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Administrativia 

� Assignment 1 due tuesday 9/24/2002 BEFORE midnight

� Midterm exam 10/10/2002
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Last time: search strategies

Uninformed: Use only information available in the problem formulation
� Breadth-first
� Uniform-cost
� Depth-first
� Depth-limited
� Iterative deepening

Informed: Use heuristics to guide the search
� Best first:
� Greedy search � queue first nodes that maximize heuristic �desirability� based on 

estimated path cost from current node to goal;
� A* search � queue first nodes that maximize sum of path cost so far and estimated 

path cost to goal.
� Iterative improvement � keep no memory of path; work on a single current state and 

iteratively improve its �value.�
� Hill climbing � select as new current state the successor state which maximizes value.
� Simulated annealing � refinement on hill climbing by which �bad moves� are 

permitted, but with decreasing size and frequency. Will find global extremum.
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Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.  
Each arc between nodes is labeled with the cost of the corresponding 
operator, and the leaves are labeled with the value of the heuristic 
function, h.

Which node (use the node�s letter) will be expanded next by each of the 
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search
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Depth-first search

Node queue: initialization

# state depth path cost parent #

1 A 0 0 --



CS 561,  Sessions 8-9 5

Depth-first search

Node queue: add successors to queue front; empty queue from top

# state depth path cost parent #

2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
1 A 0 0 --
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Depth-first search

Node queue: add successors to queue front; empty queue from top

# state depth path cost parent #

5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
1 A 0 0 --
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Depth-first search

Node queue: add successors to queue front; empty queue from top

# state depth path cost parent #

5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
1 A 0 0 --
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Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.  
Each arc between nodes is labeled with the cost of the corresponding 
operator, and the leaves are labeled with the value of the heuristic 
function, h.

Which node (use the node�s letter) will be expanded next by each of the 
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search
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Breadth-first search

Node queue: initialization

# state depth path cost parent #

1 A 0 0 --



CS 561,  Sessions 8-9 10

Breadth-first search

Node queue: add successors to queue end; empty queue from top

# state depth path cost parent #

1 A 0 0 --
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
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Breadth-first search

Node queue: add successors to queue end; empty queue from top

# state depth path cost parent #

1 A 0 0 --
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
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Breadth-first search

Node queue: add successors to queue end; empty queue from top

# state depth path cost parent #

1 A 0 0 --
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
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Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.  
Each arc between nodes is labeled with the cost of the corresponding 
operator, and the leaves are labeled with the value of the heuristic 
function, h.

Which node (use the node�s letter) will be expanded next by each of the 
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search
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Uniform-cost search

Node queue: initialization

# state depth path cost parent #

1 A 0 0 --
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Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted 
by path cost so far; empty queue from top

# state depth path cost parent #

1 A 0 0 --
2 B 1 3 1
3 D 1 5 1
4 C 1 19 1
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Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted 
by path cost so far; empty queue from top

# state depth path cost parent #

1 A 0 0 --
2 B 1 3 1
3 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
4 C 1 19 1



CS 561,  Sessions 8-9 17

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted 
by path cost so far; empty queue from top

# state depth path cost parent #

1 A 0 0 --
2 B 1 3 1
3 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
4 C 1 19 1
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Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.  
Each arc between nodes is labeled with the cost of the corresponding 
operator, and the leaves are labeled with the value of the heuristic 
function, h.

Which node (use the node�s letter) will be expanded next by each of the 
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search
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Greedy search

Node queue: initialization

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
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Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
3 D 1 5 15 20 1
4 C 1 19 18 37 1

Sort key
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Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
7 E 2 7 10 17 2
6 H 2 9 10 19 2
8 F 2 8 12 20 2
3 D 1 5 15 20 1
4 C 1 19 18 37 1
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Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
7 E 2 7 10 17 2
6 H 2 9 10 19 2
8 F 2 8 12 20 2
3 D 1 5 15 20 1
4 C 1 19 18 37 1
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Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.  
Each arc between nodes is labeled with the cost of the corresponding 
operator, and the leaves are labeled with the value of the heuristic 
function, h.

Which node (use the node�s letter) will be expanded next by each of the 
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search
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A* search

Node queue: initialization

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
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A* search

Node queue: Add successors to queue, sorted by total cost.

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
3 D 1 5 15 20 1
4 C 1 19 18 37 1

Sort key
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A* search

Node queue: Add successors to queue front, sorted by total cost.

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
6 E 2 7 10 17 2
7 H 2 9 10 19 2
3 D 1 5 15 20 1
8 F 2 8 12 20 2
4 C 1 19 18 37 1
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A* search

Node queue: Add successors to queue front, sorted by total cost.

