Introduction to CLIPS

e Overview of CLIPS
e Facts

e Rules

e Rule firing

e Control technigues
e Example

CS 561, Session 25

CLIPS basic elements

e Fact-list: global memory of data
e Knowledge-base: contain all the rules

e Inference engine: controls overall execution using forward
chaining

http://www.ghg.net/clips/CLIPS.html

CS 561, Session 25

Inference cycle

__

User’s program
| Knowledge-Base Working Memory |
(Rules) (Facts)
""" assert/
retract/
change : modify
Ules 1. | Pattern Matching l s
l Agenda
2 Conflict Resolution
' (select rule)
3 Firerule

CS 561, Session 25 3

Antecedent Matching

1. matches facts in working memory against antecedents of rules

2. each combination of facts that satisfies a rule is called an
Instantiation

3. each matching rule is added to the agenda

CS 561, Session 25

Selection of arule from the Agenda

Some selection strategies:

e Recency (most recent first)
triggered by the most recent facts

e Specificity (most specific first)
rules prioritized by the number of condition elements

e Random
choose a rule at random from the agenda

CS 561, Session 25

Execution of the rule

e Can modify working memory
e add facts
e remove facts
» alter existing facts

e Alter rules

e Perform an external task (read sensors, control actuator)

CS 561, Session 25

Control mechanism

e Consider the following rule-base:
(1) Car won't start > check battery

(2) Car won't start - check gas
(3) Check battery AND battery bad - replace battery

e |If the fact “car won't start’ is asserted, then which of the rules (1)
and (2) should be placed on the agenda? (1), (2), or both?

e We need a mechanism to place instantiations of rules on the
agenda.

CS 561, Session 25

Control mechanisms

Markov algorithms:
Approach: Apply rule with highest priority, if not applicable then
take the next one etc.

Problem: inefficient for systems with many (1000s of) rules.
Has to do pattern matching on every rule in each cycle.

Rete algorithm:

Fast pattern matching that obtains speed by storing information
about all rules in a network. Only looks for changes in pattern
matches in every cycle.

CS 561, Session 25

Install and run

e Access to CLIPS:
e On aludra: at —csci561la/clips

e In Windows: install
http://www.ghgcorp.com/clips/download/executables/pc

e Running Clips
e On aludra: > clips
e In Windows: run clips.exe

CS 561, Session 25

Overview

Trem D N e - e _
(ke - o ———— — e -
= - e
Fis B Erevobon [eoess Sebe Hep §
E*

shell

| nstances

Getting started

Shell commands: (<command>)

(help)

(reset) - places (initial-fact) on factlist

(run) —> runs till completion of program
(run 1) = runs 1 step

(facts) - shows the factlist

(assert (fact)) - puts (fact) on factlist

(retract 0) - removes fact with ID 0 from factlist
(defrule myrule ...) - defines a rule named myrule
(clear) - removes all facts from factlist

CS 561, Session 25 11

Facts

» (field1 field2 ... fieldN) an ordered, flat list

e E.Q,
(Hans 561a) is not equal to (561a Hans)

e (Hans (561a 561Db)) is illegal

e Common to start with the relation that fact describes

e.g.,
(class Hans 561Db)

e Keyword nil: used to indicate that a field has no value

e deftemplates to have names for each field

CS 561, Session 25

12

Field types

e Types:
e Float: 1.34
e Integer: 1, 2, 10, 20
e Symbol: alkflksjfd
e String: "duck/soup”

e external-address:
e fact-address:

e instance-name:
e instance-address:

e The type of each field is determined by the type of value stored in
the field.

e In deftemplates, you can explicitly declare the type of value that
a field can contain.

CS 561, Session 25 13

Deffacts

(deffacts <deffacts name> [<optional comment>]
<<facts>>)

used to automatically assert a set of facts

(deffacts status “some facts about emergency”
(emergency fire)
(fire-class A))

Are asserted after a (reset) command

CS 561, Session 25

14

Adding and removing facts

e (assert <<<fact>>>) used to assert multiple facts
e (retract <<<fact-index>>>) removes a number of facts

e.g., (assert (factl)
(fact2))

(retract 1)

e |s assigned a unique fact identifier: (e.g., f-1) starts with ‘f" and followed
by an integer called the fact-index

e Fact-index: can be used to refer to that fact (e.g., retract it)

e Fact-list: can be viewed in the fact-list window or using the (facts)
command.

