
CS 460, Session 16-18 1

Inference in First-Order Logic

• Proofs

• Unification
• Generalized modus ponens
• Forward and backward chaining

• Completeness

• Resolution

• Logic programming

CS 460, Session 16-18 2

Inference in First-Order Logic

• Proofs – extend propositional logic inference to deal with quantifiers

• Unification
• Generalized modus ponens
• Forward and backward chaining – inference rules and reasoning

program
• Completeness – Gödel’s theorem: for FOL, any sentence entailed by

another set of sentences can be proved from that set
• Resolution – inference procedure that is complete for any set of

sentences
• Logic programming

CS 460, Session 16-18 3

Logic as a representation of the World

FactsWorld Factfollows

Refers to
(Semantics)

Representation: Sentences Sentence
entails

CS 460, Session 16-18 4

Desirable Properties of Inference Procedures

entail

Follows – from-1

derivation

Facts Fact

Sentences Sentence

CS 460, Session 16-18 5

Remember:
propositional
logic

CS 460, Session 16-18 6

Reminder

• Ground term: A term that does not contain a variable.
• A constant symbol
• A function applies to some ground term

• {x/a}: substitution/binding list

CS 460, Session 16-18 7

Proofs

CS 460, Session 16-18 8

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

• Universal Elimination (UE):
for any sentence α, variable x and ground term τ,

∀x α
α{x/τ}

• Existential Elimination (EE):
for any sentence α, variable x and constant symbol k not in KB,

∃x α
α{x/k}

• Existential Introduction (EI):
for any sentence α, variable x not in α and ground term g in α,

α
∃x α{g/x}

CS 460, Session 16-18 9

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

• Universal Elimination (UE):
for any sentence α, variable x and ground term τ,

∀x α e.g., from ∀x Likes(x, Candy) and {x/Joe}
α{x/τ} we can infer Likes(Joe, Candy)

• Existential Elimination (EE):
for any sentence α, variable x and constant symbol k not in KB,

∃x α e.g., from ∃x Kill(x, Victim) we can infer
α{x/k} Kill(Murderer, Victim), if Murderer new symbol

• Existential Introduction (EI):
for any sentence α, variable x not in α and ground term g in α,

α e.g., from Likes(Joe, Candy) we can infer
∃x α{g/x} ∃x Likes(x, Candy)

CS 460, Session 16-18 10

Example Proof

CS 460, Session 16-18 11

Example Proof

CS 460, Session 16-18 12

Example Proof

CS 460, Session 16-18 13

Example Proof

CS 460, Session 16-18 14

Search with primitive example rules

CS 460, Session 16-18 15

Unification

Goal of unification: finding σ

CS 460, Session 16-18 16

Unification

CS 460, Session 16-18 17

Extra example for unification

{x/coke, x/Bob}
Is it correct?

Sells(x, coke)Sells(Bob, x)

{x/Bob}Student(Bob)Student(x)

σQP

CS 460, Session 16-18 18

Extra example for unification

{x/coke, y/Bob}Sells(y, coke)Sells(Bob, x)

{x/Bob}Student(Bob)Student(x)

σQP

CS 460, Session 16-18 19

More Unification Examples

1 – unify(P(a,X), P(a,b)) σ = {X/b}

2 – unify(P(a,X), P(Y,b)) σ = {Y/a, X/b}

3 – unify(P(a,X), P(Y,f(a)) σ = {Y/a, X/f(a)}

4 – unify(P(a,X), P(X,b)) σ = failure

Note: If P(a,X) and P(X,b) are independent, then we can
replace X with Y and get the unification to work.

VARIABLE term

CS 460, Session 16-18 20

Generalized Modus Ponens (GMP)

CS 460, Session 16-18 21

Soundness of GMP

CS 460, Session 16-18 22

Properties of GMP

• Why is GMP and efficient inference rule?

