Midterm format

- Date: 10/10/2002 from 11:00am - 12:20 pm
- Location: THH 101
- Credits: 35% of overall grade
- Approx. 4 problems, several questions in each.
- Material: everything so far, up to slide 27 in this file.
- Not a multiple choice exam
- No books (or other material) are allowed.
- Duration will be 1:20 hours.
- Academic Integrity code: see class main page.

Last time: Logic and Reasoning

- Knowledge Base (KB): contains a set of sentences expressed using a knowledge representation language
- TELL: operator to add a sentence to the KB
- ASK: to query the KB
- Logics are KRLs where conclusions can be drawn
- Syntax
- Semantics
- Entailment: $K B \mid=a$ iff a is true in all worlds where $K B$ is true
- Inference: $\mathrm{KB} \mid-_{\mathrm{i}} \mathrm{a}=$ sentence a can be derived from KB using procedure i
- Sound: whenever $\left.K B\right|_{-1}$ a then $K B \mid=a$ is true
- Complete: whenever $K B \mid=a$ then $K B \mid-i a$

Last Time: Syntax of propositional logic

Propositional logic is the simplest logic-illustrates ba
The proposition symbols P_{1}, P_{2} etc are sentences
If S is a sentence, $\neg S$ is a sentence
If S_{1} and S_{2} is a sentence, $S_{1} \wedge S_{2}$ is a sentence
If S_{1} and S_{2} is a sentence, $S_{1} \vee S_{2}$ is a sentence
If S_{1} and S_{2} is a sentence, $S_{1} \Rightarrow S_{2}$ is a sentence
If S_{1} and S_{2} is a sentence, $S_{1} \Leftrightarrow S_{2}$ is a sentence

Last Time: Semantics of Propositional logic

Each model specifies true/false for each proposition symbol
E.g. $A \quad B \quad C$

True True False
Rules for evaluating truth with respect to a model m :

$\neg S$	is true iff	S	is false	
$S_{1} \wedge S_{2}$	is true iff	S_{1}	is true and	S_{2}
is true				
$S_{1} \vee S_{2}$ is true iff	S_{1}	is true or	S_{2}	is true
$S_{1} \Rightarrow S_{2}$	is true iff	S_{1}	is false or	S_{2}

Last Time: Inference rules for propositional logic

\diamond Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

\rangle And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$
\frac{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}{\alpha_{i}}
$$

\diamond And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$
\frac{\alpha_{1}, \alpha_{2}, \ldots, \quad \alpha_{n}}{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}
$$

\diamond Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$
\frac{\alpha_{i}}{\alpha_{1} \vee \alpha_{2} \vee \ldots \vee \alpha_{n}}
$$

\diamond Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$$
\neg \neg \alpha
$$

α
\diamond Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$
\frac{\alpha \vee \beta, \quad \neg \beta}{\alpha}
$$

\diamond Resolution: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$
\frac{\alpha \vee \beta, \quad \neg \beta \vee \underline{\gamma}}{\alpha \vee \gamma} \quad \text { or equivalently } \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}
$$

This time

- First-order logic
- Syntax
- Semantics
- Wumpus world example

Why first-order logic?

- We saw that propositional logic is limited because it only makes the ontological commitment that the world consists of facts.
- Difficult to represent even simple worlds like the Wumpus world;
e.g.,
"don't go forward if the Wumpus is in front of you" takes 64 rules

First-order logic (FOL)

- Ontological commitments:
- Objects: wheel, door, body, engine, seat, car, passenger, driver
- Relations: Inside(car, passenger), Beside(driver, passenger)
- Functions: ColorOf(car)
- Properties: Color(car), IsOpen(door), IsOn(engine)
- Functions are relations with single value for each object

Examples:

- "One plus two equals three"

Objects:
Relations:
Properties:
Functions:

- "Squares neighboring the Wumpus are smelly" Objects: Relations:
Properties:
Functions:

Examples:

- "One plus two equals three"

Objects: one, two, three, one plus two
Relations: equals
Properties: --
Functions: plus ("one plus two" is the name of the object obtained by applying function plus to one and two; three is another name for this object)

- "Squares neighboring the Wumpus are smelly"