(facts [<start> [<end> [<maximum]]])

CS 561, Session 25 15

Components of arule

(defrule <rule name> [<optional comment>]
<<<patterns>>>
=>
<<<actions>>>)

(defrule fire-emergency “An example rule”
(emergency fire)

=>
(assert (action activate-sprinkler-system)))

Rules can be inserted into the shell or loaded from a file using the
(load) command

CS 561, Session 25

16

The agenda and activation

(run [<limit>])

runs a CLIPS program,
<|limit> is the number of rules to fire

Activating a rule: requires that all its patterns on LHS (Left-Hand-
Side) are matched. Asserting an existing fact has no effect.

List of activated rules: can be seen in the agenda window or
listed using (agenda)

O fire-emergency f-2
T r

matching facts

rule name

salience
CS 561, Session 25 17

Rule firing and refraction

(run) will cause the most salient rule on the agenda to fire

What if the run command is issued again?

CS 561, Session 25

18

Rule firing and refraction

e (run) will cause the most salient rule on the agenda to fire
e What if the run command is issued again?

There are no rules on the agenda so nothing will happen.

e Refraction: CLIPS rule firing models the refraction effect of a
neuron to avoid endless loops

CS 561, Session 25

19

Commands used with rules

(rules) displays the rules in the knowledge-base
(pprule <rule-name=>) displays a rule

(load <file-name=>) loads rules described in a file
(save <file-name>) saves the stored rules into a file

Comments: start with the character “;

CS 561, Session 25

20

Multiple rules

(defrule fire-emergency
(emergency fire)
=>
(assert (action activate-sprinkler-system)))

(defrule flood-emergency
(emergency flood)
=>
(assert (action shut-down-electrical-equipment)))

Asserting (emergency fire) will fire rule 1
asserting (emergency flood) will activate rule 2

CS 561, Session 25

21

Rules with multiple patterns

e (defrule class-A-fire-emergency
(emergency fire)
(fire-class A)
=>
(assert (action activate-sprinkler-system)))

e (defrule class-B-fire-emergency
(emergency fire)
(fire-class B)
=>
(assert (action activate-carbon-dioxide-extinguisher)))

e All patterns must be matched for the rule to fire

CS 561, Session 25

22

Removing rules

(clear) removes all rules from the knowledge-base

(excise <rule-name=>) removes rule

CS 561, Session 25

23

Debugging

e (watch {facts, rules, activations, all})
IS used to provide the information about facts, rules, activations

e (unwatch {facts, rules, activations, all})
undoes the a (watch) command

e (matches <rule-name>)
indicates which patterns in a rule match facts

e (set-break <rule-name>)
allows execution to be halted before a rule

e (remove-break [<rule-name>])
removes all or a given breakpoint

e (show-Dbreaks)
lists all breakpoints

CS 561, Session 25

24

Variables

e 7speed
e 7sensor
e ?value

(defrule grandfather
(is-a-grandfather ?name) ?name bound to the 2" field of fact

=>
(assert (is-a-man ?name)))

E.g: (is-a-grandfather John) -> ?name = John
(is-a-grandfather Joe) - ?name = Joe

CS 561, Session 25 25

Wildcards

(person <name> <eye-color> <hair-color>)
(person John brown black)
(person Joe Dblue brown)

(defrule find-brown-haired-people
(person ?name ?brown)
=>
(printout t ?name “ has brown hair”))

States that eye color doesn’t matter.

CS 561, Session 25

26

Control techniques

e Using control facts
e Using salience
e Using control rules

CS 561, Session 25

27

Example

CLIPS= (clear)

CLIPS= (assert (animal-is duck))
<bact-(=

CLIPS> (assert (animal-sound gquack))
<btact-1=

CLIPS= (assert (The duck says "(Quack.”))
<bact-£=

CLIPS= (facts)

f-0 (animal -is duck)

f-1 (animal -sound quack)

f-2 (The duck says "Quack.")
For a total of 3 facts.

CLIPS=

CS 561, Session 25

28

Example

CLIPS> (clear)
CLIPS> (assert (animal-is duck))
<Fact-0>

CLIPS> (defrule duck

(animal-is duck)

(assert (sound-is quack)))
CLIPS>

CS 561, Session 25

29

