
CS 561, Session 25 1

Introduction to CLIPS

• Overview of CLIPS
• Facts
• Rules
• Rule firing
• Control techniques
• Example

CS 561, Session 25 2

CLIPS basic elements

• Fact-list: global memory of data
• Knowledge-base: contain all the rules
• Inference engine: controls overall execution using forward

chaining

• http://www.ghg.net/clips/CLIPS.html

CS 561, Session 25 3

Inference cycle

Working Memory
(Facts)

Knowledge-Base
(Rules)

Pattern Matching

Conflict Resolution
(select rule)

Fire rule

User’s program

1.

2.

3.

assert/
retract/
modify
facts

change
rules

Agenda

CS 561, Session 25 4

Antecedent Matching

1. matches facts in working memory against antecedents of rules

2. each combination of facts that satisfies a rule is called an
instantiation

3. each matching rule is added to the agenda

CS 561, Session 25 5

Selection of a rule from the Agenda

Some selection strategies:

• Recency (most recent first)
triggered by the most recent facts

• Specificity (most specific first)
rules prioritized by the number of condition elements

• Random
choose a rule at random from the agenda

CS 561, Session 25 6

Execution of the rule

• Can modify working memory
• add facts
• remove facts
• alter existing facts

• Alter rules

• Perform an external task (read sensors, control actuator)

CS 561, Session 25 7

Control mechanism

• Consider the following rule-base:

(1) Car won’t start � check battery
(2) Car won’t start � check gas
(3) Check battery AND battery bad � replace battery

• If the fact “car won’t start” is asserted, then which of the rules (1)
and (2) should be placed on the agenda? (1), (2), or both?

• We need a mechanism to place instantiations of rules on the
agenda.

CS 561, Session 25 8

Control mechanisms

• Markov algorithms:
Approach: Apply rule with highest priority, if not applicable then
take the next one etc.

Problem: inefficient for systems with many (1000s of) rules.
Has to do pattern matching on every rule in each cycle.

• Rete algorithm:
Fast pattern matching that obtains speed by storing information
about all rules in a network. Only looks for changes in pattern
matches in every cycle.

CS 561, Session 25 9

Install and run

• Access to CLIPS:
• On aludra: at ~csci561a/clips
• In Windows: install

http://www.ghgcorp.com/clips/download/executables/pc

• Running Clips
• On aludra: > clips
• In Windows: run clips.exe

CS 561, Session 25 10

Overview

shell

agenda focus

facts

instances

globals

CS 561, Session 25 11

Getting started

• Shell commands: (<command>)
• (help)
• (reset) � places (initial-fact) on factlist
• (run) � runs till completion of program
• (run 1) � runs 1 step
• (facts) � shows the factlist
• (assert (fact)) � puts (fact) on factlist
• (retract 0) � removes fact with ID 0 from factlist
• (defrule myrule …) � defines a rule named myrule
• (clear) � removes all facts from factlist

CS 561, Session 25 12

Facts

• (field1 field2 … fieldN) an ordered, flat list

• E.g.,
(Hans 561a) is not equal to (561a Hans)

• (Hans (561a 561b)) is illegal

• Common to start with the relation that fact describes
e.g.,
(class Hans 561b)

• Keyword nil: used to indicate that a field has no value

• deftemplates to have names for each field

CS 561, Session 25 13

Field types

• Types:
• Float: 1.34
• Integer: 1, 2, 10, 20
• Symbol: alkflksjfd
• String: "duck/soup"
• external-address:
• fact-address:
• instance-name:
• instance-address:

• The type of each field is determined by the type of value stored in
the field.

• In deftemplates, you can explicitly declare the type of value that
a field can contain.