# state depth path cost total parent #
cost to goal cost

1 A 0 0 20 20 --
2 B 1 3 14 17 1
5 G 2 8 8 16 2
6 E 2 7 10 17 2
7 H 2 9 10 19 2
3 D 1 5 15 20 1
8 F 2 8 12 20 2
4 C 1 19 18 37 1
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Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.  
Each arc between nodes is labeled with the cost of the corresponding 
operator, and the leaves are labeled with the value of the heuristic 
function, h.

Which node (use the node�s letter) will be expanded next by each of the 
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search
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Last time: Simulated annealing algorithm

� Idea: Escape local extrema by allowing �bad moves,� but gradually 
decrease their size and frequency.

Note: goal here is to
maximize E.-
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Last time: Simulated annealing algorithm

� Idea: Escape local extrema by allowing �bad moves,� but gradually 
decrease their size and frequency.

Algorithm when goal
is to minimize E.< -

-
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This time: Outline

� Game playing
� The minimax algorithm
� Resource limitations
� alpha-beta pruning
� Elements of chance
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What kind of games?

� Abstraction: To describe a game we must capture every relevant 
aspect of the game.  Such as:
� Chess
� Tic-tac-toe
� �

� Accessible environments: Such games are characterized by 
perfect information

� Search: game-playing then consists of a search through possible 
game positions

� Unpredictable opponent: introduces uncertainty thus game-
playing must deal with contingency problems
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Searching for the next move

� Complexity: many games have a huge search space
� Chess: b = 35, m=100 ���� nodes = 100 35

if each node takes about 1 ns to explore
then each move will take about 10 50 millennia
to calculate.

� Resource (e.g., time, memory) limit: optimal solution not 
feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding portions 
of the search tree that cannot improve quality result.

2. Evaluation functions: heuristics to evaluate utility of a state 
without exhaustive search.



CS 561,  Sessions 8-9 34

Two-player games

� A game formulated as a search problem:

� Initial state: ?
� Operators: ?
� Terminal state: ?
� Utility function: ?
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Two-player games

� A game formulated as a search problem:

� Initial state: board position and turn
� Operators: definition of legal moves
� Terminal state: conditions for when game is over
� Utility function: a numeric value that describes the outcome of the

game.  E.g., -1, 0, 1 for loss, draw, win.
(AKA payoff function)
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Game vs. search problem
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Example: Tic-Tac-Toe
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Type of games
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The minimax algorithm

� Perfect play for deterministic environments with perfect information
� Basic idea: choose move with highest minimax value

= best achievable payoff against best play
� Algorithm:

1. Generate game tree completely
2. Determine utility of each terminal state
3. Propagate the utility values upward in the three by applying MIN and 

MAX operators on the nodes in the current level
4. At the root node use minimax decision to select the move with the 

max (of the min) utility value

� Steps 2 and 3 in the algorithm assume that the opponent will play 
perfectly.
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minimax = maximum of the minimum

1st ply

2nd ply
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Minimax: Recursive implementation

Complete: ?
Optimal: ?

Time complexity: ?
Space complexity: ?
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Minimax: Recursive implementation

Complete: Yes, for finite state-space
Optimal: Yes

Time complexity: O(bm)
Space complexity: O(bm)   (= DFS
Does not keep all nodes in memory.)
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1. Move evaluation without complete search

� Complete search is too complex and impractical

� Evaluation function: evaluates value of state using heuristics and 
cuts off search

� New MINIMAX:
� CUTOFF-TEST: cutoff test to replace the termination condition (e.g., 

deadline, depth-limit, etc.)
� EVAL: evaluation function to replace utility function (e.g., number of 

chess pieces taken)
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Evaluation functions

� Weighted linear evaluation function: to combine n heuristics
f = w1f1 + w2f2 + � + wnfn

E.g, w�s could be the values of pieces (1 for prawn, 3 for bishop etc.)
f�s could be the number of type of pieces on the board



CS 561,  Sessions 8-9 45

Note: exact values do not matter
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Minimax with cutoff: viable algorithm?

Assume we have 100 seconds, evaluate 104 nodes/s;
can evaluate 106 nodes/move
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2. αααα-ββββ pruning: search cutoff

� Pruning: eliminating a branch of the search tree from 
consideration without exhaustive examination of each node

� αααα-ββββ pruning: the basic idea is to prune portions of the search tree 
that cannot improve the utility value of the max or min node, by
just considering the values of nodes seen so far.

