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Modeling parietal–premotor interactions in primate control of grasping
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Abstract

Visual information is processed in the posterior parietal cortex for the hypothesized purpose of extracting a variety of affordances for the
generation of motor behavior. The term affordance is used to mean that visual cues are mapped directly to parameters that are relevant for
motor interaction. In this paper, we present the FARS model of the cortical involvement in grasping, a model which focuses on the interaction
between anterior intra-parietal area (AIP) and premotor area F5. The model represents the role of other intra-parietal areas, working in
concert with inferotemporal cortex and F5, to provide AIP with a full range of information from which affordances may be derived. The
model also suggests how task information and other constraints may resolve the action opportunities provided by multiple affordances. Our
model demonstrates not only that posterior parietal cortex is a network of interacting subsystems, but also that it functions through a pattern
of ‘‘cooperative computation’’ with a multiplicity of other brain regions. Finally, through the use of several novel tasks, the model allows us
to make specific predictions regarding neural firing patterns at both the single unit and population levels, which aids in our further under-
standing of information encoding in these brain regions.q 1998 Elsevier Science Ltd. All rights reserved.
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1. Affordances and action-oriented perception

Gibson (1955, 1966) observed that the pattern of optic
flow, or the movement of features across the retina from
moment to moment, contained valuable information that
could be used to guide navigation reactively through the
environment without prior recognition of objects. Gibson
used the termaffordancesto mean parameters for motor
interaction that are signaled by sensory cues without
invocation of high-level object recognition processes. In
our own work, we have stressed the importance of the
study ofaction-oriented perception(Arbib, 1972)—empha-
sizing both the role of affordances and the importance of the
organism’s current goals, tasks and internal state in deter-
mining what is perceived. We see this approach as an anti-
dote to an overly exclusive focus on object recognition as
the goal of human processing. This approach was influenced
in no small part by the confluence of ethological, mamma-
lian and human studies in the symposium on ‘‘Locating and
identifying: two modes of visual processing’’ (Ingle et al.,
1967). The dichotomy of locating and identifying was
later linked to primate cortical anatomy in the work of

Ungerleider and Mishkin (1982) who distinguished two sys-
tems in the extrastriate visual processing of shape. Both
systems have their origins in the primary visual cortex,
V1, but one extends ventrally, V1→ V2 → V4 → inferior
temporal cortex (IT), and is generally assumed to subserve
object recognition. The other extends dorsally from V1 to
the posterior parietal cortex (PP) and is characterized as
mediating spatial memory. The ventral path (especially
the inferotemporal cortex) and the dorsal path (especially
the parietal cortex) were thus characterized as the ‘‘what’’
(pattern recognition) and ‘‘where’’ (object location)
systems respectively.

Emphasizing that action extends beyond mere localiza-
tion, Goodale and Milner (1992) studied the ability of a
patient (DF), with a ventral lesion, to carry out a variety
of object manipulations even though unable to report verb-
ally on, or even pantomime, the object parameters used to
guide these actions. On this basis, they suggested that, while
the ventral system may still be viewed as serving visual
perception, the dorsal system may be more properly called
the how system—location (‘‘where’’) being only one of
many properties needed to determine how to interact with
an object. Conversely, Castiello and Jeannerod (1991)
studied impairment of grasping in a patient (AT) with a
lesion of the visual pathway that left the PP, IT, and the
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pathway V→ IT relatively intact, but grossly impaired the
pathway V → PP. This patient is, in some sense, the
‘‘opposite’’ of DF—she can use her hand to pantomime
the size of a cylinder, but cannot preshape appropriately
when asked to grasp it. Instead of an adaptive preshape,
she will open her hand to its fullest extent, and only begin
to close her hand when the cylinder hits the web between
index finger and thumb. Surprisingly, however, when the
stimulus used for the grasp was not a cylinder (for which
the semantics contains no information about expected size),
but rather a familiar object—such as a reel of thread, or a
lipstick—for which the usual size is part of the subject’s
knowledge, AT showed a relatively adaptive preshape. One
thus infers the existence of an IT→ PP pathway capable of
providing a representation of the approximate (‘‘default’’)
size of a known object to the ventral system. In summary,
while the IT of monkey and human provides at best crude
information about how to grasp semantically relevant
objects, this representation can be refined by the PP which
can extract from the visual input a representation of the
object’s precise affordances for grasping and manipulation.
Note that, unlike Gibson, we imagine several intervening
levels of processing between the retina and the extraction of
affordances.

In this paper, we examine a variety of neural regions in
the monkey cortex that demonstrate an involvement in the
vision-for-grasping process, as well as regions in the pre-
motor cortex that participate in the production of grasping
movements. We then develop a computational model of
how a number of these regions interact with each another
in order to (1) extract relevant visual information from a
presented object, (2) select an appropriate grasp for the
given object and situation, and (3) execute the grasping

movement. Particular attention is given to the neural-level
encoding of object and grasp information in the anterior
intra-parietal area (AIP) and area F5 (of the inferior premo-
tor cortex). The model hypothesizes that the AIP is respon-
sible for extracting affordance information from the visual
stream, while F5 selects one of the corresponding grasps and
then manages its execution. The model successfully
accounts for the task-dependent, phasic firing patterns
observed in these areas. The affordance interpretation of
AIP’s role leads to very specific predictions as to how the
‘‘how’’ information is encoded in this region. We explore a
number of predictions in the context of novel grasping tasks.

2. Representation of objects and grasps in monkey cortex

Fig. 1 shows a number of areas of interest in the cortex of
the macaque monkey. The inferior parietal lobule (IPL) of
the parietal cortex in a monkey receives visual inputs from
occipito-temporal areas as well as from the visual field per-
iphery of V3 and V2 (Anderson et al., 1991; Baizer et al.,
1991). IPL is functionally subdivided into areas 7a, 7b, the
second somatosensory area (SII), and several sub-areas
buried in the intra-parietal sulcus, including the lateral
intra-parietal area (LIP), the ventral intra-parietal (VIP)
area, and the AIP area. These areas have specific sensory-
motor functions, including those for saccadic eye move-
ments (LIP), ocular fixation (7a), reaching (mostly 7b) and
grasping (AIP). A similar modular organization is seen in
the motor sector (agranular cortex) of the frontal lobe, which
is related to body movements (except for the supplementary
eye fields). In particular, F4 and F5 of the inferior premotor
cortex are involved in the control of proximal and distal

Fig. 1. Cortical regions in the macaque (figure adapted from Jeannerod et al., 1995). The lateral intra-parietal sulcus (LIP) is involved in odulomotor activity.
The anterior intra-parietal sulcus (AIP) is involved in grasping of objects. It receives input from other areas of the posterior parietal cortex, which provide
information about the parameters of the object of interest, including location, orientation, shape, and size. In addition, this region has very significant recurrent
cortico–cortical projections with area F5 of the inferior premotor cortex.
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movements respectively. F5 is the area of agranular frontal
cortex involved in grasping in the monkey (Gentilucci et al.,
1988) and forms the rostral part of inferior area 6. Its main
anatomical connections include AIP and the hand field of
the precentral motor area (Muakkassa and Strick, 1979;
Matelli et al., 1986).

The following subsections provide a brief review of the
neurophysiological database that grounds the FARS model.
After presenting a protocol for studying grasp-related neural
activity, we show that there are cells in both the AIP and F5
whose firing codes for grasp properties rather than object
properties. What the data do not tell us is how these cells are
interconnected with each other and a broader network of
cortical and subcortical regions to yield a wide variety of
grasping behaviors. It is the task of the rest of the paper to
offer neurally grounded hypotheses which allow us to form
the causally complete FARS model, present a selection of
simulations obtained with the model, and then offer several
predictions for new experiments designed both to test the
model and to extend our insights into parietal–premotor
interactions in primate control of grasping.

2.1. A protocol for studying grasp-related neural activity

An important experimental protocol has been developed
by Hideo Sakata and coworkers (Taira et al., 1990) to study
object- and grasp-related properties of neurons (Fig. 2): a
ready signal is given by the turning on of light L1. The
monkey responds by placing his hand upon the touch pad
that is located directly in front of him. Contact with the
touch pad is indicated by the KEY trace. When L1 changes
color (the trigger stimulus), the monkey begins the execu-
tion of the reaching/preshape movement toward the object
that is located in front of him. A second light (L2) turns on
as the monkey pulls away from the touch pad. The monkey
grasps the object and manipulates it by pulling or pushing in
the appropriate direction (SW is also referred to as the
object phase). This position is held until L2 changes color

(the secondary trigger stimulus), at which time the monkey
releases the object and moves his hand away. If the task is
performed properly, the monkey is then rewarded with a
squirt of juice.

2.2. Object and grasp coding in AIP

A variety of objects were presented to monkeys trained to
perform the Sakata protocol. For each object, four different
conditions were used: movement in the light (to manipulate
the object), movement in the dark (when the monkey has
already seen the object and manipulated it in the light),
fixation of the object in the light (with no movement), and
fixation in the dark. One set of objects included buttons that
had to be pushed, knobs to be pulled, and a joystick that had
to be grasped and pushed in a particular direction (Taira
et al., 1990). A second set of objects studied includes plates,
cones, cubes, cylinders, spheres, and rings of various sizes
(Murata et al., 1993).

In monkeys trained to grasp objects requiring different
types of grip, about half the AIP neurons related to hand
movements fired almost exclusively during one type of grip,
with precision grip being the most represented grip
type (Taira et al., 1990; Sakata and Kusunoki, 1992;
Murata et al., 1993). Many cells in AIP also demonstrate
object-specific activity. However, it is important to note
that some cells actually respond to several different objects,
with varied activity levels. Most often, cells are actually
selective to varying degrees for several objects (that often
share some common characteristics). Some cells demon-
strate specificity toward the size of the object to be grasped,
while showing a certain degree of independence from the
type of object; other cells demonstrate independence from
the size of the object. The fact that there are cells that are
both size-selective and size-independent indicates that
within a population of cells that code for a particular object,
a sub-population of these cells are responsible for capturing
size of the object. Finally, a small number of cells shows
modulation based upon the object’s position and/or orien-
tation in space.