Objects: Wumpus, square
Relations: neighboring
Properties: smelly
Functions: --

FOL: Syntax of basic elements

- Constant symbols: 1, 5, A, B, USC, JPL, Alex, Manos, ...
- Predicate symbols: >, Friend, Student, Colleague, ...
- Function symbols: +, sqrt, SchoolOf, TeacherOf, ClassOf, ...
- Variables: x, y, z, next, first, last, ...
- Connectives: $\wedge, \vee, \Rightarrow, \Leftrightarrow$
- Quantifiers: \forall, \exists
- Equality: =

FOL: Atomic sentences

AtomicSentence \rightarrow Predicate(Term, ...) | Term = Term

```
Term }->\mathrm{ Function(Term, ...) | Constant | Variable
```

- Examples: SchoolOf(Manos)

Colleague(TeacherOf(Alex), TeacherOf(Manos)) $>((+x y), x)$

FOL: Complex sentences

Sentence \rightarrow AtomicSentence Sentence Connective Sentence Quantifier Variable, ... Sentence
I \neg Sentence
(Sentence)

- Examples: $\mathrm{S} 1 \wedge \mathrm{~S} 2, \mathrm{~S} 1 \vee \mathrm{~S} 2,(\mathrm{~S} 1 \wedge \mathrm{~S} 2) \vee \mathrm{S} 3, \mathrm{~S} 1 \Rightarrow \mathrm{~S} 2, \mathrm{~S} 1 \Leftrightarrow \mathrm{~S} 3$

Colleague(Paolo, Maja) \Rightarrow Colleague(Maja, Paolo)
Student(Alex, Paolo) \Rightarrow Teacher(Paolo, Alex)

Semantics of atomic sentences

- Sentences in FOL are interpreted with respect to a model
- Model contains objects and relations among them
- Terms: refer to objects (e.g., Door, Alex, StudentOf(Paolo))
- Constant symbols: refer to objects
- Predicate symbols: refer to relations
- Function symbols: refer to functional Relations
- An atomic sentence predicate(term $_{1,}$..., term $_{n}$) is true iff the relation referred to by predicate holds between the objects referred to by $\operatorname{term}_{1,}, \ldots$, term $_{n}$

Example model

- Objects: John, James, Marry, Alex, Dan, Joe, Anne, Rich
- Relation: sets of tuples of objects \{<John, James>, <Marry, Alex>, <Marry, James>, ...\} \{<Dan, Joe>, <Anne, Marry>, <Marry, Joe>, ...\}
- E.g.:

Parent relation -- \{<John, James>, <Marry, Alex>, <Marry, James>\} then Parent(John, James) is true Parent(John, Marry) is false

Quantifiers

- Expressing sentences of collection of objects without enumeration
- E.g., All Trojans are clever

Someone in the class is sleeping

- Universal quantification (for all): \forall
- Existential quantification (three exists): \exists

Universal quantification (for all): \forall

\forall <variables> <sentence>

- "Every one in the 561a class is smart": $\forall x \operatorname{In}(561 \mathrm{a}, x) \Rightarrow \operatorname{Smart}(x)$
- $\forall \mathbf{P}$ corresponds to the conjunction of instantiations of \mathbf{P} $\operatorname{In}(561 a$, Manos $) \Rightarrow$ Smart(Manos) \wedge $\operatorname{In}(561 a, \operatorname{Dan}) \Rightarrow \operatorname{Smart}(D a n) \wedge$

In(561a, Clinton) \Rightarrow Smart(Clinton)

- \Rightarrow is a natural connective to use with \forall
- Common mistake: to use \wedge in conjunction with \forall e.g: $\forall x \operatorname{In}(561 a, x) \wedge \operatorname{Smart}(x)$ means "every one is in 561a and everyone is smart"

Existential quantification (there exists): \exists

ヨ <variables> <sentence>

- "Someone in the 561a class is smart":
$\exists x \operatorname{In}(561 \mathrm{a}, x) \wedge \operatorname{Smart}(x)$
- $\exists \mathrm{P}$ corresponds to the disjunction of instantiations of \mathbf{P}

In(561a, Manos) ^Smart(Manos) \vee
In(561a, Dan) ^ Smart(Dan) \vee
In(561a, Clinton) ^ Smart(Clinton)
\wedge is a natural connective to use with \exists

- Common mistake: to use \Rightarrow in conjunction with \exists
e.g: $\exists x \operatorname{In}(561 \mathrm{a}, x) \Rightarrow \operatorname{Smart}(x)$ is true if there is anyone that is not in 561a! (remember, false \Rightarrow true is valid).

