Introduction to CLIPS

e Overview of CLIPS
e Facts

e Rules

e Rule firing

e Control technigues
e Example
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CLIPS basic elements

e Fact-list: global memory of data
e Knowledge-base: contain all the rules

e Inference engine: controls overall execution using forward
chaining

http://www.ghg.net/clips/CLIPS.html
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Inference cycle

__________________________________________________________________________________________________________________________________

User’s program
| Knowledge-Base Working Memory |
(Rules) (Facts)
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" assert/
retract/
change : modify
Ules 1. | Pattern Matching l s
l Agenda
2 Conflict Resolution
' (select rule)
3 Firerule
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Antecedent Matching

1. matches facts in working memory against antecedents of rules

2. each combination of facts that satisfies a rule is called an
Instantiation

3. each matching rule is added to the agenda
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Selection of arule from the Agenda

Some selection strategies:

e Recency (most recent first)
triggered by the most recent facts

e Specificity (most specific first)
rules prioritized by the number of condition elements

e Random
choose a rule at random from the agenda
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Execution of the rule

e Can modify working memory
e add facts
e remove facts
» alter existing facts

e Alter rules

e Perform an external task (read sensors, control actuator)
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Control mechanism

e Consider the following rule-base:
(1) Car won't start > check battery

(2) Car won't start - check gas
(3) Check battery AND battery bad - replace battery

e |If the fact “car won't start’ is asserted, then which of the rules (1)
and (2) should be placed on the agenda? (1), (2), or both?

e We need a mechanism to place instantiations of rules on the
agenda.
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Control mechanisms

Markov algorithms:
Approach: Apply rule with highest priority, if not applicable then
take the next one etc.

Problem: inefficient for systems with many (1000s of) rules.
Has to do pattern matching on every rule in each cycle.

Rete algorithm:

Fast pattern matching that obtains speed by storing information
about all rules in a network. Only looks for changes in pattern
matches in every cycle.
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Install and run

e Access to CLIPS:
e On aludra: at —csci561la/clips

e In Windows: install
http://www.ghgcorp.com/clips/download/executables/pc

e Running Clips
e On aludra: > clips
e In Windows: run clips.exe
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Overview
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Getting started

Shell commands: (<command>)

(help)

(reset) - places (initial-fact) on factlist

(run) —> runs till completion of program
(run 1) = runs 1 step

(facts) - shows the factlist

(assert (fact)) - puts (fact) on factlist

(retract 0) - removes fact with ID 0 from factlist
(defrule myrule ...) - defines a rule named myrule
(clear) - removes all facts from factlist
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Facts

» (field1 field2 ... fieldN) an ordered, flat list

e E.Q,
(Hans 561a) is not equal to (561a Hans)

e (Hans (561a 561Db)) is illegal

e Common to start with the relation that fact describes

e.g.,
(class Hans 561Db)

e Keyword nil: used to indicate that a field has no value

e deftemplates to have names for each field
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Field types

e Types:
e Float: 1.34
e Integer: 1, 2, 10, 20
e Symbol: alkflksjfd
e String: "duck/soup”

e external-address:
e fact-address:

e instance-name:
e instance-address:

e The type of each field is determined by the type of value stored in
the field.

e In deftemplates, you can explicitly declare the type of value that
a field can contain.
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Deffacts

(deffacts <deffacts name> [<optional comment>]
<<facts>> )

used to automatically assert a set of facts

(deffacts  status “some facts about emergency”
(emergency fire)
(fire-class A) )

Are asserted after a (reset) command
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Adding and removing facts

e (assert <<<fact>>>) used to assert multiple facts
e (retract <<<fact-index>>>) removes a number of facts

e.g., (assert (factl)
(fact2) )

(retract 1)

e |s assigned a unique fact identifier: (e.g., f-1) starts with ‘f" and followed
by an integer called the fact-index

e Fact-index: can be used to refer to that fact (e.g., retract it)

e Fact-list: can be viewed in the fact-list window or using the (facts)
command.