- It takes bigger steps, combining several small inferences into one

- It takes sensible steps: uses eliminations that are guaranteed
to help (rather than random UEs)

- It uses a precompilation step which converts the KB to canonical
form (Horn sentences)

Remember: sentence in Horn from is a conjunction of Horn clauses
(clauses with at most one positive literal), e.g.,
(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D), that is (B ⇒ A) ∧ ((C ∧ D) ⇒ B)

CS 460, Session 16-18 23

Horn form

• We convert sentences to Horn form as they are entered into the KB
• Using Existential Elimination and And Elimination

• e.g., ∃x Owns(Nono, x) ∧ Missile(x) becomes

Owns(Nono, M)
Missile(M)

(with M a new symbol that was not already in the KB)

CS 460, Session 16-18 24

Forward chaining

CS 460, Session 16-18 25

Forward chaining example

CS 460, Session 16-18 26

Example: Forward Chaining

Current available rules
• A ^ C => E
• D ^ C => F
• B ^ E => F
• B => C
• F => G

CS 460, Session 16-18 27

Example: Forward Chaining

Current available rules
• A ^ C => E (1)
• D ^ C => F (2)
• B ^ E => F (3)
• B => C (4)
• F => G (5)

Percept 1. A (is true)
Percept 2. B (is true)

then, from (4), C is true, then the premises of (1) will be satisfied,
resulting to make E true, then the premises of (3) are going to be
satisfied, thus F is true, and finally from (5) G is true.

CS 460, Session 16-18 28

Example of Deduction: What can we prove?

s(Y,Z) /\ r(Z) → r(Y)
r(a).
s(b,c)
s(c,a).

¬r(c)

CS 460, Session 16-18 29

¬s(Y,Z) \/ ¬r(Z) \/ r(Y)
r(a).
s(b,c)
s(c,a).

¬r(c)

¬s(Y,Z) \/ ¬r(Z) \/ r(Y)
s(c,a) θ = {Y/c, Z/a}

¬r(a) \/ r(c)
r(a)

r(c)
¬r(c)

[]

Example of Deduction: What can we prove?

CS 460, Session 16-18 30

¬s(Y,Z) \/ ¬r(Z) \/ r(Y)
r(a).
s(b,c)
s(c,a).

¬r(c)

deadend.

¬s(Y,Z) \/ ¬r(Z) \/ r(Y)
s(b,c) θ = {Y/b, Z/c}

¬r(c) \/ r(b)

Example of Deduction: What can we prove?

CS 460, Session 16-18 31

¬s(Y,Z) \/ ¬r(Z) \/ r(Y)
r(a).
s(b,c)
s(c,a).

¬r(X)

¬r(X)
r(a) θ = {X/a}

[]

Example of Deduction: What can we prove?

CS 460, Session 16-18 32

Inference example

quaker(X) => pacifist(X).
republican(X) => ¬pacifist(X).

republican(george).
quaker(richard).

republican(richard)?
Can we use forward chaining to achieve this?

CS 460, Session 16-18 33

Backward chaining

CS 460, Session 16-18 34

Backward chaining example

CS 460, Session 16-18 35

A simple example

• B^C=> G
• A^G=> I
• D^G=>J
• E=> C
• D^C=>K
• F=>C

• Q: I?

CS 460, Session 16-18 36

A simple example

• B^C=> G
• A^G=> I
• D^G=>J
• E=> C
• D^C=>K
• F=>C

• Q: I?

1. A^G
2. A?

1. USER

3. G?
1. B^C

1. USER
2. E v F

CS 460, Session 16-18 37

Another Example (from Konelsky)

• Nintendo example.
• Nintendo says it is Criminal for a programmer to provide

emulators to people. My friends don’t have a Nintendo 64, but
they use software that runs N64 games on their PC, which is
written by Reality Man, who is a programmer.

CS 460, Session 16-18 38

Forward Chaining

• The knowledge base initially contains:

• Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x)

• Use(friends, x) ∧ Runs(x, N64 games) ⇒

Provide(Reality Man, friends, x)

• Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x)

CS 460, Session 16-18 39

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y) ⇒
Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games)

⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games)

⇒ Emulator(x) (3)

• Now we add atomic sentences to the KB sequentially, and call on the
forward-chaining procedure:

• FORWARD-CHAIN(KB, Programmer(Reality Man))

CS 460, Session 16-18 40

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)
⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games)
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games)
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

• This new premise unifies with (1) with
subst({x/Reality Man}, Programmer(x))
but not all the premises of (1) are yet known, so
nothing further happens.