About 40% of the AIP neurons discharge equally well if
the appropriate grasping movement is made either in the
light with the monkey looking at the object, or in the
dark. These cells are referred to as ‘‘motor dominant
neurons’’ (Taira et al., 1990). The remaining neurons dis-
charge more strongly (‘‘visual/motor neurons’’) or
exclusively (‘‘visual dominant neurons’’) in the light. Half
of the visual dominant neurons, and a part of the visual/
motor neurons become active when the animal fixates the
object in the absence of any movement. For these last
neurons, the visually effective object and the type of grip
coded (assessed in the dark) coincide. They appear, there-
fore, to match the visual representation of the objects with
the way in which the objects are grasped.

Most neurons in AIP also demonstrate phasic activity
related to the motor behavior. The identifiable phases

Fig. 2. The Sakata protocol, as described in Taira et al., (1990). Key phase:
monkey’s hand is in contact with the touch pad. Object phase (SW):
monkey grasps the switch. See text for details.
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include: set (key phase), preshape, enclose, hold (object
phase), and ungrasp. Cells participate in varying degrees
during different phases of the movement, but are usually
most highly active during the preshape and enclose phases
of movement. Very importantly, once a cell becomes active,
it typically remains active until the object is released.

The AIP cell depicted in Fig. 3 illustrates a number of
these properties. All traces are recorded from a single cell,
under one of 12 different conditions: four different objects
(joystick, push button, pull-knob in groove, and pull-knob),
and three different tasks (grasping in the light, grasping in
the dark, and fixation of the object in the light). For the
grasping tasks, the traces are aligned on the initiation of
movement; in the fixation cases, the traces are aligned on
the time that the object became visible. The key and object
phases of movement are indicated for the grasping con-
ditions by the horizontal bars located below the histograms.
The cell depicted in the figure responds heavily to a pull-
knob that is recessed into a vertically cut slit, and partially
responds to a joystick and a non-recessed pull-knob. Cell
activation occurs during both the visual fixation and move-
ment in the light conditions, but responds at an insignificant
level during movement in the dark. For this reason, this cell
is classified as visual. Note that this cell’s activation level is
also modulated by the phase of movement. It is most active
during preshape and grasp (between the key and object
phases), and shows a moderate level of activity prior to
movement initiation (the key phase), and in some con-
ditions, following the establishment of the grasp. The drop

of activity at the end of the key phase is thought to relate to
the monkey’s direction of attention away from the object.

2.3. Grasp coding in F5

Rizzolatti et al. (1988) described various classes of F5 neu-
rons, each of which discharge duringspecific handmovements
(including grasping, holding, tearing, and manipulating). The
largest class is related to grasping. The temporal relations
between neuron discharge and grasping movements vary
among neurons. Some of the units fire only as the monkey’s
hand encloses around the object (i.e. during finger flexion).
Other neurons start tofire withfinger extension and continue to
fire during finger flexion. Finally, others are activated in
advance of the movement initiation (these are referred to as
‘‘set’’ cells), and sometimes cease to discharge only when the
object is grasped. Of the neurons active during grasping, 85%
were found to be selective for one of precision grip, finger
prehension, or whole hand prehension, with precision grip
the most frequent (Rizzolatti et al., 1988). ‘‘Visual’’ responses
are observed in about 20–30% of F5 neurons, with two sepa-
rate classes being distinguished. One set of neurons responds
to the presentation of graspable objects; another class of cells,
referred to as ‘‘mirror’’ neurons, responds both when the mon-
key makes a grasping movement, and when the monkey
observes the experimenter or another monkey make a similar
grasping movement (di Pellegrino et al., 1992).

Fig. 4 depicts two F5 cells that are active during a preci-
sion pinch grasp, using either the contralateral or ipsilateral

Fig. 3. Visual AIP cell that is most active during fixation or manipulation of a pull-knob inset into a groove (row 3), while somewhat active for conditions
involving a joystick (row 1) and a non-recessed pull-knob (row 4). Thekeyandobjectphases of movement are indicated for the grasping conditions by the
horizontal bars located below the histograms. Figure used by permission of H. Sakata.
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hand (subpanels A and B respectively). One cell (Fig. 4(a))
begins to fire well in advance of contact with the object,
which indicates that it is involved in control of the preshape
phase of the grasping movement. The other (Fig. 4(b)) begins
to fire shortly before contact is made and continues to fire
through the duration of the grasp. When a power grasp is
used, the cells are not significantly active (subpanels C and D).

3. The structure of the model

With these data in hand, we now outline an explicit
computational model, the FARS (Fagg–Arbib–Rizzolatti–

Sakata) model of the grasping process, based on simplified
but biologically plausible neural networks and implemented
on the computer to produce detailed simulations (Fagg,
1996). Fig. 5 shows the conceptual core of the model, and
Fig. 6 shows the hypothesized pathways between all the
regions represented in the complete model. The AIP is
hypothesized here as the first stage in the grasp program-
ming process, responsible for integrating object-related
information from both the dorsal and ventral systems. We
see this process of separating out motor-related features as a
way of explaining why cells in the AIP reflect both object-
and grasp-related activity patterns.

Fig. 5 illustrates an example of the multiple affordances

Fig. 4. Two F5 neurons that are active prior to (a) and following (b) object contact. Both cells code for precision grip in both the contralateral (subpanels A) and
ipsilateral (B) hands. The neurons do not respond significantly to a palm-opposition-type grasp (C: contralateral; D: ipsilateral). The histogramsare centered at
the time when the monkey made contact with the object. From figs. 4 and 7 of Rizzolatti et al. (1988).

Fig. 5. According to the FARS model, AIP uses visual input to extract affordances, which highlight the features of the object that are relevant to grasping it. F5
then applies various constraints to select a grasp for execution and to inform AIP of the status of its execution, thus updating AIP’s active memory. The areas
shown are AIP (anterior intraparietal cortex), area F5 (of the ventral premotor cortex), and regions providing supporting input to F5, namely F6 (pre-SMA),
area 46 (dorsolateral prefrontal cortex), and F2 (dorsal premotor cortex).

1281A.H. Fagg, M.A. Arbib / Neural Networks 11 (1998) 1277–1303



associated with different ways of grasping an object. In this
case, three different features are highlighted. When visual
input from the mug is initially presented to AIP via both
the dorsal and ventral streams, it computes—according to
the FARS model—the set of affordances. The correspond-
ing set of grasps is passed to F5. As a function of additional
constraints, F5 selects one of the specified grasps. These
constraints include visual information (from the affordances
extracted by the AIP), task information, instruction stimuli,
and working memories of recently executed grasps. This
decision is broadcast back to the AIP, which shunts the
other affordances, leaving only the affordance that corre-
sponds to the selected grasp. F5 is then responsible for
the high-level execution and subsequent monitoring of the
planned preshape and grasp. During the execution of the
grasp, the affordance represented by the AIP is continually
reinforced by inputs from the active grasp program in F5.
These projections allow F5 to update an AIP active memory
with information about the grasp that is actually executed,
which might differ in some ways from the grasp that was
initially specified. Note that we use the term active memory
to mean more than the simple holding of information for
some delay period so that it can be used later (e.g. Funahashi
et al., 1993). Rather, we add that memory may be con-
tinuously updated as the result of other computations (in
this case, as F5 monitors the progress of the grasp execu-
tion). This is similar to the dynamic remapping mechanism
we saw in our study of saccades, in which motor afferent
signals were used to update a map of targets of potential eye

movements as a saccade was being executed (Dominey and
Arbib, 1992).

Based on the spectrum of activity seen in F5 neurons
during grasping, we hypothesize that each such neuron
codes only a piece of the grasp that is being executed. By
piece of a grasp, we mean that the representation of the
grasp is distributed across a set of neurons, whose collective
responsibility is to produce the appropriate grasp. This dis-
tributed coding within F5 is both in time (representing dif-
ferent phases) and in action space (different grasps). With
distributed representations, it is important to note that indi-
vidual neurons often take on multiple roles. We see this in
the temporal domain in those neurons that are active during
multiple phases of movement. This multiplicity of roles has
also been seen in the action domain. Some neurons have
been observed in F5 that are active during two distinct
motor acts: grasping with the hand and grasping with the
mouth. The key point is that despite this lack of discrete
coding of actions at the neural level, the system is still able
to produce discrete actions as a result of the collective beha-
vior of the neurons. At the same time, because we observe
discrete classes of behaviors, this does not necessarily imply
that the discreteness should be reflected at the level of the
individual neuron.

Fig. 6 gives a high-level overview of the FARS model. In
the next few sections, we will discuss the inputs and outputs
of the AIP/F5 loop. In addition, we discuss the details of the
wiring process for the PIP/IT/AIP/F5 circuit. More details
may be found in Fagg (1996).

Fig. 6. The complete FARS model. The primary areas are IT (inferotemporal cortex), VIP (ventral intraparietal), PIP (posterior intraparietal), AIP(anterior
intraparietal), area 46, BG (basal ganglia), F1 (primary motor cortex), F2 (dorsal premotor cortex), F4 and F5 (of the inferior premotor cortex), andF6 (pre-
SMA). Regions and connections in bold are included in the model implementation.
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3.1. Modeling the ventral and dorsal visual pathways

The location of target objects is represented in the ventral
intraparietal area (VIP) (Colby et al., 1993), using a broadly
tuned population code. This suggests that the VIP codes
target object position and orientation in space using a popu-
lation code in a peripersonal coordinate system. This target
position is passed to F4, which represents the arm goal
position. Within F4, set cells are responsible for setting up
the initial reach program, and then movement- and hold-
related cells are responsible for executing the movement
and maintaining the arm position respectively. However,
in the FARS model, we model only grasp programming,
and do not model VIP and F4. We have modeled the
coordination of reach and grasp elsewhere (Hoff and
Arbib, 1993) at the level of interacting schemas; relating
such models to neurophysiological data is a goal for current
research.