CS 561, Session 25 14

Deffacts

• (deffacts <deffacts name> [<optional comment>]
<<facts>>)

used to automatically assert a set of facts

• (deffacts status “some facts about emergency”
(emergency fire)
(fire-class A))

• Are asserted after a (reset) command

CS 561, Session 25 15

Adding and removing facts

• (assert <<<fact>>>) used to assert multiple facts
• (retract <<<fact-index>>>) removes a number of facts

e.g., (assert (fact1)
(fact2))

(retract 1)

• Is assigned a unique fact identifier: (e.g., f-1) starts with ‘f’ and followed
by an integer called the fact-index

• Fact-index: can be used to refer to that fact (e.g., retract it)

• Fact-list: can be viewed in the fact-list window or using the (facts)
command.

(facts [<start> [<end> [<maximum]]])

CS 561, Session 25 16

Components of a rule

• (defrule <rule name> [<optional comment>]
<<<patterns>>>

=>
<<<actions>>>)

• (defrule fire-emergency “An example rule”
(emergency fire)

=>
(assert (action activate-sprinkler-system)))

• Rules can be inserted into the shell or loaded from a file using the
(load) command

CS 561, Session 25 17

The agenda and activation

• (run [<limit>])

runs a CLIPS program,
<limit> is the number of rules to fire

• Activating a rule: requires that all its patterns on LHS (Left-Hand-
Side) are matched. Asserting an existing fact has no effect.

• List of activated rules: can be seen in the agenda window or
listed using (agenda)

0 fire-emergency f-2

salience

rule name

matching facts

CS 561, Session 25 18

Rule firing and refraction

• (run) will cause the most salient rule on the agenda to fire

• What if the run command is issued again?

CS 561, Session 25 19

Rule firing and refraction

• (run) will cause the most salient rule on the agenda to fire

• What if the run command is issued again?

There are no rules on the agenda so nothing will happen.

• Refraction: CLIPS rule firing models the refraction effect of a
neuron to avoid endless loops

CS 561, Session 25 20

Commands used with rules

• (rules) displays the rules in the knowledge-base

• (pprule <rule-name>) displays a rule

• (load <file-name>) loads rules described in a file

• (save <file-name>) saves the stored rules into a file

• Comments: start with the character “;”

CS 561, Session 25 21

Multiple rules

• (defrule fire-emergency
(emergency fire)
=>
(assert (action activate-sprinkler-system)))

• (defrule flood-emergency
(emergency flood)
=>
(assert (action shut-down-electrical-equipment)))

• Asserting (emergency fire) will fire rule 1
asserting (emergency flood) will activate rule 2

CS 561, Session 25 22

Rules with multiple patterns

• (defrule class-A-fire-emergency
(emergency fire)
(fire-class A)
=>
(assert (action activate-sprinkler-system)))

• (defrule class-B-fire-emergency
(emergency fire)
(fire-class B)
=>
(assert (action activate-carbon-dioxide-extinguisher)))

• All patterns must be matched for the rule to fire

CS 561, Session 25 23

Removing rules

• (clear) removes all rules from the knowledge-base

• (excise <rule-name>) removes rule

CS 561, Session 25 24

Debugging

• (watch {facts, rules, activations, all})
is used to provide the information about facts, rules, activations

• (unwatch {facts, rules, activations, all})
undoes the a (watch) command

• (matches <rule-name>)
indicates which patterns in a rule match facts

• (set-break <rule-name>)
allows execution to be halted before a rule

• (remove-break [<rule-name>])
removes all or a given breakpoint

• (show-breaks)
lists all breakpoints

CS 561, Session 25 25

Variables

• ?speed
• ?sensor
• ?value

(defrule grandfather
(is-a-grandfather ?name) ?name bound to the 2nd field of fact
=>
(assert (is-a-man ?name)))

E.g: (is-a-grandfather John) � ?name = John
(is-a-grandfather Joe) � ?name = Joe

CS 561, Session 25 26

Wildcards

(person <name> <eye-color> <hair-color>)
(person John brown black)
(person Joe blue brown)

(defrule find-brown-haired-people
(person ?name ?brown)
=>
(printout t ?name “ has brown hair”))

States that eye color doesn’t matter.

CS 561, Session 25 27

Control techniques

• Using control facts
• Using salience
• Using control rules

CS 561, Session 25 28

Example

CS 561, Session 25 29

Example