CS 460, Session 16-18 41

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games)
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games)
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

• Continue adding atomic sentences:
• FORWARD-CHAIN(KB, People(friends))

CS 460, Session 16-18 42

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games)
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games)
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)

• This also unifies with (1) with subst({z/friends},
People(z)) but other premises are still missing.

CS 460, Session 16-18 43

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games)
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games)
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)

• Add:
• FORWARD-CHAIN(KB, Software(U64))

CS 460, Session 16-18 44

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)
⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games)

⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games)

⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)

• This new premise unifies with (3) but the other premise
is not yet known.

CS 460, Session 16-18 45

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)
⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games)
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games)
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)

• Add:
• FORWARD-CHAIN(KB, Use(friends, U64))

CS 460, Session 16-18 46

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)

• This premise unifies with (2) but one still lacks.

CS 460, Session 16-18 47

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)

• Add:
• FORWARD-CHAIN(Runs(U64, N64 games))

CS 460, Session 16-18 48

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)

• This new premise unifies with (2) and (3).

CS 460, Session 16-18 49

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)

• Premises (6), (7) and (8) satisfy the implications fully.

CS 460, Session 16-18 50

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)

• So we can infer the consequents, which are now added to the
knowledge base (this is done in two separate steps).

CS 460, Session 16-18 51

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

People(friends) (5)

Software(U64) (6)

Use(friends, U64) (7)

Runs(U64, N64 games) (8)
Provide(Reality Man, friends, U64) (9)

Emulator(U64) (10)

• Addition of these new facts triggers further forward chaining.

CS 460, Session 16-18 52

Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

People(friends) (5)

Software(U64) (6)

Use(friends, U64) (7)

Runs(U64, N64 games) (8)
Provide(Reality Man, friends, U64) (9)

Emulator(U64) (10)

Criminal(Reality Man) (11)

• Which results in the final conclusion: Criminal(Reality Man)

CS 460, Session 16-18 53

Forward Chaining

• Forward Chaining acts like a breadth-first search at the
top level, with depth-first sub-searches.

• Since the search space spans the entire KB, a large KB
must be organized in an intelligent manner in order to
enable efficient searches in reasonable time.

CS 460, Session 16-18 54

Backward Chaining

• Current knowledge:
• hurts(x, head)

• What implications can lead to this fact?
• kicked(x, head)
• fell_on(x, head)
• brain_tumor(x)
• hangover(x)

• What facts do we need in order to prove these?

CS 460, Session 16-18 55

Backward Chaining

• The algorithm (available in detail in Fig. 9.2 on page 275 of the text):
• a knowledge base KB

• a desired conclusion c or question q

• finds all sentences that are answers to q in KB or proves c
• if q is directly provable by premises in KB, infer q and remember how

q was inferred (building a list of answers).

• find all implications that have q as a consequent.

• for each of these implications, find out whether all of its premises are
now in the KB, in which case infer the consequent and add it to the
KB, remembering how it was inferred. If necessary, attempt to prove
the implication also via backward chaining

• premises that are conjuncts are processed one conjunct at a time

CS 460, Session 16-18 56

Backward Chaining

• Question: Has Reality Man done anything criminal?

• Criminal(Reality Man)

• Possible answers:

• Steal(x, y) ⇒ Criminal(x)

• Kill(x, y) ⇒ Criminal(x)

• Grow(x, y) ∧ Illegal(y) ⇒ Criminal(x)

• HaveSillyName(x) ⇒ Criminal(x)

• Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)
⇒Criminal(x)

CS 460, Session 16-18 57

Backward Chaining

• Question: Has Reality Man done anything criminal?

Criminal(x)

CS 460, Session 16-18 58

Backward Chaining

• Question: Has Reality Man done anything criminal?

Criminal(x)

Steal(x,y)

CS 460, Session 16-18 59

Backward Chaining

• Question: Has Reality Man done anything criminal?

FAIL

Criminal(x)

Steal(x,y)

CS 460, Session 16-18 60

Backward Chaining

• Question: Has Reality Man done anything criminal?

