
CS 561, Session 22-23 1

Planning

• Search vs. planning
• STRIPS operators
• Partial-order planning

CS 561, Session 22-23 2

What we have so far

• Can TELL KB about new percepts about the world

• KB maintains model of the current world state

• Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent,

i.e., an agent that constructs plans that can achieve its goals, and that
then executes these plans?

CS 561, Session 22-23 3

Remember: Problem-Solving Agent

Note: This is offline problem-solving. Online problem-solving involves
acting w/o complete knowledge of the problem and environment

tion

CS 561, Session 22-23 4

Simple planning agent

• Use percepts to build model of current world state

• IDEAL-PLANNER: Given a goal, algorithm generates plan of action

• STATE-DESCRIPTION: given percept, return initial state description
in format required by planner

• MAKE-GOAL-QUERY: used to ask KB what next goal should be

CS 561, Session 22-23 5

A Simple Planning Agent

function SIMPLE-PLANNING-AGENT(percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan (initially, NoPlan)
t, a time counter (initially 0)

local variables:G, a goal
current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current ← STATE-DESCRIPTION(KB, t)
if p = NoPlan then

G ← ASK(KB, MAKE-GOAL-QUERY(t))
p ← IDEAL-PLANNER(current, G, KB)

if p = NoPlan or p is empty then
action ← NoOp

else
action ← FIRST(p)
p ← REST(p)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t+1
return action

CS 561, Session 22-23 6

Search vs. planning

CS 561, Session 22-23 7

Search vs. planning

CS 561, Session 22-23 8

Planning in situation calculus

CS 561, Session 22-23 9

Basic representation for planning

• Most widely used approach: uses STRIPS language

• states: conjunctions of function-free ground literals (I.e., predicates
applied to constant symbols, possibly negated); e.g.,

At(Home) ∧ ¬ Have(Milk) ∧ ¬ Have(Bananas) ∧ ¬ Have(Drill) …

• goals: also conjunctions of literals; e.g.,

At(Home) ∧ Have(Milk) ∧ Have(Bananas) ∧ Have(Drill)

but can also contain variables (implicitly universally quant.); e.g.,

At(x) ∧ Sells(x, Milk)

CS 561, Session 22-23 10

Planner vs. theorem prover

• Planner: ask for sequence of actions that makes goal true if executed

• Theorem prover: ask whether query sentence is true given KB

CS 561, Session 22-23 11

STRIPS operators

Graphical notation:

CS 561, Session 22-23 12

Types of planners

• Situation space planner: search through possible situations

• Progression planner: start with initial state, apply operators until
goal is reached

Problem: high branching factor!

• Regression planner: start from goal state and apply operators until
start state reached

Why desirable? usually many more operators are applicable to
initial state than to goal state.
Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner

CS 561, Session 22-23 13

State space vs. plan space

Search space of plans rather
than of states.

CS 561, Session 22-23 14

Operations on plans

• Refinement operators: add constraints to partial plan

• Modification operator: every other operators

CS 561, Session 22-23 15

Types of planners

• Partial order planner: some steps are ordered, some are not

• Total order planner: all steps ordered (thus, plan is a simple list of
steps)

• Linearization: process of deriving a totally ordered plan from a
partially ordered plan.

CS 561, Session 22-23 16

Partially ordered plans

CS 561, Session 22-23 17

Plan

We formally define a plan as a data structure consisting of:

• Set of plan steps (each is an operator for the problem)

• Set of step ordering constraints

e.g., A � B means “A before B”

• Set of variable binding constraints

e.g., v = x where v variable and x constant or other variable

• Set of causal links

e.g., A B means “A achieves c for B”c

CS 561, Session 22-23 18

POP algorithm sketch

CS 561, Session 22-23 19

POP algorithm (cont.)

CS 561, Session 22-23 20

Clobbering and promotion/demotion

CS 561, Session 22-23 21

Example: block world

CS 561, Session 22-23 22

Example (cont.)

CS 561, Session 22-23 23

Example (cont.)

CS 561, Session 22-23 24

Example (cont.)

CS 561, Session 22-23 25

Example (cont.)

