Inference in First-Order Logic

- Proofs
- Unification
- Generalized modus ponens
- Forward and backward chaining
- Completeness
- Resolution
- Logic programming

Inference in First-Order Logic

- Proofs extend propositional logic inference to deal with quantifiers
- Unification
- Generalized modus ponens
- Forward and backward chaining inference rules and reasoning program
- Completeness Gödel's theorem: for FOL, any sentence entailed by another set of sentences can be proved from that set
- Resolution inference procedure that is complete for any set of sentences
- Logic programming

♦ Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{\alpha \Rightarrow \beta, \qquad \alpha}{\beta}$$

 \diamond And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}{\alpha_i}$$

♦ And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \ldots, \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n}$$

♦ **Or-Introduction**: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

♦ Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

 $\frac{\neg \neg \alpha}{\alpha}$

 \diamond Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{\alpha \lor \beta, \qquad \neg \beta}{\alpha}$$

 \diamond **Resolution**: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{\alpha \lor \beta, \quad \neg \beta \lor \gamma}{\alpha \lor \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

Remember: propositional logic

Proofs

Sound inference: find α such that $KB \models \alpha$. Proof process is a <u>search</u>, operators are inference rules.

E.g., Modus Ponens (MP)

$$\frac{\alpha, \quad \alpha \Rightarrow \beta}{\beta} \qquad \frac{At(Joe, UCB) \quad At(Joe, UCB) \Rightarrow OK(Joe)}{OK(Joe)}$$

E.g., And-Introduction (AI)

$$\frac{\alpha \quad \beta}{\alpha \land \beta} \qquad \frac{OK(Joe) \quad CSMajor(Joe)}{OK(Joe) \land CSMajor(Joe)}$$

E.g., Universal Elimination (UE)

$$\frac{\forall x \ \alpha}{\alpha \{x/\tau\}} \qquad \frac{\forall x \ At(x, UCB) \Rightarrow OK(x)}{At(Pat, UCB) \Rightarrow OK(Pat)}$$

 τ must be a ground term (i.e., no variables)

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

• Universal Elimination (UE):

for any sentence $\alpha,$ variable x and ground term $\tau,$

 $\frac{\forall x \ \alpha}{\alpha \{x/\tau\}}$

• Existential Elimination (EE):

for any sentence $\alpha_{\text{,}}$ variable x and constant symbol k not in KB,

 $\frac{\exists x \ \alpha}{\alpha \{x/k\}}$

• Existential Introduction (EI):

for any sentence α , variable x not in α and ground term g in α ,

 $\frac{\alpha}{\exists x \ \alpha\{g/x\}}$

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

• Universal Elimination (UE):

for any sentence $\alpha,$ variable x and ground term $\tau,$

$\forall x \alpha$	e.g., from ∀x Likes(x, Candy) and {x/Joe}
α {x/ τ }	we can infer Likes(Joe, Candy)

• Existential Elimination (EE):

for any sentence α , variable x and constant symbol k not in KB,

$\exists x \alpha$	e.g., from $\exists x \text{ Kill}(x, \text{ Victim})$ we can infer
α {x/k}	Kill(Murderer, Victim), if Murderer new symbol

• Existential Introduction (EI):

for any sentence α , variable x not in α and ground term g in α ,

 $\frac{\alpha}{\exists x \ \alpha\{g/x\}}$ e.g., from Likes(Joe, Candy) we can infer $\exists x \ \alpha\{g/x\}$ $\exists x \ Likes(x, Candy)$

Example Proof

Bob is a buffalo	1 . $Buffalo(Bob)$
Pat is a pig	2. $Pig(Pat)$
Buffaloes outrun pigs	3. $\forall x, y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$
Bob outruns Pat	

Search with primitive example rules

Operators are inference rules States are sets of sentences Goal test checks state to see if it contains query sentence

AI, UE, MP is a common inference pattern

Problem: branching factor huge, esp. for UE

<u>Idea</u>: find a substitution that makes the rule premise match some known facts

 \Rightarrow a single, more powerful inference rule

Unification

A substitution σ unifies atomic sentences p and q if $\underline{p\sigma=q\sigma}$

$$\begin{array}{c|c} p & q & \sigma \\ \hline Knows(John,x) & Knows(John,Jane) \\ Knows(John,x) & Knows(y,OJ) \\ Knows(John,x) & Knows(y,Mother(y) \\ \end{array}$$

Idea: Unify rule premises with known facts, apply unifier to conclusion E.g., if we know q and $Knows(John, x) \Rightarrow Likes(John, x)$ then we conclude Likes(John, Jane)Likes(John, OJ)Likes(John, Mother(John))