FAIL

Criminal(x)

Kill(x,y)Steal(x,y)

CS 460, Session 16-18 61

Backward Chaining

• Question: Has Reality Man done anything criminal?

FAIL FAIL

Criminal(x)

Kill(x,y)Steal(x,y)

CS 460, Session 16-18 62

Backward Chaining

• Question: Has Reality Man done anything criminal?

FAIL FAIL

Criminal(x)

Kill(x,y)Steal(x,y) grows(x,y) Illegal(y)

CS 460, Session 16-18 63

Backward Chaining

• Question: Has Reality Man done anything criminal?

FAIL FAIL FAIL FAIL

Criminal(x)

Kill(x,y)Steal(x,y) grows(x,y) Illegal(y)

CS 460, Session 16-18 64

Backward Chaining

• Question: Has Reality Man done anything criminal?

FAIL FAIL FAIL FAIL

• Backward Chaining is a depth-first search: in any
knowledge base of realistic size, many search paths will
result in failure.

Criminal(x)

Kill(x,y)Steal(x,y) grows(x,y) Illegal(y)

CS 460, Session 16-18 65

Backward Chaining

• Question: Has Reality Man done anything criminal?

Criminal(x)

CS 460, Session 16-18 66

Backward Chaining

• Question: Has Reality Man done anything criminal?

Yes, {x/Reality Man}

Criminal(x)

Programmer(x)

CS 460, Session 16-18 67

Backward Chaining

• Question: Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Criminal(x)

People(Z)Programmer(x)

CS 460, Session 16-18 68

Backward Chaining

• Question: Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

CS 460, Session 16-18 69

Backward Chaining

• Question: Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)

CS 460, Session 16-18 70

Backward Chaining

• Question: Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE} yes, {}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)

Runs(UltraHLE, N64 games)

CS 460, Session 16-18 71

Backward Chaining

• Question: Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE} yes, {}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)

Runs(UltraHLE, N64 games)

Provide
(reality man,

ultraHLE,
friends)

CS 460, Session 16-18 72

Backward Chaining

• Question: Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE}

yes, {}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)

Runs(UltraHLE, N64 games)

Provide
(reality man,

ultraHLE,
friends)

Use(friends, UltraHLE)

CS 460, Session 16-18 73

Backward Chaining

• Backward Chaining benefits from the fact that it is
directed toward proving one statement or answering
one question.

• In a focused, specific knowledge base, this greatly
decreases the amount of superfluous work that needs to
be done in searches.

• However, in broad knowledge bases with extensive
information and numerous implications, many search
paths may be irrelevant to the desired conclusion.

• Unlike forward chaining, where all possible inferences
are made, a strictly backward chaining system makes
inferences only when called upon to answer a query.

CS 460, Session 16-18 74

Completeness

• As explained earlier, Generalized Modus Ponens
requires sentences to be in Horn form:
• atomic, or

• an implication with a conjunction of atomic sentences as
the antecedent and an atom as the consequent.

• However, some sentences cannot be expressed in
Horn form.
• e.g.: ∀x ¬ bored_of_this_lecture (x)

• Cannot be expressed in Horn form due to presence of
negation.

CS 460, Session 16-18 75

Completeness

• A significant problem since Modus Ponens
cannot operate on such a sentence, and thus
cannot use it in inference.

• Knowledge exists but cannot be used.

• Thus inference using Modus Ponens is
incomplete.

CS 460, Session 16-18 76

Completeness

• However, Kurt Gödel in 1930-31 developed the
completeness theorem, which shows that it is
possible to find complete inference rules.

• The theorem states:
• any sentence entailed by a set of sentences can be proven from

that set.

=> Resolution Algorithm which is a complete
inference method.

CS 460, Session 16-18 77

Completeness

• The completeness theorem says that a sentence can be
proved if it is entailed by another set of sentences.

• This is a big deal, since arbitrarily deeply nested
functions combined with universal quantification make a
potentially infinite search space.

• But entailment in first-order logic is only semi-
decidable, meaning that if a sentence is not entailed
by another set of sentences, it cannot necessarily be
proven.

