 76

Summary

CS 561, Sessions 8-9 77

Exercise: Game Playing

(a) Compute the backed-up values
computed by the minimax
algorithm. Show your answer by
writing values at the appropriate
nodes in the above tree.

(b) Compute the backed-up values
computed by the alpha-beta
algorithm. What nodes will not
be examined by the alpha-beta
pruning algorithm?

(c) What move should Max choose
once the values have been
backed-up all the way?

A

B C D

E F G H I J K

L M N O P Q R S T U V W YX
2 3 8 5 7 6 0 1 5 2 8 4 210

Max

Max

Min

Min

Consider the following game tree in which the evaluation function values are
shown below each leaf node. Assume that the root node corresponds to the
maximizing player. Assume the search always visits children left-to-right.