Generalized Modus Ponens (GMP)

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{q\sigma} \quad \text{where } p_i'\sigma = p_i\sigma \text{ for all } i$$

$$E.g. p_1' = \text{Faster(Bob,Pat)}$$

$$p_2' = \text{Faster(Pat,Steve)}$$

$$p_1 \land p_2 \Rightarrow q = Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$$

$$\sigma = \{x/Bob, y/Pat, z/Steve\}$$

$$q\sigma = Faster(Bob, Steve)$$

GMP used with KB of <u>definite clauses</u> (*exactly* one positive literal): either a single atomic sentence or

(conjunction of atomic sentences) \Rightarrow (atomic sentence) All variables assumed universally quantified

Soundness of GMP

Need to show that

$$p_1', \ldots, p_n', (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \models q\sigma$$

provided that $p_i'\sigma = p_i\sigma$ for all i

Lemma: For any definite clause p, we have $p \models p\sigma$ by UE

1.
$$(p_1 \land \ldots \land p_n \Rightarrow q) \models (p_1 \land \ldots \land p_n \Rightarrow q)\sigma = (p_1 \sigma \land \ldots \land p_n \sigma \Rightarrow q\sigma)$$

2.
$$p_1', \ldots, p_n' \models p_1' \land \ldots \land p_n' \models p_1' \sigma \land \ldots \land p_n' \sigma$$

3. From 1 and 2, $q\sigma$ follows by simple MP

Properties of GMP

- Why is GMP and efficient inference rule?
 - It takes bigger steps, combining several small inferences into one
 - It takes sensible steps: uses eliminations that are guaranteed to help (rather than random UEs)
 - It uses a precompilation step which converts the KB to canonical form (Horn sentences)

Remember: sentence in Horn from is a conjunction of Horn clauses (clauses with at most one positive literal), e.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$, that is $(B \Rightarrow A) \land ((C \land D) \Rightarrow B)$

Horn form

- We convert sentences to Horn form as they are entered into the KB
- Using Existential Elimination and And Elimination
- e.g., $\exists x \text{ Owns}(\text{Nono}, x) \land \text{Missile}(x)$ becomes

Owns(Nono, M) Missile(M)

(with M a new symbol that was not already in the KB)

Forward chaining

When a new fact p is added to the KB for each rule such that p unifies with a premise if the other premises are <u>known</u> then add the conclusion to the KB and continue chaining

Forward chaining is <u>data-driven</u>

e.g., inferring properties and categories from percepts

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn. Number in [] = unification literal; $\sqrt{}$ indicates rule firing <u>1.</u> $Buffalo(x) \land Pig(y) \Rightarrow Faster(x, y)$ <u>2.</u> $Pig(y) \wedge Slug(z) \Rightarrow Faster(y, z)$ <u>3.</u> $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ <u>**4.**</u> Buffalo(Bob) [1a,×] <u>5.</u> Pig(Pat) [1b, $/] \rightarrow 6.$ Faster(Bob, Pat) [3a, \times], [3b, \times] $[2a, \times]$ <u>7.</u> Slug(Steve) [2b, /] $\rightarrow \underline{8}$. Faster(Pat, Steve) [3a,×], [3b, /] $\rightarrow \underline{9}$. Faster(Bob, Steve) [3a, \times], [3b, \times]

Backward chaining

When a query q is asked if a matching fact q' is known, return the unifier for each rule whose consequent q' matches q attempt to prove each premise of the rule by backward chaining (Some added complications in keeping track of the unifiers) (More complications help to avoid infinite loops)

Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming, e.g., Prolog

Backward chaining example

Completeness in FOL

Procedure i is complete if and only if

 $KB \vdash_i \alpha$ whenever $KB \models \alpha$

Forward and backward chaining are <u>complete</u> for Horn KBs but incomplete for general first-order logic

E.g., from

 $PhD(x) \Rightarrow HighlyQualified(x)$ $\neg PhD(x) \Rightarrow EarlyEarnings(x)$ $HighlyQualified(x) \Rightarrow Rich(x)$ $EarlyEarnings(x) \Rightarrow Rich(x)$

should be able to infer Rich(Me), but FC/BC won't do it

Does a complete algorithm exist?

