Midterm format

e Date: 10/10/2002 from 11:00am — 12:20 pm
e Location: THH 101

e Credits: 35% of overall grade

e Approx. 4 problems, several questions in each.

e Material: everything so far, up to slide 27 in this file.
e Not a multiple choice exam

e No books (or other material) are allowed.

e Duration will be 1:20 hours.

e Academic Integrity code: see class main page.

CS 561, Session 12-13

Last time: Logic and Reasoning

Knowledge Base (KB): contains a set of sentences expressed using a
knowledge representation language

e TELL: operator to add a sentence to the KB
e ASK: to query the KB
Logics are KRLs where conclusions can be drawn
e Syntax
e Semantics
Entailment: KB |= a iff a is true in all worlds where KB is true

Inference: KB |- @ = sentence a can be derived from KB using procedure i

e Sound: whenever KB |— a then KB |= a is true
e Complete: whenever KB |= a then KB |- a

CS 561, Session 12-13 2

Last Time: Syntax of propositional logic

Propositional logic is the simplest logic—illustrates ba
The proposition symbols P, /5 etc are sentences

If S is a sentence, -5 is a sentence

If 57 and S5 is a sentence, 57 A 59 is a sentence

If §; and S, is a sentence, §; V 55 is a sentence

If 51 and S5 is a sentence, 57 = 55 is a sentence

If 57 and S5 is a sentence, 57 & 59 is a sentence

CS 561, Session 12-13

Last Time: Semantics of Propositional logic

Each model specifies true/false for each proposition symbol

Eg A B C
True True False

Rules for evaluating truth with respect to a model m:

=8 is true iff S is false
51 A Sy is true iff 51 is true and So is true
51V Sy is true iff 51 Is true or S is true
S1 = 85 is true iff S is false or Sy IS true
i.e., is false iff S Is true and Sy is false
S1 <& 5y istrueiff §1 = Sy istrue and Sy = 57 is true

CS 561, Session 12-13

Last Time: Inference rules for propositional logic

¢> Modus Ponens or Implication-Elimination: (From an implication and the
premise of the implication, you can infer the conclusion.)

a = 3, 8
¢
& And-Elimination: (From a conjunction, you can infer any of the conjuncts.)
ayp ANay AL A

Y

{> And-Introduction: (From a list of sentences, you can infer their conjunction.)
1, 0, ..., (¥,
AR LA AN e
¢ Or-Introduction: (From a sentence, you can infer its disjunction with anything
else at all.)

o
arVarV... Vo,
¢ Double-Negation Elimination: (From a doubly negated sentence, you can infer
a positive sentence.)

1Y

o

¢ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
can infer the other one is true.)

aV g, -3
v

¢ Resolution: (This is the most difficult. Because [cannot be both true and false,
one of the other disjuncts must be true in one of the premises. Or equivalently,
implication is transitive.)

V3, =7V . o = 4, g = v
or equivalently
aVy o =Y

This time

e First-order logic
e Syntax
e Semantics
e Wumpus world example

CS 561, Session 12-13

Why first-order logic?

o We saw that propositional logic is limited because it only makes the
ontological commitment that the world consists of facts.

e Difficult to represent even simple worlds like the Wumpus world;

e.g.,
“don't go forward if the Wumpus is in front of you” takes 64 rules

CS 561, Session 12-13 7

First-order logic (FOL)

e Ontological commitments:
e Objects: wheel, door, body, engine, seat, car, passenger, driver
o Relations: Inside(car, passenger), Beside(driver, passenger)
e Functions: ColorOf(car)
e Properties: Color(car), IsOpen(door), IsOn(engine)

e Functions are relations with single value for each object

CS 561, Session 12-13

Examples:

¢ "One plus two equals three”
Objects:

Relations:
Properties:
Functions:

e "Squares neighboring the Wumpus are smelly”
Objects:

Relations:
Properties:
Functions:

CS 561, Session 12-13

Examples:

¢ "One plus two equals three”

Objects: one, two, three, one plus two
Relations: equals
Properties: --

Functions: plus (“one plus two"” is the name of the object
obtained by applying function plus to one and two;

three is another name for this object)
e "Squares neighboring the Wumpus are smelly”
Objects: Wumpus, square
Relations: neighboring
Properties: smelly
Functions: --

CS 561, Session 12-13

10

FOL: Syntax of basic elements

o Constant symbols: 1,5, A, B, USC, JPL, Alex, Manos, ...
 Predicate symbols: >, Friend, Student, Colleague, ...
 Function symbols: +, sgrt, SchoolOf, TeacherOf, ClassOf, ...