A region neighboring VIP, the posterior intraparietal
area (PIP—also known as cIPS) codes object-centered
information (Sakata et al., 1997). Here, populations of
cells have been shown to fire in response to different shapes
that are presented to the monkey. Within a single population
of cells, some show specificity towards different parameter
ranges (e.g. a cylinder cell might be responsive only to
cylinders of width 10–20 mm). More generally, sub-
populations of shape cells code the relevant parameters
using a population-like coding scheme. On the other hand,
individual cells in the IT appear to capture complex combi-
nations of object features (such as shape and color of the
object). This, combined with the observation that object
representations appear to be rather sparse (Logothetis and
Pauls, 1995), implies that relatively different objects are
coded by disjoint groups of neurons.

The FARS model does not include the pathways whereby
retinal input affects PIP or IT activity, nor does it reproduce
the detailed neurophysiological responses seen in these
regions. Instead, the model explicitly provides, for each of
the visual stimuli used in our simulations, a neural activity
code in both the PIP and IT so that these may provide a
plausible (though not biologically detailed) encoded visual
input to the AIP which is, both literally and metaphorically,
where the action starts in our model. In particular, we
simplify the IT coding by ignoring the view-direction selec-
tive cells observed by Logothetis et al. (1995) and assign a
single unit to each object with which the model is ‘‘famil-
iar’’. The different object classes are represented in the PIP
by separate populations of neurons (e.g. cylinder, sphere,
block, etc.). Within each population, we use a unit that
codes for the general recognition of the shape itself, as
well as sub-populations of units to code for the object’s
parameters. The parametric information is coded using a
population code. Each of the neurons responds maximally
to a particular parameter value (referred to as a preferred
value). The activity of a parametric neuron is related to the
difference between its preferred value and the actual value

being coded. In the case of this model, the activity level is
related through a Gaussian function with a specified stan-
dard deviation.

Each fundamental object class maintains its own set of
parameter sub-populations. As a result, the diameter of a
cylinder and the diameter of a sphere are coded using
non-overlapping sets of cells. However, this is not to say
that the space of all objects can be partitioned into discrete
sets. Rather, we imagine these sets as defining a space of
objects; objects that mix properties of two classes will have
a PIP representation that recruits from both sub-populations.

As an example, a pencil and stick of roughly the same
shape and size are coded by the PIP using identical activity
patterns. However, the respective codes are orthogonal in
the IT. This simplification in the model captures the notion
that these objects are conceptually different from one
another. In the more general case, we would expect that
the IT would represent conceptual classes of objects in an
overlapping manner (e.g. the set of all different mugs).
On the other hand, a sphere is coded in a manner that is
completely orthogonal to the stick and pencil in both PIP
and IT.

An affordance is ‘‘programmed’’ into the model by
establishing an association from the object’s visual
representation in PIP and IT to visual-responsive units in
the AIP that are selective to the grasp type and, in some
cases, to a specific grasp aperture. In the programming
process, the decision as to whether or not to make a con-
nection to an individual AIP unit is determined probabilis-
tically. Thus, only a subset of ‘‘appropriate’’ AIP cells for a
particular grasp will respond to an affording visual
representation.

Recall from Section 1 the case of the patient AT for
whom, no information being available from the dorsal
stream (PIP), the projection from the IT can provide, in
some cases, the necessary grasp type and parameters. The
mapping from object identity in the IT to the AIP is thus
provided whenever the nature of the object implies the suit-
ability of a specific set of affordances. This mapping is then
somewhat simpler than the mapping from the PIP, since
unique objects (and hence object configurations) already
give rise to non-overlapping activity patterns in the IT. As
a result, the identification of the object can, where the affor-
dances are indeed implicit in the semantics of the object, be
mapped directly to both the grasp type and the aperture of
grasp. In practice, this projection is important for biasing
particular grasp configurations as a function of the specific
context presented by the object.

3.2. Interaction of AIP and F5 during execution of the grasp

Fig. 7 demonstrates, at a schematic level, the interaction
between populations of cells in AIP and in F5 that is
postulated by the FARS model, with particular emphasis
placed on the active memory and phasic activation mechan-
isms. Three AIP units are shown: a visual-dominant cell
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which recognizes objects that require a precision pinch, a
motor-dominant cell of the same type, and a visual-
dominant cell that recognizes objects requiring power
grasps. The five F5 units participate in a common grasping
program (in this case, for the Sakata protocol using a pre-
cision grasp), but each cell fires during a different phase of
the program. Each phase of the motor program primes the
next, i.e. makes it responsive to other excitatory inputs with-
out necessarily activating the cell. When sufficient priming
is present, the actual transition from one phase to the next is
triggered either by external events (go signals given by the
experimenter), sensory events (contact with the object), or
internal events (opening of the hand to its widest extent
during the preshape). Activation of F5 cells for one phase
of the movement also serves to inhibit the activity of F5
cells encoding the previous phase. Furthermore, as noted
in our earlier discussion of coding distributed across time,
F5 cells in the model are not constrained to be active during
exactly one movement phase, but are allowed to be active
over multiple contiguous phases, consistent with the avail-
able single-unit data (Rizzolatti et al., 1988).

Although the activity within the ‘‘slice’’ of F5 in Fig. 7 is
shown as cascading from left to right as the program is
executed, the actual model circuitry is more complex: the
effective connections between program phases are not

coded within F5, but are managed by the combined action
of pre-supplementary motor area (F6) and the basal ganglia
(BG), which represent the high-level wait–reach/grasp–
hold–release program. Such indirection is necessary to
ensure that a particular action-component can occur in
many different motor programs (and not just sequences—
see Arbib (1989) for the more general notion of a coordi-
nated control program), rather than always being linked to a
unique next state for each ‘‘transition trigger’’. A discussion
of relevant data on pre-SMA is given below.

Within populations of F5 cells that encode a single grasp
and phase, cells exchange excitatory connections, thus sup-
porting their mutual coactivation. On the other hand, cells
belonging to discordant populations send connections to each
another via inhibitory interneurons. These connections ensure
that only F5 cells belonging to a single grasp are allowed to
achieve a significant level of activation at any one time. When
several affordances select multiple grasps in F5, selection of a
single grasp is enforced by this competitive mechanism. Aswe
shall see below, this selection process may be biased by other
inputs into F5. Also note that, within these constraints, the
existence of a connection from one specific cell to another is
determined probabilistically. This is intended to model the fact
that a single cell is only directly connected to a small subset of
cells with which it may be coactive.

Fig. 7. Interaction between AIP and F5 populations (circles) during execution of the wait–reach/grasp–hold–release program for the Sakata protocol. Activity
within F5 cascades from left to right as the program is executed. At each program phase, the state is reported back to the AIP motor-type population. However,
the actual circuitry is more complex: theeffective connectionsbetween program states are not coded within F5 but are managed by the combined action of pre-
SMA (F6) and the basal ganglia (BG).
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The cells within the AIP follow an interconnection
scheme similar to that for F5: populations of cells that
participate within similar affordances exchange excitatory
connections, while inhibitory connections are exchanged
between different populations. Excitatory connections are
established between a cell in AIP and one in F5 when the
encoded affordance matches the grasp. Again, only a subset
of candidate connections are actually established.

F5 sends connections to F1 and SII. For a given grasp and
movement phase, the active F5 cells recruit those F1 cells
that produce the needed distal movements. The projections
to SII prime units that detect specific sensory hyperfeatures
that will either confirm that the grasp is executing as
expected, or that an unexpected event has occurred. In the
latter case, F5 will use the return signals to shift execution to
a more appropriate program. More details may be found in
Section 4.2.

We close this section by noting the highly simplified
model of F1 (MI), SI and the hand used in the FARS
model. We do not model the arm (see our earlier discussion
of F4); the hand is a kinematic model consisting of 15
joints (three for each finger and the thumb). SI contains
two classes of units that represent the proprioceptive
and kinesthetic state of the hand. The proprioceptive
information is represented using a population code; the
kinesthetic information is simply binary, capturing the
contact/no-contact distinction. Units in F1 drive movements
of specific joints as a function of their inputs from SI. F5
specifies a particular, coordinated movement of the hand by
selecting a subset of the F1-mediated mappings from the SI
state to joint movement. Each SII unit receives from SI both
proprioceptive and kinesthetic inputs from all parts of the
hand. Because these units have a high threshold, they only
become active when the hand is in a particular configuration
and is receiving a particular set of tactile inputs.

3.3. Supporting roles played by additional brain regions

We now briefly note the role of other brain regions in the
FARS model. We stress again the distinction between
empirical data and the model—the former include data on
cell firing which suggest possible hypotheses on the func-
tional roles of a given brain region; the model must then
make explicit those details of cellular connectivity, etc., that
could explain the cellular behavior and mediate the posited
functions. Simulations with the model then yield explicit
predictions for empirical testing, with the results of new
experiments serving to support the model or to suggest
ways in which the model can be improved.