Historical note

450B.C.	Stoics	propositional logic, inference (maybe)
5 ZZB.C.	Aristotie	syllogisms (interence rules), quantimers
1505	Cardano	probability theory (propositional logic + uncertainty)
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	∃ complete algorithm for FOL
1930	Herbrand	complete algorithm for FOL (reduce to propositional)
1931	Gödel	¬∃ complete algorithm for arithmetic
1900	Davis/Putnam	"practical" algorithm for propositional logic
1905	Robinson	"practical" algorithm for FOL—resolution

Resolution

Entailment in first-order logic is only <u>semidecidable</u>:
can find a proof of α if KB ⊨ α
cannot always prove that KB ⊭ α
Cf. Halting Problem: proof procedure may be about to terminate with success or failure, or may go on for ever

Resolution is a <u>refutation</u> procedure:

to prove $KB \models \alpha$, show that $KB \land \neg \alpha$ is unsatisfiable

Resolution uses KB, $\neg \alpha$ in CNF (conjunction of clauses)

Resolution inference rule combines two clauses to make a new one:

Inference continues until an empty clause is derived (contradiction)

CS 561, Session 16-18

Resolution inference rule

Basic propositional version:

$$\frac{\alpha \lor \beta, \ \neg \beta \lor \gamma}{\alpha \lor \gamma} \qquad \text{or equivalently}$$

Full first-order version:

 $\frac{\neg \alpha \ \Rightarrow \ \beta, \ \beta \ \Rightarrow \ \gamma}{\neg \alpha \ \Rightarrow \ \gamma}$

where $p_j \sigma = \neg q_k \sigma$

For example,

 $\begin{array}{c} \neg Rich(x) \lor Unhappy(x) \\ Rich(Me) \\ \hline \\ Unhappy(Me) \end{array}$

with $\sigma = \{x/Me\}$

Remember: normal forms

Other approaches to inference use syntactic operations on sentences, often expressed in standardized forms

<u>Conjunctive Normal Form</u> (CNF—universal) conjunction of <u>disjunctions of literals</u> clauses E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$ "product of sums of simple variables or negated simple variables"

"sum of products of simple variables or negated simple variables"

 $\mathsf{E.g.},\ (A \wedge B) \vee (A \wedge \neg C) \vee (A \wedge \neg D) \vee (\neg B \wedge \neg C) \vee (\neg B \wedge \neg D)$

Horn Form (restricted)

conjunction of Horn clauses (clauses with ≤ 1 positive literal) E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$ Often written as set of implications: $B \Rightarrow A$ and $(C \land D) \Rightarrow B$ <u>Literal</u> = (possibly negated) atomic sentence, e.g., $\neg Rich(Me)$

<u>Clause</u> = disjunction of literals, e.g., $\neg Rich(Me) \lor Unhappy(Me)$

The KB is a conjunction of clauses

Any FOL KB can be converted to CNF as follows:

- 1. Replace $P \Rightarrow Q$ by $\neg P \lor Q$
- 2. Move \neg inwards, e.g., $\neg \forall x P$ becomes $\exists x \neg P$
- 3. Standardize variables apart, e.g., $\forall x P \lor \exists x Q$ becomes $\forall x P \lor \exists y Q$
- 4. Move quantifiers left in order, e.g., $\forall x P \lor \exists x Q$ becomes $\forall x \exists y P \lor Q$
- 5. Eliminate \exists by Skolemization (next slide)
- 6. Drop universal quantifiers
- 7. Distribute \land over \lor , e.g., $(P \land Q) \lor R$ becomes $(P \lor Q) \land (P \lor R)$

Skolemization

 $\exists x \operatorname{Rich}(x) \text{ becomes } \operatorname{Rich}(G1) \text{ where } G1 \text{ is a new "Skolem constant"}$

$$\exists k \ \frac{d}{dy}(k^y) = k^y$$
 becomes $\frac{d}{dy}(e^y) = e^y$

More tricky when \exists is inside \forall

E.g., "Everyone has a heart"

$$\forall x \ Person(x) \Rightarrow \exists y \ Heart(y) \land Has(x, y)$$

Incorrect:

$$\forall x \ Person(x) \Rightarrow Heart(H1) \land Has(x, H1)$$

Correct:

 $\forall x \ Person(x) \Rightarrow Heart(H(x)) \land Has(x, H(x))$ where H is a new symbol ("Skolem function")

Skolem function arguments: all enclosing universally quantified variables

Resolution proof

To prove α :

- negate it
- convert to CNF
- add to CNF KB
- infer contradiction

E.g., to prove Rich(me), add $\neg Rich(me)$ to the CNF KB

 $\begin{array}{l} \neg PhD(x) \lor HighlyQualified(x) \\ PhD(x) \lor EarlyEarnings(x) \\ \neg HighlyQualified(x) \lor Rich(x) \\ \neg EarlyEarnings(x) \lor Rich(x) \end{array}$

Resolution proof