o Variables: x, v, 2z, next, first, last, ...
e Connectives: A, vV, =, &

e Quantifiers: V,

e Equality: =

CS 561, Session 12-13

11

FOL: Atomic sentences

AtomicSentence — Predicate(Term, ...) | Term = Term
Term — Function(Term, ...) | Constant | Variable

o Examples: SchoolOf(Manos)
Colleague(TeacherOf(Alex), TeacherOf(Manos))

>((+xy), x)

CS 561, Session 12-13

12

FOL: Complex sentences

Sentence — AtomicSentence

Sentence Connective Sentence

Quantifier Variable, ... Sentence
— Sentence

(Sentence)

Examples: S1 AS2, S1v S2, (S1 AS2)v S3,S1 = S2,S1< S3

Colleague(Paolo, Maja) = Colleague(Maja, Paolo)
Student(Alex, Paolo) = Teacher(Paolo, Alex)

CS 561, Session 12-13 13

Semantics of atomic sentences

e Sentences in FOL are interpreted with respect to a model

e Model contains objects and relations among them

e Terms: refer to objects (e.g., Door, Alex, StudentOf(Paolo))
e Constant symbols: refer to objects

e Predicate symbols: refer to relations
e Function symbols: refer to functional Relations

e An atomic sentence predicate(term;, ..., term,) is true iff the
relation referred to by predicate holds between the objects referred
to by term,, ..., term,

CS 561, Session 12-13 14

Example model

e Objects: John, James, Marry, Alex, Dan, Joe, Anne, Rich

e Relation: sets of tuples of objects
{<John, James>, <Marry, Alex>, <Marry, James>, ...}
{<Dan, Joe>, <Anne, Marry>, <Marry, Joe>, ...}

e E.Q.:
Parent relation -- {<John, James>, <Marry, Alex>, <Marry, James>}

then Parent(John, James) is true
Parent(John, Marry) is false

CS 561, Session 12-13 15

Quantifiers

Expressing sentences of collection of objects without enumeration

E.g., All Trojans are clever

Someone in the class is sleeping
Universal quantification (for all): V

Existential quantification (three exists): 3

CS 561, Session 12-13 16

Universal quantification (for all): V

Y <variables> <sentence>

"Every one in the 561a class is smart™
V x In(561a, x) = Smart(x)

V P corresponds to the conjunction of instantiations of P
In(561a, Manos) = Smart(Manos) A
In(561a, Dan) = Smart(Dan) A

In(561a, Clinton) = Smart(Clinton)

= is a natural connective to use with V

Common mistake: to use A in conjunction with V
e.g: V x In(561a, x) A Smart(x)

means "“every one is in 561a and everyone is smart

V/4

CS 561, Session 12-13

17

Existential quantification (there exists):

3 <variables> <sentence>

e "Someone in the 561a class is smart™
3 x In(561a, x) A Smart(x)

e 3 P corresponds to the disjunction of instantiations of P
In(561a, Manos) A Smart(Manos) v
In(561a, Dan) A Smart(Dan) v

In(561a, Clinton) A Smart(Clinton)
A IS a natural connective to use with 3

e Common mistake: to use = in conjunction with 3
e.g: 3 x In(561a, x) = Smart(x)
is true if there is anyone that is not in 561a!
(remember, false = true is valid).

CS 561, Session 12-13

18

Properties of quantifiers

V& Vy isthesameasVy Vz (why??)
do dy isthesameasdy dx (why??)
dx Vy is not the same asVy dzx

dx Yy Loves(z,y)
“There is a person who loves everyone in the world”

Vy dx Loves(z,y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

Ve Likes(zx, IceCream) -dx —Likes(x, IceCream)

Jx Likes(x, Broceoli) -V —Likes(x, Broccoli)

CS 561, Session 12-13 19

Example sentences

e Brothers are siblings

e Sibling is transitive

e One’s mother is one’s sibling’s mother

e A first cousin is a child of a parent’s sibling

CS 561, Session 12-13

20

Example sentences

Brothers are siblings

V X,y Brother(x, y) = Sibling(x, y)
e Sibling is transitive
V X, y,z Sibling(x, y) A Sibling(y, z) = Sibling(x, z)
e One’s mother is one’s sibling’s mother
Vv m, ¢ Mother(m, c) A Sibling(c, d) = Mother(m, d)

e A first cousin is a child of a parent’s sibling

V ¢, d FirstCousin(c, d) &
3 p, ps Parent(p, d) A Sibling(p, ps) A Parent(ps, c)

CS 561, Session 12-13

21

Equality

termq = terms 1s true under a given interpretation
if and only if term, and terms refer to the same object

Eg., 1 =2and Va x(Sqrt(x), Sqrt(x)) = x are satisfiable
2 = 21s vald

E.g., definition of (full) Sibling in terms of Parent:
Va,y Sibling(x,y) < [-(z=y)Adm,f -(m=f)A
Parent(m, xz) A Parent(f,x) A Parent(m,y) A Parent(f,y)]

CS 561, Session 12-13 22

Higher-order logic?