3.3.1. SII and expectations
In the grasp versus point comparison in a PET study of

humans, Grafton et al. (1996a) find a marked increase of
activity in SII, located in the roof of the parietal operculum.
The augmented response in this site could not be attributed
to a simple sensory effect, such as additional somatosensory

stimulation during grasping, since there was no correspond-
ing increase of rCBF in the primary sensory cortex. Instead,
they proposed that the response is related to higher-order
tactile feedback or tactile expectation (Arbib et al., 1985)
that is used for representing the shape of the target objects
and for tactile learning. In detailed anatomical studies in
the macaque, Preuss and Goldman-Rakic (1989) found
an interconnected network of forelimb and orofacial
representations involving the ventral premotor cortex
(area 6v), orbitofrontal opercular areas, the opercular
portion of area 2, SII, the central insula and area 7b. The
functional significance of the strong interconnection
between these ventral frontal motor areas and perisylvian
somatic areas including SII is not known. Based on the
connection with limbic cortex, Preuss and Goldman-Rakic
(1989) proposed that the ventral frontal cortex might contain
a working memory mechanism of recently encountered
objects along with appropriate commands for grasping the
objects.

On this basis, SII of the FARS model generates a tactile
expectation consonant with the grasp selected by F5 so that
any discrepancy between expectation and contact-based
feedback can trigger reprogramming of the grasp. This
process is implemented in the model through excitatory
priming connections sent to SII from F5 cells that are active
during the flexion phase of movement and code for a
specific aperture. SII units respond to a particular combina-
tion of tactile input and hand configuration. When primed,
the cells are able to respond quickly to the detection of this
combination of inputs. When not primed, although the cells
are still able to respond, the response time is much slower.
SII units that become active send excitatory signals to F5
units that are involved in the hold phase of the grasp pro-
gram corresponding to the detected hand configuration.
Further details will be discussed in Section 4.2.

3.3.2. SMA (F3 and F6), the BG, and the representation of
program sequences in primates

The SMA has been implicated in the planning and execu-
tion of complex movements. Human PET studies show a
larger degree of activity in SMA during execution of a
complex sequence of finger movements than for simple
flexion of an individual finger (Roland et al., 1980). A num-
ber of studies have also demonstrated an effect in SMA
related to mental imagery of complex tasks (Decety et al.,
1994; Grafton et al., 1996b).

Based on cytoarchitectonic and microstimulation evi-
dence, Luppino and coworkers argue that there are actually
two distinct areas within what has been traditionally called
the SMA (Luppino et al., 1990, 1991, 1993). These two
regions are referred to as SMA-proper (F3; the caudal
region), and pre-SMA (F6). F3 is somatotopically organized
and has heavy projections to the limb regions of F1, as well
as direct projections to the limb-related portions of the
spinal cord. F6 does not project to the spinal cord, and has
only moderate projections to areas F3 and F2 (the dorsal
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premotor cortex) (Luppino et al., 1990). However, there is a
very heavy projection to area F5.

During execution of a pre-learned sequence of saccades,
Petit et al. (1996) observed elevated levels of rCBF in both
the pre-SMA and the striatum. In a finger movement
sequencing task, Boecker et al. (1998) observed increases
in rCBF in both pre-SMA and the anterior globus pallidus
that correlated with the increasing complexity of the move-
ment sequence. A correlation between sequence complexity
and rCBF changes in SMA-proper was not observed.

Recording studies by Rizzolatti have shown F6 neurons
that become active when an object that the monkey is about
to grasp moves into his peripersonal space (Rizzolatti,
1987). The interpretation of this neural response is that
this class of neuron is responsible for generating an internal
go signal when it is appropriate for the monkey to begin a
reaching movement. In addition, Tanji and Shima (1994)
have examined cellular activity in both F3 and F6 during
execution of a sequence of hand movements. Not only did
they observe cells that responded differentially to the indi-
vidual movements made during the sequence, but the cells
were also sensitive to the order in which the movements
were executed. Similar cell behavior was observed in the
caudate nucleus by Kermadi et al. (1993) in a task involving
production of sequences of either oculomotor or reaching
movements.

Based upon an analysis of striatal cell behavior during
execution of a button-pressing task, Kimura (1993) con-
cluded that this area was involved in the selection of an
appropriate motor program as a function of the behavioral
context. Furthermore, in their study of sequence generation
in Huntington’s disease patients, Georgiou et al. (1995) con-
cluded that the BG are involved in the process of switching
from one movement segment to another based on internal
cues, but are not responsible for the execution details within
each segment.

On the basis of these studies, the FARS model postulates
that area F6 (pre-SMA) is responsible for (1) making task-
specific decisions about the appropriate motor actions to
execute, and (2) representing the high-level sequence of
actions to perform (e.g. the sequence of actions required
to perform the Sakata grasping task). The BG are thought
to provide the machinery for selecting amongst multiple
motor programs, and for managing the transition from one
step in a motor sequence to the next. In the model, F6 first
prepares the ventral premotor regions for execution of the
coming reach and grasp by priming both F4 and F5. It then
detects the go signal given by the experimenter and initiates
execution of the program. Initiation of the release phase of
movement is also handled in this way. We do not explicitly
model the involvement of F3.

3.3.3. Dorsal premotor cortex (F2)
In a task in which a monkey must respond to the display

of a pattern with a particular movement of a joystick, some
neurons in F2 respond to the sensory-specific qualities of the

input. However, many units respond in a way that is more
related to the motor set that must be prepared in response to
the stimulus. F2 is thus thought to be responsible for the
association of arbitrary stimuli (e.g. an instruction stimulus)
with the preparation of motor programs (Evarts and Wise,
1984). When a muscimol lesion is induced in this region, the
monkey loses the ability to make the association correctly,
although he is still able to make normal movements of the
joystick (Kurata and Hoffman, 1994). In humans, the dorsal
premotor cortex has been implicated in conditional grasp
selection, in which the color of an LED indicates which of
two grasps must be executed (Grafton et al., 1998).

In the FARS model, F2 sends projections to area F5,
biasing the selection of the grasp for tasks whose choice is
conditional upon presentation of a specific instruction sti-
mulus (IS). This biasing is implemented through low-mag-
nitude excitatory connections from F2 cells encoding the IS
to F5 set cells encoding the appropriate grasp. When multi-
ple grasps are afforded by a single object, this biasing is
sufficient to ensure that the IS-specified grasp will win the
competition.

3.3.4. Area 46
Area 46 has been implicated as a working memory in

tasks requiring information to be held during a delay period
(Quintana and Fuster, 1993). This memory can participate in
the learning of tasks involving complex sequences of move-
ments (Dominey, 1995). Anatomically, this region projects
to F6, and also exchanges connections with area F5
(Luppino et al., 1990). In humans, Decety et al. (1994)
have recently discovered that area 46 is involved when a
subject is asked to imagine herself grasping an object. In
addition to this region, they observe activity in area 44
(a possible F5 homologue), as well as at a site along the
intra-parietal sulcus (Grafton et al., 1996b).

In the FARS model, area 46, working in conjunction with
F6, is responsible for supplying any task-dependent biases
for the selection of the grasp in F5. This selection can be
based upon the task requirements (such as what is going
to be done after the grasp), or based upon a working
memory of a recently executed grasp. The biasing can be
done at the level of the class of grasp (e.g. power
versus precision), or can also include the parameters of
the grasp (e.g. width of the aperture). Both options are
implemented using low-magnitude excitatory connections
into F5.

3.4. Wiring the FARS model

The high-level behavior of individual cells in the FARS
model is specified a priori in the form of behavioral descrip-
tors. The connection from one cell to another is automati-
cally determined based upon the compatibility of the
descriptors of the cells. The resulting network is intended
to give rise to the ‘‘general’’ cell behaviors that have been
observed in monkeys (especially for the AIP and F5).
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Further variety in behavior is achieved by randomly pruning
this network, which allows us to address issues of distributed
representation in neural populations. In this section, we give
a brief overview of the behavioral descriptors, the number of
modeled cells in each region, and the matching process used
to determine cell compatibility.

The behavioral descriptors for F5 units are grasp type
(precision pinch or lateral pinch), aperture (NONE, 10,
15,… 45 mm), and phase of activation (Set, Extension,
Flexion, Hold, and Release). The activation phase for F5
units can involve multiple contiguous phases. The AIP
cells are described as follows: grasp type, aperture, visual/
motor orientation (ranges continuously between 0 and 1),
and phase of initial activation (Set, Extension, Flexion).
Once active, the AIP cells that are involved in the current
grasp will continue to be active for the duration of the reach/
grasp/hold process.

The number of modeled cells in each brain region is
shown in Table 1; the breakdown of the AIP and F5 cells
as a function of behavioral descriptor is shown in Table 2.
Owing to computational efficiency limitations, the different
experiments that are performed with the model rely on dif-
ferent network configurations. The number of cells in
AIP and F5 (grasp type, etc.) change from one experiment
to another; however, the ratios of basic cell types (e.g. F5
distribution across the different phases) remain the same.

For example, experiments involving only a distinction
between a precision and a lateral pinch (of a particular
aperture) only involve cells that could potentially participate
in a trial (see Table 2, column A). On the other hand, experi-
ments involving many possible object sizes, and hence
many corresponding grasp apertures, involve a different
collection of F5 and AIP cells (column B). Based upon
the battery of experiments performed with the FARS
model, we believe that a model involving a full set of
cells would perform similarly.

The behavioral descriptors are used to establish the
connections between pairs of cells. We give several specific
examples here; a more complete description of the con-
nections between different types of cell may be found in
Appendix A. Two F5 cells that match in their behavioral
descriptors—grasp type, phase, and aperture—exchange
excitatory connections. Furthermore, an F5 cell that encodes
no aperture will exchange excitatory connections with cells
encoding a specific value of aperture—as long as there is a
match in the grasp type and phase. Both classes of connec-
tions ensure that cells encoding the motor program and phase
are coactive during execution of that program. A similar set
of restrictions is used in establishing connections amongst
cells in the AIP. Connections from AIP to F5 also require a
match in grasp type, phase, and aperture; from F5 to AIP, the
AIP cell must also have a motor orientation.