Properties of quantifiers

$\forall x \forall y$ is the same as $\forall y \forall x \quad$ (why??)
$\exists x \exists y$ is the same as $\exists y \exists x \quad$ (why??)
$\exists x \forall y$ is not the same as $\forall y \exists x$
$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other

$$
\begin{array}{lr}
\forall x \operatorname{Likes}(x, \text { IceCream }) & \neg \exists x \neg \operatorname{Likes}(x, \text { IceCream }) \\
\exists x \operatorname{Likes}(x, \text { Broccoli }) & \neg \forall x \neg \operatorname{Likes}(x, \text { Broccoli })
\end{array}
$$

Example sentences

- Brothers are siblings
- Sibling is transitive
- One's mother is one's sibling's mother
- A first cousin is a child of a parent's sibling

Example sentences

- Brothers are siblings
$\forall x, y \quad \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$
- Sibling is transitive
$\forall x, y, z \quad \operatorname{Sibling}(x, y) \wedge \operatorname{Sibling}(y, z) \Rightarrow \operatorname{Sibling}(x, z)$
- One's mother is one's sibling's mother
$\forall \mathrm{m}, \mathrm{c} \quad \operatorname{Mother}(\mathrm{m}, \mathrm{c}) \wedge \operatorname{Sibling}(\mathrm{c}, \mathrm{d}) \Rightarrow \operatorname{Mother}(\mathrm{m}, \mathrm{d})$
- A first cousin is a child of a parent's sibling
$\forall \mathrm{c}, \mathrm{d} \quad$ FirstCousin $(\mathrm{c}, \mathrm{d}) \Leftrightarrow$
$\exists \mathrm{p}, \mathrm{ps} \operatorname{Parent}(\mathrm{p}, \mathrm{d}) \wedge \operatorname{Sibling}(\mathrm{p}, \mathrm{ps}) \wedge \operatorname{Parent}(\mathrm{ps}, \mathrm{c})$

Equality

term $_{1}=$ term $_{2}$ is true under a given interpretation
if and only if term m_{1} and term ${ }_{2}$ refer to the same object
E.g., $1=2$ and $\forall x \times(\operatorname{Sqrt}(x), \operatorname{Sqrt}(x))=x$ are satisfiable $2=2$ is valid
E.g., definition of (full) Sibling in terms of Parent:

$$
\begin{aligned}
& \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge \\
& \quad \operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]
\end{aligned}
$$

Higher-order logic?

- First-order logic allows us to quantify over objects (= the first-order entities that exist in the world).
- Higher-order logic also allows quantification over relations and functions.
e.g., "two objects are equal iff all properties applied to them are equivalent":
$\forall \mathrm{x}, \mathrm{y} \quad(\mathrm{x}=\mathrm{y}) \Leftrightarrow(\forall \mathrm{p}, \mathrm{p}(\mathrm{x}) \Leftrightarrow \mathrm{p}(\mathrm{y}))$
- Higher-order logics are more expressive than first-order; however, so far we have little understanding on how to effectively reason with sentences in higher-order logic.

Logical agents for the Wumpus world

Remember: generic knowledge-based agent:

function KB-AGENT(percept) returns an action
static: $K B$, a knowledge base
t, a counter, initially 0 , indicating time
Tell($K B$, Make-Percert-Sentence (percept, t))
action $\leftarrow \operatorname{Ask}(K B, \operatorname{MaKE}-\operatorname{Action-Query}(t))$
Tell (KB, Make-Action-Sentence(action, t))
$t \leftarrow t+1$
return action

1. TELL KB what was perceived

Uses a KRL to insert new sentences, representations of facts, into KB
2. ASK KB what to do. Uses logical reasoning to examine actions and select best.

Using the FOL Knowledge Base

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t=5$:

Tell(KB, Percept ([Smell, Breeze, None $], 5)$)
$\operatorname{Ask}(K B, \exists a \operatorname{Action}(a, 5))$
I.e., does the KB entail any particular actions at $t=5$?