First-order logic allows us to quantify over objects (= the first-order
entities that exist in the world).

Higher-order logic also allows quantification over relations and
functions.

e.g., two objects are equal iff all properties applied to them are
equivalent”:

vV Xy (x=y) < (¥ p, p(x) < p(y))

Higher-order logics are more expressive than first-order; however,
so far we have little understanding on how to effectively reason
with sentences in higher-order logic.

CS 561, Session 12-13 23

Logical agents for the Wumpus world

Remember: generic knowledge-based agent:

function KB-AGENT(percept) returns an action
static: KB, a knowledge base

t, a counter, initially (, indicating tirne

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t})
action < AsK(KB, MAKE-ACTION-QQUERY (1))
TELL(KB, MAKE- ACTION- SENTENCE(action, t))
t«—t 41

return action

1. TELL KB what was perceived
Uses a KRL to insert new sentences, representations of facts, into KB

2. ASK KB what to do.
Uses logical reasoning to examine actions and select best.

CS 561, Session 12-13

24

Using the FOL Knowledge Base

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢ = 5:

TeLL{ K B, Percept{|Smell, Breeze, Nonel, 5))
ASK(KB,da Action(a,5))

l.e., does the KB entail any particular actions at ¢ = 57
Answer: Yes, {a/Shoot} < substitution (binding list)

Given a sentence S and a substitution o,

So denotes the result of plugging ¢ into S; e.g.,
S = Smarter(z,y)

o = {z/Hillary,y/Bill}

So = Smarter{ Hillary, Bill)

Ask(KB, S) returns some/all ¢ such that KB | So

CS 561, Session 12-13 25

Wumpus world, FOL Knowledge Base

“Perception”
Vb,g,t Percept([Smell, b, gl,t) = Smeli(t)
Vs,b,t Percept(|s, b, Glitter],t) = AtGold(t)

Reflex: Vi AtGold(t) = Action{Grab,t)

Reflex with internal state: do we have the gold already?
Vi AtGold(t) A ~Holding(Gold,t) = Action(Grab,t)

Holding{Gold,t) cannot be observed
= keeping track of change is essential

CS 561, Session 12-13

26

Deducing hidden properties

Properties of locations:
Vit At(Agent,l,t) A Smelt(t) = Smelly(l)
Vit At{Agent,l,t) A Breeze(t) = Breezy(l)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezy(y) = dx Pit(x) A Adjacent(x,y)

Causal rule—infer effect from cause
Va,y Pit{x) A Adjacenit(z,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Vy Breezy(y) & [z Pit{z) A Adjacent{z,)]

CS 561, Session 12-13 27

Situation calculus

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate

E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a is s

/

I
™
xfhhh'“‘
<@
e

™

/=))

~Q

[,

&
|
QL

]
[~
e
e

[

e
I
o

8 8 [

[/ / 8

/ SI
Forward

3p

CS 561, Session 12-13 28

Describing actions

“Effect” axiom—describe changes due to action
Vs AtGold(s) = Holding(Gold, Result{Grab, 3))

“Frame” axiom—describe non-changes due to action
Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless
caveats—what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, ...

CS 561, Session 12-13 29

Describing actions (cont’d)

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):
P true afterwards < [an action made P true

V P true already and no action made P false]

For holding the gold:
Va,s Holding(Gold, Result{a, 3)) &
[{a=Grab A AtGold(s))
V (Holding(Gold, s) A a # Release)]

CS 561, Session 12-13 30

Planning

Initial condition in KB:
At(Agent, [1,1], So)
At(Gold, [1,2], Sp)

Query: Ask(K B,ds Holding(Gold, s))
i.e., in what situation will | be holding the gold?

Answer: {s/Result(Grab, Result{ Forward, 5))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at Sy and
that &g is the only situation described in the KB

CS 561, Session 12-13 31

Generating action sequences

Represent plans as action sequences [a1,as,. . ., a4
PlanResult(p, s) is the result of executing p in s

Then the query Ask(K B,3p Holding(Gold, PlanResult(p, Sp)))
has the solution {p/[Forward, Grab]}

Definition of PlanResult in terms of Result:
Vs PlanResult([],s) = s
Va,p,s PlanResult(|a|p],s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type
of inference more efficiently than a general-purpose reasoner

CS 561, Session 12-13 32

Summary

First-order logic:
— objects and relations are semantic primitives
— syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
— conventions for describing actions and change in FOL
— can formulate planning as inference on a situation calculus KB

CS 561, Session 12-13 33