Table 1
Number of modeled cells in each region

Layer Number of units Comments

PIP 183
(Object classes) 3 Types: cylinder, sphere, block
(Parameters per object) 1—sphere Parametric dimensions. The three parameters for a block are length,

width, and height
2—cylinder
3—block

General shape neurons per class 1 Encodes only recognition of shape, with no size information
Neurons per parameter per class 30 Gaussian population code representing size of object along a single

dimension
AIP 110–232 Number depends upon the number of grasps (type and aperture)

represented. See Table 2
F5 430–750 Depends on number of grasps (type and aperture size) represented. See

Table 2
F1 480 Divided amongst the 15 hand joints
SI 178

Tactile cells 28 Two force-sensitive cells for each finger pad (three for each finger; two
for the thumb). One cell of the pair increases in firing rate with force,
the other decreases

(Hand joints) 15 Number of modeled joints in the hand
Proprioceptive neurons per joint 10 Gaussian population code for joint position

SII 6–24 One detector for each grasp type and aperture represented in the model
BG 10 Two units for each motor program phase: Set, Extension, Flexion,

Hold, and Release
F2 2 One for each grasp type that can be associated with an arbitrary stimulus
F6 5

READY 1 Detection of ready signal
GO 1 Detection of go signal—initiates movement
GO 2 1 Detection of 2nd go signal—initiates release of object
Grasp bias 2 Task-related bias of grasp type

Area 46 430–750 Same number as in F5
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3.5. Information flow through the FARS model

With this background, we can now chart the flow of
information through the FARS model as the Sakata protocol
is performed. The following description refers to the cells

pictured in Fig. 7, with Fig. 8 showing the actual time course
of several F5 cells seen in computer simulations.

Initially some set of visual parameters that is specific to a
particular object is encoded within the PIP and IT as
described above; these patterns activate the appropriate

Table 2
Breakdown of modeled cells in F5 and AIP as a function of behavioral description for two different experimental configurations. Column A shows the case
where a precision and a lateral pinch are represented (with only one aperture); column B corresponds to the configuration in which the many possible apertures
are represented for the precision pinch

Description A B Notes

F5 cells (total) 430 750 The larger number of F5 cells is necessary to capture AIP Cells
(total) all five phases, whereas phase is not represented spatially (to
a significant degree) in AIP.

110 232

F5 cell grasp orientation Ratio of precision to lateral pinch is roughly based upon the
observation by Rizzolatti et al. (1988) that the precision pinch is the
most heavily represented grasp in F5. Note that there is no lateral
pinch representation in experiment ‘‘B’’

Precision pinch 242 750
Lateral pinch (side opposition) 188 —

F5 cell parameter coding A specific representation of grasp aperture has not been examined
experimentally, but the FARS model hypothesizes that such a
representation is necessary. A wide range of apertures are repre-
sented in experiment ‘‘B’’

General (no specificity) 170 82
Aperture 260 668

F5 cell phasic responses Proportion of cells in each phasic class is roughly based upon
Rizzolatti et al. (1988). Note that if a cell is active for more than one
phase, it is counted multiple times. The largest number of cells is
active during movement (Extension and Flexion phases)

set 56 100
extension 197 278
flexion 202 286
hold 65 139
release 50 115

AIP parameter coding Murata et al. (1993) observed both shape- and size-selective
responses in AIP. Size-selective responses appeared to follow a
population-encoding scheme. These ratios are extrapolated from F5
observations (Rizzolatti et al., 1988)

General (no specificity) 51 24
Aperture 59 208

AIP grasp orientation
Precision pinch 63 232
Lateral pinch 47 —

AIP phasic responses All three onset behaviors have been observed by Taira et al. (1990);
the rough proportions are captured here

set 46 98
extension (early) 46 98
flexion (late) 18 36

AIP visual/motor orientation Taira et al. (1990) observe primarily visual/motor cells, and only a
small number of pure visual or motor cells. Note the difference
across experiments in the ratio of visual dominant versus motor
dominant cells. The model is robust to these differences

Pure visual 11 19
Visual dominant (V. M) 49 135
Motor dominant (V, M) 30 49
Pure motor 20 29
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visual-dominant cells in the AIP—Fig. 7 shows a typical
cell which is precision-grasp related. A competitive process
takes place within the AIP, shunting the activity of cells (in
this case side-opposition related cells) that correspond to
grasps not appropriate for the presented object. The activa-
tion of the AIP visual cell primes a set of cells within F5 that
correspond to the grasp to be used (in this case the precision
grip). When F6 detects the Ready signal (700 ms after the
presentation of the object), the F5 set-related cell becomes
active, signaling a preparation for execution of the precision
grasp. The set-related activity prepares the sub-program for
execution by priming the cell representing the extension
phase of the motor program.

When the trigger (Go) signal is given by the experimenter
(detected by F6), the extension-related cell begins to fire,
causing the preshape of the hand to begin (downward motor
commands are not shown). At the same time, the activation
of this cell forces the set-related cell to turn off (via the
backward inhibitory connection), and the flexion-related
cell is primed.

At the time that the fingers reach an extension appropriate
for the size of the object to be grasped (as detected by an SII
unit), the flexion-related unit is activated, marking the
beginning of the enclose phase of movement. In response
to this activation, the extension-related cell is turned off and
the hold-related cell is primed. The next phase transition
occurs when a tactile stimulus is detected (by an SII unit);
the hold-related neuron activates, shunting the flexion-
related cell, and priming the release-related cell. The hold
neuron continues to be active until the external secondary go
signal is received (‘‘Go 2’’ of Fig. 8). This signal causes the

activation of the release neuron and the shunting of the hold
neuron.

At each phase of the program, the corresponding F5 unit
sends excitatory input to the motor related cell in the AIP.
The recurrent priming signal from this AIP cell serves as an
active memory of the motor program that is currently being
executed. This memory ensures that at any point in the
execution of the grasping program, the F5 cells that corre-
spond to the precision grasp (in this example) are activated
during the next phase of movement, and not cells that parti-
cipate in other grasps.

3.6. AIP visual/motor distinction

In the Sakata AIP experiments, a distinction is made
between cells that are visual-dominant, motor-dominant,
and visual/motor, as determined by the degree to which
they participate during a pure fixation task (in the light),
or a grasping task in the dark (Taira et al., 1990; Murata
et al., 1993). Here we present the model with the same tasks;
we first detail these two protocols, and how the model is
structured such that the tasks may be performed. We then
demonstrate a range of AIP cell behaviors exhibited by the
model.

3.6.1. The fixation task
For the fixation in the light condition, the system is pre-

sented with the object as in the original protocol; however,
neither the ready nor the go signals are ever provided.
Hence, the entire 8.4 seconds of the task are spent fixating
on the object and no movements are generated.

Fig. 8. F5 activity during execution of a precision grasp. (a) The top two traces show the joint angle of the most proximal joints of the thumb and index finger,
respectively (graphed with opposite signs so as to convey a clear view of aperture changes). The next five traces represent the average firing rate of fiveF5
neurons (set-, extension-, flexion-, hold-, and release-related). The remaining five traces represent the various external (Ready, Go, Go2) and internal (SII)
triggering signals. To illustrate the temporally distributed coding of F5 cells, part (b) shows a number of F5 cells whose activity spreads over more than one
phase.
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3.6.2. The dark grasping/working memory task
Before performing the dark grasping task, the model first

grasps the object in the light. During the performance of the
task in the light, area 46 constructs a memory of those F5
cells that participate in the grasp. This memory is imple-
mented in the model using a latching mechanism. Once the
initial grasp is complete, the visual inputs are removed
(PIP and IT are cleared), and a second trial is initiated
with the presentation of the ready and go signals. During
this second trial, area 46 provides excitatory inputs to those
F5 cells that were active during the first trial. With this
added bias, the F5 cells corresponding to the grasp executed
on the previous trial achieve a higher level of activity, and
are able to shunt F5 units belonging to other grasps. Note
that the area 46 working memory provides a static descrip-
tion of the grasp that was recently executed. By static we

mean that the temporal aspects of the grasp are not stored,
providing only a memory of those units that were active at
some time during the execution.

3.6.3. Simulation results
Figs. 9–11 show three different types of modeled AIP

cells during performance of each of the three tasks. During
the fixation task, the model’s pure motor cells do not
respond to the visible object in the absence of a grasping
movement (Fig. 9). In addition, movement in either the light
or the dark results in identical activity traces for motor cells.
For a pure visual-related cell (Fig. 10), even though this unit
does not receive direct projections from any F5 units, its
activity level is modulated by the phase of movement. The
phasic modulation of this cell during performance of the
grasp is due to a combination of excitatory and inhibitory

Fig. 9. A pure motor-related AIP cell during performance of three different tasks. Thekeyphase corresponds to the presentation of the "ready" signal; theobj
phase is the time during which the model is grasping the object.
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signals received from other active AIP cells, some of which
are modulated directly by F5 units.

Finally, for an AIP unit whose motor-related responses
are modified by visual inputs (hence a visual/motor cell; Fig.
11), during the dark condition, the overall activity of the unit
is significantly reduced. As a result, the unit is not able to
remain above threshold once the network reaches the hold
phase of the motor program.

In summary, the FARS model reproduces at a qualitative
level the variety of cell behaviors observed in both the F5
and AIP during several tasks. The visual and motor cell
distinction made by Sakata in AIP comes out of the
model as a function of an AIP cell’s primary inputs.
Although most cells receive both visual inputs from PIP
and recurrent motor inputs from F5, one class of input
sometimes dominates—resulting in the cell being labeled

as either visual or motor. Note that visual cells can show
phasic-related responses during the movement-in-the-light
condition. We explain this as resulting either from low-
magnitude, recurrent F5 inputs, or from inputs from other
AIP cells that are being driven phasically. In neither case
are these inputs of high enough magnitude to excite the
cell without a baseline of activation provided by visual
input.