Answer: Yes, $\{a /$ Shoot $\} \quad \leftarrow$ substitution (binding list)
Given a sentence S and a substitution σ,
$S \sigma$ denotes the result of plugging σ into S; e.g.,
$S=\operatorname{Smarter}(x, y)$
$\sigma=\{x /$ Hillary,$y /$ Bill $\}$
S $\sigma=$ Smarter $($ Hillary, Bill $)$
$\operatorname{Ask}(\mathrm{KB}, \mathrm{S})$ returns some/all σ such that $K B \models S \sigma$

Wumpus world, FOL Knowledge Base

"Perception"
$\forall b, g, t$ Percept $([S m e l l, b, g], t) \Rightarrow \operatorname{Smelt}(t)$
$\forall s, b, t \operatorname{Percept}([s, b$, Glitter $], t) \Rightarrow$ AtGold (t)
Reflex: $\forall t$ AtGold $(t) \Rightarrow$ Action $(G r a b, t)$
Reflex with internal state: do we have the gold already?
$\forall t$ AtGold $(t) \wedge \neg$ Holding $($ Gold,$t) \Rightarrow$ Action $(G r a b, t)$
Holding (Gold, $t)$ cannot be observed
\Rightarrow keeping track of change is essential

Deducing hidden properties

Properties of locations:
$\forall l, t$ At $($ Agent $, l, t) \wedge S m e l t(t) \Rightarrow \operatorname{Smelly}(l)$
$\forall l, t$ At $($ Agent $, l, t) \wedge$ Breeze $(t) \Rightarrow$ Breezy (l)
Squares are breezy near a pit:
Diagnostic rule-infer cause from effect

$$
\forall y B r e e z y(y) \Rightarrow \exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)
$$

Causal rule-infer effect from cause

$$
\forall x, y \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)
$$

Neither of these is complete-e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

$$
\forall y \operatorname{Breezy}(y) \Leftrightarrow[\exists x \operatorname{Pit}(x) \wedge \operatorname{Adjacent}(x, y)]
$$

Situation calculus

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result (a, s) is the situation that results from doing a is s

Describing actions

"Effect" axiom-describe changes due to action
$\forall s$ AtGold $(s) \Rightarrow$ Holding $($ Gold, Result $(G r a b, s))$
"Frame" axiom-describe non-changes due to action
$\forall s$ HaveArrow $(s) \Rightarrow$ HaveArrow $(\operatorname{Result}($ Grab, $s))$
Frame problem: find an elegant way to handle non-change
(a) representation-avoid frame axioms
(b) inference-avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats-what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequenceswhat about the dust on the gold, wear and tear on gloves, ...

Describing actions (cont'd)

Successor-state axioms solve the representational frame problem
Each axiom is "about" a predicate (not an action per se):
P true afterwards \Leftrightarrow [an action made P true
$\checkmark \quad \mathrm{P}$ true already and no action made P false]
For holding the gold:
$\forall a, s$ Holding(Gold,Result(a,s)) \Leftrightarrow
$[(a=\operatorname{Grab} \wedge \operatorname{AtGold}(s))$
$\vee($ Holding $($ Gold,$s) \wedge a \neq$ Release $)]$

Planning

Initial condition in KB:

$$
\begin{aligned}
& \text { At }\left(\text { Agent },[1,1], S_{0}\right) \\
& \operatorname{At}\left(\text { Gold, }[1,2], S_{0}\right)
\end{aligned}
$$

Query: $\operatorname{Ask}(K B, \exists s$ Holding $($ Gold, $s))$
i.e., in what situation will I be holding the gold?

Answer: $\left\{s / \operatorname{Result}\left(\right.\right.$ Grab, Result $\left(\right.$ Forward,$\left.\left.\left.S_{0}\right)\right)\right\}$
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at S_{0} and that S_{0} is the only situation described in the KB

Generating action sequences

Represent plans as action sequences $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
PlanResult (p, s) is the result of executing p in s
Then the query $\operatorname{Ask}\left(K B, \exists p\right.$ Holding $\left.\left(\operatorname{Gold}, \operatorname{PlanResult}\left(p, S_{0}\right)\right)\right)$ has the solution $\{p /[$ Forward, Grab]\}

Definition of PlanResult in terms of Result:

$$
\begin{aligned}
& \forall s \text { PlanResultt }(\square, s)=s \\
& \forall a, p, s \text { PlanResult }([a \mid p], s)=\operatorname{PlanResult}(p, \operatorname{Result}(a, s))
\end{aligned}
$$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world
Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