� Does it work?  Yes, in roughly cuts the branching factor from b to 
√b resulting in double as far look-ahead than pure minimax
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αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8

MIN
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αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2MIN
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αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2

5

≤≤≤≤ 5MIN
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αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2

5

≤≤≤≤ 5MIN

Selected move
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αααα-ββββ pruning: general principle

Player

Player

Opponent

Opponent

m

n

αααα

v

If α > v then MAX will chose m so 
prune tree under n 

Similar for ββββ for MIN
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Properties of αααα-ββββ
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The αααα-ββββ algorithm
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More on the αααα-ββββ algorithm

� Same basic idea as minimax, but prune (cut away) branches of the 
tree that we know will not contain the solution.
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More on the αααα-ββββ algorithm: start from Minimax
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Remember: Minimax: Recursive implementation

Complete: Yes, for finite state-space
Optimal: Yes

Time complexity: O(bm)
Space complexity: O(bm)   (= DFS
Does not keep all nodes in memory.)
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More on the αααα-ββββ algorithm

� Same basic idea as minimax, but prune (cut away) branches of the 
tree that we know will not contain the solution.

� Because minimax is depth-first, let�s consider nodes along a given 
path in the tree. Then, as we go along this path, we keep track of:
� α : Best choice so far for MAX
� β : Best choice so far for MIN
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More on the αααα-ββββ algorithm: start from Minimax

Note: These are both
Local variables. At the
Start of the algorithm,
We initialize them to
αααα = -∞∞∞∞ and ββββ = +∞∞∞∞
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More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5           10            6                   2            8    7

Min-Value loops
over these

In Min-Value:

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

Max-Value loops
over these
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More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5           10            6                   2            8    7

In Max-Value:

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = 5
ββββ = +∞∞∞∞Max-Value loops

over these
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In Min-Value:More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5           10            6                   2            8    7
αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = 5
ββββ = +∞∞∞∞

αααα = 5
ββββ = 2 End loop and return 5

Min-Value loops
over these



CS 561,  Sessions 8-9 63

In Max-Value:More on the αααα-ββββ algorithm

�

MAX

MIN

MAX

αααα = -∞∞∞∞
ββββ = +∞∞∞∞

5           10            6                   2            8    7
αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = -∞∞∞∞
ββββ = 5

αααα = 5
ββββ = +∞∞∞∞

αααα = 5
ββββ = 2 End loop and return 5

αααα = 5
ββββ = +∞∞∞∞

Max-Value loops
over these



CS 561,  Sessions 8-9 64

Another way to understand the algorithm

� From: http://yoda.cis.temple.edu:8080/UGAIWWW/lectures95/search/alpha-beta.html

� For a given node N, 

α is the value of N to MAX
β is the value of N to MIN
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Example
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αααα-ββββ algorithm:
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Solution

NODE TYPE ALPHA BETA    SCORE
A Max -I +I
B Min -I +I 
C Max -I +I 
D Min -I +I 
E Max 10 10 10 
D Min -I 10 
F Max 11 11 11 
D Min -I 10 10 
C Max 10 +I 
G Min 10 +I 
H Max 9 9 9 
G Min 10 9 9 
C Max 10 +I 10 
B Min -I 10 
J Max -I 10 
K Min -I 10 
L Max 14 14 14 
K Min -I 10 10 
�

NODE TYPE ALPHA BETA     SCORE
�
J Max 10 10 10 
B Min -I 10 10 
A Max 10 +I 
Q Min 10 +I 
R Max 10 +I 
S Min 10 +I 
T Max 5 5 5 
S Min 10 5 5 
R Max 10 +I 
V Min 10 +I 
W Max 4 4 4 
V Min 10 4 4 
R Max 10 +I 10 
Q Min 10 10 10 
A Max 10 10 10 



CS 561,  Sessions 8-9 68

State-of-the-art for deterministic games
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Nondeterministic games
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Algorithm for nondeterministic games
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Remember: Minimax algorithm
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Nondeterministic games: the element of chance

3 ?

0.50.5

817

8

?

CHANCE ?

expectimax and expectimin, expected values over all possible outcomes
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Nondeterministic games: the element of chance

3 5
0.50.5

817

8

5

CHANCE 4 = 0.5*3 + 0.5*5Expectimax

Expectimin
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Evaluation functions: Exact values DO matter

Order-preserving transformation do not necessarily behave 
the same!
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State-of-the-art for nondeterministic games
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Summary
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Exercise: Game Playing

(a) Compute the backed-up values 
computed by the minimax
algorithm.  Show your answer by 
writing values at the appropriate 
nodes in the above tree. 

(b) Compute the backed-up values 
computed by the alpha-beta  
algorithm.  What nodes will not 
be examined by the alpha-beta 
pruning algorithm?

(c) What move should Max choose 
once the values have been 
backed-up all the way?

A

B C D

E F G H I J K

L M N O P Q R S T U V W YX
2 3 8 5 7 6 0 1 5 2 8 4 210

Max

Max

Min

Min

Consider the following game tree in which the evaluation function values are 
shown below each leaf node.  Assume that the root node corresponds to the 
maximizing player.  Assume the search always visits children left-to-right.