One particular feature of note from the monkey data is the
high level of AIP activation that occurs during the preshape
and enclose phases of the task. We explain this behavior in
the model by first noting Rizzolatti’s observation that more
F5 grasping cells are active during these two phases of
movement than any other phase (Rizzolatti, 1987). This
distribution of cell types is reflected in the model. The larger
number of active cells during movement implies a higher

Fig. 10. A pure visual AIP unit. Despite the fact that this unit does not have direct inputs from F5, there is still a modulation of the cell’s activation as a function
of motor program phase.
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level of activation being fed back to AIP, which results in
the higher activation of individual units in that area.

4. Predictions made by the model

In this section, we present a series of simulation experi-
ments designed to probe further how object and grasp infor-
mation is utilized and represented in AIP and F5. The
behavior of the model in these novel tasks provides a set
of specific predictions at both the single-unit and population
levels as to what we might expect if the same experiments
were performed in monkeys. The first task examines how
fine parameters of the grasp (in this case the grasp aperture)
might be coded in both F5 and AIP. Then, we look at
how these two regions respond when there is a mismatch
between the expected object size and the actual object size.

Finally, we examine the issue of grasp versus object coding
in F5 and AIP, and ask what aspects of the object description
are reflected in these two regions.

4.1. Representation of object and grasp parameters

When humans reach to grasp an object, the maximum
aperture achieved by the hand during preshape is related
to the anticipated size of the object (Paulignan et al.,
1991; MacKenzie and Iberall, 1994). How is this informa-
tion encoded in the grasping motor programs? Murata et al.
(1993) reported that the activation of some AIP cells is
modulated by the size of the object that is presented to the
monkey. In the model, we extrapolate this observation to F5,
assuming that sub-populations of grasp-specific units
encode the aperture of grasp, using a population encoding
scheme. The AIP cells that are responsive to small objects

Fig. 11. A visual/motor AIP unit. This unit shows a high level of activation for both motor conditions, and a moderate level of activation for the fixation task.
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exchange excitatory connections with F5 cells that encode
small grasps. Within both F5 and AIP, the sub-populations
of size specific cells support mutual activation through exci-
tatory connections. Competition between disparate sub-
populations is enforced via connections from inhibitory
interneurons local to these regions.

When the model is presented with a set of cylinders which
range in diameter from 10 to 40 mm (Fig. 12), the maximum
aperture achieved during preshape by the index finger and
thumb reflects the anticipated diameter of the cylinder
(Fig. 13). Within the AIP and F5, some cells behave in a
size-specific manner, whereas others are not sensitive to
this parameter (but are sensitive to other details, such as the
type of grasp). Fig. 14 shows one F5 cell that is active during
the set phase of the motor program, but only in cases where a
precision pinch of narrow aperture is executed. Note that the
cell is responsive to a range of aperture sizes (10–25 mm).

4.2. Object size perturbation

We earlier hypothesized that the AIP maintains an active
memory of the grasp that is about to be, or is currently

being, executed. This requires that any deviations in the
executed grasp from that which was planned, must some-
how be detected and then reported back to AIP. Take for
example the case in which there is a miscalibration between
the visually estimated size of the object and the appropriate
grasp aperture (as in the size perturbation task of Gentilucci
et al. (1995)). In the model, as noted earlier, object size
is sensed by SII at the time of contact with the object, so

Fig. 12. Cylinders of different widths map to a precision grasp of varying
aperture size.

Fig. 13. Thumb and index finger temporal behavior as a function of cylinder
size.

Fig. 14. F5 cell responses during precision grasps of seven different aper-
tures. This particular cell is active only for narrow precision pinches.

Fig. 15. F5 movement-related cell (A) and a hold-related (B) cell during the
perturbation experiment. 20 mm/30 mm traces correspond to presentation
and grasping of a 20 mm and a 30 mm cylinder respectively; traces labeled
20 → 30 and 30→ 20 indicate perturbation trials, in which a 20 mm
cylinder is switched for a 30 mm cylinder, and a 30 mm cylinder for a
20 mm one respectively.
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that a perturbation in object size results in a shift in the
SII activity pattern. For small perturbations, the activity
patterns for the perturbed and unperturbed cases can be
overlapping. In either case, this shift in SII contact trig-
gers input to the F5 layer which causes a different set of
F5 hold units to be activated than would normally be the
case. This new set of active F5 neurons comprises units
that are tuned for holding the object size actually
encountered.

This shifting of activity from one grasping program to
another is demonstrated in Fig. 15. Average firing rate traces
for two units (A and B) are shown for four different con-
ditions (grasping of a 20 mm cylinder, a 30 mm cylinder,
perturbation of 20 to 30 mm and perturbation from 30 to
20 mm). Unit A is a movement-related cell, and hence turns
off as contact with the object is made. Because the pertur-
bation is not detected until time of contact, the cell behaves
in the same manner for both trials involving vision of the
20 mm cylinder. Unit B, on the other hand, is a hold-related
cell. Although its preferred aperture is 20 mm, it also acti-
vates for a short period of time when a 30 mm grasp is
established.

When the cell is presented with a perturbation, its activity
pattern switches to match the size of object that is actually
grasped. Note, however, that the onset of the cell (compar-
ing the 20 mm and 30→ 20 mm conditions) is delayed by
about 200 ms. This delay is due to a combination of (1) the
priming of the SII unit in anticipation of contacting a 20 mm
object (which yields quicker activation of the SII unit in the
non-perturbed case), and (2) the time required to ‘‘derail’’
(shunt) the ongoing execution of the 30 mm grasping
program in F5. Because F5 projects back to AIP, the
modeled AIP cells demonstrate a similar range of
behavior during the perturbation: some cells show drastic
shifts in activity shortly after the point of contact,
whereas others show little or no change in behavior. We
hypothesize that this updated representation in the AIP
may provide the basis for the observed adaptation of
preshape over multiple perturbed grasping trials (Gentilucci
et al., 1995).

4.3. Separating object from grasp coding in the AIP and F5

Although a number of experiments have observed con-
dition-dependent activity in the AIP and F5 (Rizzolatti,
1987; Taira et al., 1990), it is rather difficult to determine
exactly what is being encoded by these regions. Specifically,
we are interested in the question of whether these regions
have a tendency to capture grasp- or object-related informa-
tion. Many of the experiments performed in monkeys have
varied both object and grasp together. Here we present a pair
of modeled experiments in which one of grasp or object is
held constant, while the other is varied. The results of these
simulations allow us to better tease out the answer to our
question, and stand as specific predictions as to what we
would expect to see in monkey.

4.3.1. Multiple objects that afford the same grasp
In the first experiment, the model is presented with two

different objects that are roughly the same width (Fig. 16).
The objects are chosen such that their representations in
PIP are non-overlapping (in this case we are using a small
cylinder and a narrow plate), but both objects are graspable
using the identical precision pinch. We are interested in
looking at how AIP encodes the affordances for these two
objects, and to what degree the object-specific properties are
preserved in this region.

Fig. 17 shows the population response for all AIP cells
under two conditions: grasping the plate or the cylinder in
the light. Each point corresponds to a single cell, the coor-
dinates of which are determined by the normalized cell
activity during performance of the two conditions. (For
each unit, the firing rate is integrated over the course of
the task, and divided by the maximum of this measure
over all cells and both conditions.) Points that fall along
the diagonal correspond to cells that do not vary signifi-
cantly in their activity between the two conditions. In con-
trast, points that deviate from the diagonal correspond to
cells that do vary from one condition to the other. In
Fig. 17(A), the AIP population demonstrates a range of
object responses. Although a few cells demonstrate large
differences in response to the two objects, many are equally
active for both. As a comparison, almost every F5 cell
(Fig. 17(B)) is equally responsive to both objects.

How does the variety of AIP cell responses relate to the
visual/motor cell distinction? To study this question, we
compare the population responses for the plate and cylinder
conditions under two tasks: fixation in the light (Fig. 17(C)),
and grasping in the dark (17(D)). The fixation responses are
a direct result of connections from visual areas into AIP,
and show significant differences in behavior between the
two objects. Cells that fall along the diagonal are those
that receive inputs from both cylinder and plate PIP/IT
representations; units that are plotted near the horizontal
or vertical axes are activated by only the plate or cylinder
respectively. On the other hand, under the dark movement
task, the active AIP cells (which are necessarily motor or
visual/motor cells) do not show object specificity. This is
because AIP activation in this case depends on F5 input
which was itself determined by the working memory for
grasp encoded in area 46.

In general, units that receive a significant amount of
visual input (and thus are classified as visual-related cells)

Fig. 16. Two objects that map to the identical grasp.
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are more likely than motor-related units to display differ-
ences in how they represent the two different objects. As
discussed earlier, when a mapping is established from an
object representation in the PIP (or IT) to a set of appro-
priate AIP units, the decision as to whether or not to make a
connection from the visual representation to an individual
AIP unit is determined probabilistically. In this experiment,
because the two objects are represented in the PIP using
non-overlapping populations of neurons, only a subset
(about half) of the possible AIP units will respond to both

objects (Fig. 18). This aspect of the wiring process (random
connections from the PIP to the AIP) accounts for the
primary clusters of cells observed in Fig. 17(A,C) (i.e. diag-
onal, horizontal, and vertical). Within these clusters, devia-
tions from one cell to another, especially in magnitude of
response (as indicated by distance from the origin), are due
to the randomization in connections within and between the
AIP and F5 areas.

For the most part, however, the object distinction is lost at
the level of F5, which is the source of the motor-related

Fig. 17. Comparison of population responses towards two different objects (but identical grasps). Lighted movement task, AIP (A) and F5 (B) cells; and AIP
populations during fixation (C) and dark movement (D) tasks.
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activity in AIP. This happens despite the fact that only a
subset of possible projections between AIP and F5 are
established (also determined probabilistically). The reason
is that the motor-related activity flows through the loop
formed by the AIP and F5. As the activity makes successive
cycles through the loop, more and more cells (from both
AIP and F5) are recruited, until most of the cells that belong
to a single grasp program become active. As a result, the
model predicts very few differences in object coding in the
AIP cells that are classified as motor-related.