(facts [<start> [<end> [<maximum]]])
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Components of arule

(defrule <rule name> [<optional comment>]
<<<patterns>>>
=>
<<<actions>>>)

(defrule fire-emergency “An example rule”
(emergency fire)

=>
(assert (action activate-sprinkler-system)))

Rules can be inserted into the shell or loaded from a file using the
(load) command
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The agenda and activation

(run [<limit>])

runs a CLIPS program,
<|limit> is the number of rules to fire

Activating a rule: requires that all its patterns on LHS (Left-Hand-
Side) are matched. Asserting an existing fact has no effect.

List of activated rules: can be seen in the agenda window or
listed using (agenda)

O fire-emergency f-2
T r

matching facts

rule name

salience
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Rule firing and refraction

(run) will cause the most salient rule on the agenda to fire

What if the run command is issued again?
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Rule firing and refraction

e (run) will cause the most salient rule on the agenda to fire
e What if the run command is issued again?

There are no rules on the agenda so nothing will happen.

e Refraction: CLIPS rule firing models the refraction effect of a
neuron to avoid endless loops
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Commands used with rules

(rules) displays the rules in the knowledge-base
(pprule <rule-name=>) displays a rule

(load <file-name=>) loads rules described in a file
(save <file-name>) saves the stored rules into a file

Comments: start with the character “;
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Multiple rules

(defrule fire-emergency
(emergency fire)
=>
(assert (action activate-sprinkler-system)))

(defrule flood-emergency
(emergency flood)
=>
(assert (action shut-down-electrical-equipment)))

Asserting (emergency fire) will fire rule 1
asserting (emergency flood) will activate rule 2
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Rules with multiple patterns

e (defrule class-A-fire-emergency
(emergency fire)
(fire-class A)
=>
(assert (action activate-sprinkler-system)))

e (defrule class-B-fire-emergency
(emergency fire)
(fire-class B)
=>
(assert (action activate-carbon-dioxide-extinguisher)))

e All patterns must be matched for the rule to fire
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Removing rules

(clear) removes all rules from the knowledge-base

(excise <rule-name=>) removes rule
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Debugging

e (watch {facts, rules, activations, all})
IS used to provide the information about facts, rules, activations

e (unwatch {facts, rules, activations, all})
undoes the a (watch) command

e (matches <rule-name>)
indicates which patterns in a rule match facts

e (set-break <rule-name>)
allows execution to be halted before a rule

e (remove-break [<rule-name>])
removes all or a given breakpoint

e (show-Dbreaks)
lists all breakpoints
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Variables

e 7speed
e 7sensor
e ?value

(defrule grandfather
(is-a-grandfather ?name) ?name bound to the 2" field of fact

=>
(assert (is-a-man ?name)))

E.g: (is-a-grandfather John) -> ?name = John
(is-a-grandfather Joe) - ?name = Joe

CS 561, Session 25 25



Wildcards

(person <name> <eye-color> <hair-color>)
(person John brown black)
(person Joe Dblue brown)

(defrule find-brown-haired-people
(person ?name ?brown)
=>
(printout t ?name “ has brown hair”))

States that eye color doesn’t matter.
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Control techniques

e Using control facts
e Using salience
e Using control rules
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Example

CLIPS= (clear)

CLIPS= (assert (animal-is duck))
<bact-(=

CLIPS> (assert (animal-sound gquack))
<btact-1=

CLIPS= (assert (The duck says "(Quack.”))
<bact-£=

CLIPS= (facts)

f-0 (animal -is duck)

f-1 (animal -sound quack)

f-2 (The duck says "Quack.")
For a total of 3 facts.

CLIPS=
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Example

CLIPS> (clear)
CLIPS> (assert (animal-is duck))
<Fact-0>

CLIPS> (defrule duck

(animal-is duck)

(assert (sound-is quack)))
CLIPS>
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