4.3.2. Multiple grasps afforded by the same object
In general, a single object affords many possible grasps,

one of which is selected at the time of execution as a func-
tion of the current context (which may include task require-
ments, position of the object in space, and obstacles). How
is this one-to-many mapping captured in the F5/AIP circui-
try? In the following simulation experiment, the model is
presented with a single object (a small cylinder), and asked
to perform one of three tasks (Fig. 19). For each task, the
model grasps the cylinder. The three different tasks are:

1. grasp the cylinder using a precision pinch (‘‘non-
conditional/precision’’);

2. grasp the cylinder using a power grasp (‘‘non-
conditional/power’’);

3. as a function of an instruction stimulus (the color of a
light), grasp the cylinder using either a precision
pinch (‘‘conditional/precision’’) or a power grasp
(‘‘conditional/power’’).

When the grasp is known ahead of time (tasks 1 and 2),
it is assumed that some higher level planning region

predisposes the selection of the correct grasp. In the
model, it is area F6 that performs this function. However,
when the correct grasp is not known a priori (task 3), some
other region must be invoked that is capable of associating
an arbitrary IS with the appropriate grasp. As discussed
earlier, we implicate the dorsal premotor cortex (F2) in
this association process ( Mitz et al., 1991; Fagg and
Arbib, 1992). The protocol used in this experiment is similar
to the one used in the previous set of experiments. The only
difference is that for task 3 an instruction stimulus is pre-
sented 800 ms after the ready signal.

Fig. 20 shows the behavior of two set-related cells in F5.
For both the precision and power conditional cases, the cell
activity is identical until the IS is presented. This is expected
for all cells, since all system inputs are the same, other than
for the IS. After the IS, we see a divergence in the activity
pattern. Because these cells are both involved in encoding
the precision grasp, they continue to increase in their activ-
ity level when the precision condition is specified, while
their activity is shunted for the power grasp case. Note
that cell A is shunted almost immediately, while cell B
remains active until the go stimulus is received. Examining
the non-conditional traces, we see that cell A is only active
for the precision grasp case. During the power grasp case,
this cell is significantly inhibited by other F5 units and thus
never becomes active. Cell B, on the other hand, is active in
both cases, even though the correct grasp is known before
the trial begins (att ¼ 0).

In monkey, we predict that there will be similar behavior
at the single-unit level: in the conditional task, prior to the
IS, we should see partial set activity corresponding to the
possible grasps for this task; following the IS, this activation
pattern should give way to strong activation of those cells
that will participate in the selected grasp. In AIP, we predict
that motor-related cells will show a similar behavior to
their F5 counterparts. Visual-related cells, however, will
demonstrate less sensitivity to the selected grasp. A more
detailed account of this experiment, along with a compar-
ison study of PET activity in human grasping may be found
in Arbib et al. (1998).

4.4. Implications of the affordance interpretation

Let us now examine more closely the meaning of object
coding in the AIP. One hypothesis put forward in this
paper—the idea that AIP extracts affordances from the
visual input—has very specific implications as to what
aspects of the object are actually captured in the AIP repre-
sentation. When objects are grasped in particular ways, cer-
tain dimensions of the objects are not as relevant as others to
selecting the specifics of the grasp (including the grasp type
and aperture). In this simulation experiment, we present the
model with a series of four different box-shaped objects,
each of which must be grasped along the indicated horizon-
tal axis (in Fig. 21). The two boxes in the left column are to
be grasped using a precision pinch of aperture 10 mm,

Fig. 18. Visual-related AIP cells receive object-specific inputs. Motor-
related cells receive recurrent inputs from F5, which do not demonstrate
object-specific activity.

Fig. 19. A single object mapping to two possible grasps. Before execution,
one grasp must be selected based upon the current context (e.g. based upon
an IS).

1296 A.H. Fagg, M.A. Arbib / Neural Networks 11 (1998) 1277–1303



although they differ significantly in size in the other two
dimensions. Likewise, the boxes in the right column must
be grasped using a precision pinch of aperture 20 mm. The
key question, then, is how these four objects are coded by
the AIP cell population.

Fig. 22(A) compares the visual-related population
responses for the two objects in the leftmost column of Fig.
21 (same aperture). All active AIP units demonstrate a sig-
nificant level of activity for both objects, with little variation

between the two. The small amount of variation is due to the
fact that a few cells are sensitive to object dimensions other
than the width along the grasp axis. However, comparing the
responses towards the two objects in the bottom row of Fig.
21, we see a much wider distribution of responses, with some
cells responding exclusively to one object or the other (Fig.
22(B)). This results from the need to capture the differences
in object widths along the axis of the grasp, so that the appro-
priate grasp aperture may be provided to F5.

Fig. 22(C,D) demonstrates the motor-related AIP popu-
lation responses for the same pair of objects. The motor-
related responses tend to shed any object-specific properties
not related to the grasp. For objects requiring identical
grasps, the motor-related responses are identical
(Fig. 22(C)); objects mapping to different grasps demon-
strate grasp-specific modulation (Fig. 22(D)). In this latter
case, despite the need to represent different grasps, many
AIP motor-related cells are shared between the two objects
(which are plotted along the diagonal). These shared units
are of two types: (1) general precision grasp units (with no
aperture specificity), and (2) aperture-specific cells that
respond to both conditions. The latter case is due to the
population code that is used to capture the aperture para-
meter. Thus, the cells that fall along the diagonal capture the
commonalities between the two situations, whereas the
remaining cells capture the necessary differences.

5. Discussion

The planning and execution of grasps requires the

Fig. 20. Two F5 units (A, B) in response to the four conditions: (c,pr), (c,pw), (nc,pr), and (nc,pw). c¼ conditional; nc¼ non-conditional; pr¼ precision pinch;
pw ¼ power grasp.

Fig. 21. Four boxes of different dimensions. Grasping is performed along
the horizontal axis. The two blocks in the left column are grasped using a
precision pinch with 10 mm aperture; the blocks on the right require a
20 mm aperture.

1297A.H. Fagg, M.A. Arbib / Neural Networks 11 (1998) 1277–1303



integration of multiple sources of information. The visual
system provides the object’s identity, as well as an estimate
of its shape, size, and localization in space. Although this
information can be used to specify the fine details of a grasp
plan, a single object actually affords many different grasps.
The FARS model is a neural-level model of the cortical
processes that are involved in the generation and execution
of grasp plans. The model makes use of ‘‘cooperative
computation’’ amongst several brain regions, including
AIP, F5, and a variety of supporting areas. AIP’s computa-

tion of visual affordances is complemented by corollary
discharge from F5, which in the model is hypothesized to
resolve multiple potential grasps by information on task
constraints (from F6), working memory (from area 46)
and instruction stimuli (from F2). As a result, AIP can
function as an active memory in which a set of affordances,
some of which are initially activated by visual input, are
updated as the plan of action unfolds. We also suggest
that IT can give a broadly tuned code for affordances
when object knowledge is appropriate, and that when visual

Fig. 22. Comparison of AIP visual responses for objects of the same (A) and different (B) widths; and AIP motor-related responses (dark movement condition)
for objects of same (C) and different (D) widths.
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input to AIP is available AIP can refine or replace IT input
with a more finely tuned code for affordances. We argue,
too, that action generally involves plans that take advantage
of, but are not wholly driven by, actions currently afforded
by visual stimuli, noting the role of pre-SMA and BG in
sequence management.

The model addresses the issues of neural-level encoding
of object, grasp, and phasic information, and shows how
populations of cells can capture the critical information
that is required to perform the necessary computations.

5.1. Hypotheses

In addition to reproducing single-cell behavior that has
been observed experimentally in F5 and AIP in monkey, the
model makes several more general hypotheses about the
computations that are being performed by these neural
regions.

1. The neural activity patterns observed in AIP reflect the
extraction of affordances (action-relevant features) from
the visual representation of the attended object.

2. During execution of the grasp, AIP maintains an active
memory of the affordance that corresponds to the grasp
that is being executed. This active memory is maintained
in part by recurrent projections from F5.

3. During grasp plan formation, F5 selects from the possi-
ble grasps, as represented in working memory or in AIP
(corresponding to the affordances). This selection
process takes into account task-related constraints
(received from areas 46, F2, or F6).

4. F5 is responsible for the high-level execution and
monitoring of the grasp, based in part on haptic object
sensing by SII.

5. Parameters of an object or grasp are reflected in sub-
populations of F5 and AIP cells.

5.2. Predictions

These hypotheses lead to a number of predictions about
the single cell- and population-level behaviors under several
novel tasks.

1. In the case where two distinct objects are presented and
subsequently grasped in an identical manner, hypotheses
(1) and (2) imply that motor-related cells in AIP will
tend not to reflect differences in the two situations. How-
ever, visual-related cells (which derive many of their
inputs from PIP and IT) can reflect these differences,
and hence appear to demonstrate an object-specific code.

2. Hypothesis (1) implies that different parameters of an
object will be inequitably reflected in AIP. Specifically,
we expect to see primarily those parameters that are
relevant for programming of the grasp. Object para-
meters not used in the grasp programming process will
not significantly affect AIP cell activity.

3. In the case where an object is to be grasped in one of two
ways, but information about which of the two grasps that
must be selected (e.g. via an instruction stimulus) is with-
held for some delay period, hypothesis (3) implies that
we would expect both possible grasps to be prepared
initially, and hence we predict activity patterns in F5
that correspond to both possibilities. When the IS is
given, the population of cells not corresponding to the
selected grasp is inhibited. Hypothesis (2) implies that
AIP motor-related cells will behave in a similar manner.

4. Because F5 monitors the ongoing grasp (hypothesis (4)),
when there is a miscalibration between the visually esti-
mated and actual size of an object, we predict a shift in
the executing program at the time that the more precise
tactile information becomes available. Hypothesis (2)
implies that this shift in program will also be reflected
in the motor-related cells of AIP.
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Appendix A

In the implementation of the model, computing units are
constructed from collections of simulated neurons, which
are referred to as p-units, short from primable units. All
neural regions within the model are constructed from a set
of these p-units. A single p-unit is made up of a set of four
neurons (Fig. 23). The primary function of the p-unit is
performed by the signal unit. This unit fires in response to
the presentation of a specific set of trigger inputs. Trigger
inputs can be, for example, go signals (as is the case for F5)
or some combination of object features (as in features repre-
sented in AIP). Activation of the signal unit can cause the
output unit to fire, which results in the generation of an
output from the p-unit. When this happens, we refer to the
p-unit as being active. The p-unit output, depending upon
the brain region, is connected either to other p-units (in the
same or other brain regions) or to actuators.

The simple feature detection that is performed by the
signal unit is subject to two levels of constraint, without
which the p-unit cannot become active. The first constraint
is that the p-unit must be primed. Priming signals (detected
by the priming unit) are typically received from high-level
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regions. For example, when F6 begins to prepare a grasp
program, it will prime all the p-units within F5. In this
architecture, priming signals are considered to be non-spe-
cific; the priming of F5 by F6 prepares the system to per-
form a grasp, but does not necessarily specify the details of
the grasp.

The second level of constraint, received through the posi-
tive/negative support inputs, is used in two different ways.
First, in order to enforce the coactivation of p-units that
participate in the same motor program (e.g. a power
grasp), positive connections are established from each p-
unit output to the support input of the other p-units.
Likewise, when two p-units are involved in different

motor programs (e.g. a power and a precision grasp),
mutually inhibitory connections are established. Second,
when a higher-level region (e.g. area 46) selects a very
specific motor program within another region (a grasp in
F5 as a function of memory), it sends positive signals to
the support input of the p-units participating in the motor
program. The constraints are considered to be satisfied only
when the p-unit is both primed and supported. When this
occurs, the p-unit is prepared to become active when the
correct trigger input is received.

The output unit is implemented as a leaky-integrator neu-
ron (Arbib, 1989). Depending upon the brain region, the
time constant of response ranges between 150 and 250 ms.
The remaining units are simply implemented as linear-
threshold neurons, with no temporal dynamics. Figures in
this paper that show ‘‘cell’’ activity, plot the firing rate of
the output unit. Further information regarding the imple-
mentation of the p-units (but there referred to, somewhat
misleadingly, as ‘‘columns’’) may be found in Fagg (1996).

Appendix A.1 Details of the Wiring Process

In this section, we describe in detail the wiring process
that takes place between the subpopulations of cells in each
region. Table 3 lists the set of rules that are used to decide
when it is appropriate for one F5 cell to send a projection to
another cell, the sign of that projection, and the probability
of establishing the connection if it is appropriate. The rules
reference the behavioral descriptors described earlier for F5
and AIP. The behavioral descriptors for the SII consist of
grasp type, and phase (Extension, Flexion, and Release).
The descriptor for the BG is the movement phase, and the

Fig. 23. The p-unit architecture.

Table 3
Connections from F5 cells to other populations. Specifies the types of F5 cell sending connections (column 1), the destination of the connections (column 2),
and the probability of connection for a pair of matching cells (column 4). The abbreviations are as follows:p¼ phase (one of Set, Extension, Flexion, Hold, and
Release),g ¼ grasp (precision or lateral pinch),a ¼ aperture (either NONE, or a specific aperture,X), * ¼ match anything, and unit #U indicates a specific unit
in a population

Region and cell type Projection to region and cell type Notes Prob

F5
g ¼ G ¹ F5: gpG Inhibit other grasp cells 1
p, g, a ¼ NONE þ F5: p, g, a ¼ NONE Support cells of same population (Phase, Grasp, and no Aperture) 0.5
p, g, a ¼ X þ F5: p, g, a ¼ X 6 D Support cells of same population (Phase, Grasp, and similar Aperture) 0.5

¹ F5: p, g, a Þ X 6 D Inhibit cells of same different aperture populations 1
þ F5: p, g, a ¼ NONE Aperture F5 cells support non-aperture cells 0.5

p ¼ (F,H,R), g, a þ AIP: p ¼ *, g, a, o ¼ M F5 cells that are active during the Flexion, Hold, and Release phases,
connect to motor-oriented AIP cells that match in grasp and aperture
classification

0.2

p ¼ S, g, a þ AIP: p ¼ S, g, a, o ¼ M F5 Set cells connect to motor-oriented, Set AIP cells that match 0.2
p ¼ E, g, a þ AIP: p ¼ (S,E), g, a, o ¼ M F5 Extension cells connect to motor-oriented, Set and Extension AIP

cells that match
0.2

p, g, a ¼ NONE þ F5: p, g, a ¼ X Non-aperture F5 cells support activation of aperture F5 cells 0.5
p, g, a ¼ X þ F1 Projects to those F1 cells that implement the necessary movement for this

grasp and phase
0.5

p ¼ (E,F,R), g, a ¼ X þ SII: p, g, a ¼ X Aperture F5 cells that are active for the Extension, Flexion, and Release
phases project to specific SII cells

0.5

p þ BG: p Inform BG as to the current movement phase 1
unit #U þ A46: unit #U Each F5 cell projects to its twin in A46 1
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descriptors used for F6 and F2 are the grasp. F6 also con-
tains cells that represent the external triggering signals
given by the experimenter.

The first column of Tables 3–5 describe the subpopula-
tions from which a set of connections may originate; the
second column describes the appropriate destinations. In
the first row of Table 3, the subpopulations are described
as a function of grasp only. A cell that represents a particular
grasp sends a negative connection to other F5 cells that do

not encode that particular grasp. The second row states that
the subpopulations are defined as a function of phase and
grasp, and must consist of cells that do not encode aperture.
These cells project positively to others of the same type with
a probability of 0.5. The third row states that cells encoding
a particular aperture, phase, and grasp project positive
connections to cells of the same grasp and phase, as long
as the apertures are similar.

Tables 4 and 5 describe the connection rules for the

Table 4
Connections from one class of cells to other populations. Specifies the types of cell sending connections (column 1), the destination of the connections (column
2), and the probability of connection for a pair of matching cells (column 4)

Region and cell type Projection to region and cell type Notes Prob

AIP
g, a ¼ NONE þ AIP: g, a ¼ NONE Non-aperture AIP cells of the same class exchange positive

connections
0.1

þ AIP: g, a ¼ X AIP non-aperture cells project to aperture cells 0.1
g, a ¼ X þ AIP: g, a ¼ NONE Aperture cells project to non-aperture cells 0.1

þ AIP: g, a ¼ X 6 D AIP cells of the same class (grasp type, and similar aperture)
exchange positive connections

0.1

¹ AIP: g, a Þ X 6 D Non-matching aperture cells inhibit one-another
g ¼ G ¹ AIP: gpG Cells that do not represent the same grasp inhibit one-another 1
g, a þ F5: g, a AIP cells project to F5 cells that match in grasp and aperture 0.25

PIP/IT
þ AIP: g, a ¼ (X 6 D, NONE),o ¼ V PIP cells project to visual-oriented AIP cells for which the grasp and

aperture are appropriate for the object
0.5

SII
p, g, a þ F5: p þ 1, g, a SII cells detect the end of some movement phases. These cells

trigger the activation of F5 cells for the next phase of movement
0.7

p ¼ P, g ¼ G, a ¼ A ¹ SII: ppP, OR gpG, OR apA Inhibit other SII cells that encode other hand configurations 1

F6
p ¼ S þ F5: p ¼ S F6 triggers initiation of the Set phase of movement (detection of

READY signal)
1

p ¼ F þ F5: p ¼ F F6 triggers initiation of the Flexion phase of movement (detection
of GO signal)

1

p ¼ R þ F5: p ¼ R F6 triggers initiation of the Release phase of movement (detection
of 2nd GO signal)

1

g þ F5: p ¼ S, g F6 biases the selection of the grasp by exciting specific grasp Set
cells

1

Table 5
Connections from cells in area 46, F2, BG, and SI to other populations. Specifies the types of cell sending connections (column 1), the destination of the
connections (column 2), and the probability of connection for a pair of matching cells (column 4)

A46
unit #U þ F5: unit #U Each A46 cell projects to its twin in F5 1

F2
g þ F5: p ¼ S, g F2 biases the selection of the grasp by exciting specific grasp Set cells 1

BG
p þ F5: p þ 1 Prepare F5 cells for the next phase 1

¹ F5: p ¹ 1 Inhibit last F5 phase 1

SI
g configuration,
p ¼ (E,F,R)

þ SII: g, p The representation in SI of the state of the hand at the end of the Extension,
Flexion, and Release phases of movement is associated with the corresponding
SII unit

1

— þ F1 F1 cells receive either position- or force-related inputs from SI 1
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remaining regions represented in the FARS model. Note
that area 46 and F5 exchange excitatory connections
between pairs of cells. It is through these connections that
a memory is first latched from F5 into area 46 during execu-
tion of the grasp in the light, and then restored to area F5
during grasp execution in the dark.

For the connections from PIP to AIP, the mapping from
object to grasp (including aperture) is specified a priori.
For each object→ grasp mapping, the PIP representation
of the object is associated with a 50% probability with
visual-oriented AIP cells that match the grasp and aperture.
Association means that cells that would normally be active
in PIP to represent the object provide excitatory connections
to AIP cells. Note that the AIP cells that either encode
no aperture or the aperture appropriate for the object are
eligible to receive PIP inputs.
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