CS 460, Session 16-18 78

Completeness in FOL

CS 460, Session 16-18 79

Historical note

CS 460, Session 16-18 80

Kinship Example

KB:

(1) father (art, jon)
(2) father (bob, kim)
(3) father (X, Y) ⇒ parent (X, Y)

Goal:parent (art, jon)?

CS 460, Session 16-18 81

Refutation Proof/Graph

¬parent(art,jon) ¬ father(X, Y) \/ parent(X, Y)
\ /

¬ father (art, jon) father (art, jon)
\ /

[]

CS 460, Session 16-18 82

Resolution

CS 460, Session 16-18 83

Resolution inference rule

CS 460, Session 16-18 84

Remember: normal forms

“sum of products of
simple variables or
negated simple variables”

“product of sums of
simple variables or
negated simple variables”

CS 460, Session 16-18 85

Conjunctive normal form

CS 460, Session 16-18 86

Skolemization

CS 460, Session 16-18 87

Examples: Converting FOL sentences to clause form…

Convert the sentence

1. (∀x)(P(x) => ((∀y)(P(y) => P(f(x,y))) ^ ¬(∀y)(Q(x,y) => P(y))))
(like A => B ^ C)

2. Eliminate => (∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ^ ¬(∀y)(¬Q(x,y)
∨ P(y))))

3. Reduce scope of negation
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ^ (∃y)(Q(x,y) ^ ¬P(y))))

4. Standardize variables
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ^ (∃z)(Q(x,z) ^ ¬P(z))))

CS 460, Session 16-18 88

Examples: Converting FOL sentences to clause form…

5. Eliminate existential quantification
(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ^ (Q(x,g(x)) ^

¬P(g(x)))))

6. Drop universal quantification symbols
(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ^ (Q(x,g(x)) ^ ¬P(g(x)))))

7. Convert to conjunction of disjunctions
(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ^ (¬P(x) ∨ Q(x,g(x)))

^(¬P(x) ∨ ¬P(g(x)))

CS 460, Session 16-18 89

Examples: Converting FOL sentences to clause form…

8. Create separate clauses
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))
¬P(x) ∨ Q(x,g(x))
¬P(x) ∨ ¬P(g(x))

9. Standardize variables
¬P(x) ∨ ¬P(y) ∨ P(f(x,y))
¬P(z) ∨ Q(z,g(z))
¬P(w) ∨ ¬P(g(w))

CS 460, Session 16-18 90

Resolution proof

CS 460, Session 16-18 91

Resolution proof

CS 460, Session 16-18 92

Inference in First-Order Logic

• Canonical forms for resolution

Conjunctive Normal Form (CNF) Implicative Normal Form (INF)

)()(wQwP ∨¬
)()(xRxP ∨
)()(ySyQ ∨¬
)()(zSzR ∨¬

)()(wQwP ⇒
)()(xRxPTrue ∨⇒

)()(ySyQ ⇒
)()(zSzR ⇒

CS 460, Session 16-18 93

Reference in First-Order Logic

• Resolution Proofs
In a forward- or backward-chaining algorithm, just as Modus Ponens.

)()(wQwP ⇒)()(ySyQ ⇒

)()(wSwP ⇒)()(xRxPTrue ∨⇒

)()(xRxSTrue ∨⇒)()(zSzR ⇒

)(ASTrue⇒

{y/w}

{w/x}

{x/A,z/A}

CS 460, Session 16-18 94

Inference in First-Order Logic

• Refutation

)()(wQwP ⇒)()(ySyQ ⇒

)()(wSwP ⇒)()(xRxPTrue ∨⇒

)()(xRxSTrue ∨⇒)()(zSzR ⇒

)(ASTrue⇒

{y/w}

{w/x}

{z/x}

FalseAS ⇒)(

FalseTrue ⇒

{x/A}

)()(PKBFalsePKB ⇒⇔⇒¬∧

CS 460, Session 16-18 95

Example of Refutation Proof
(in conjunctive normal form)

(1) Cats like fish
(2) Cats eat everything they like
(3) Josephine is a cat.
(4) Prove: Josephine eats fish.

¬cat (x) ∨ likes (x,fish)
¬cat (y) ∨ ¬likes (y,z) ∨ eats (y,z)
cat (jo)
eats (jo,fish)

CS 460, Session 16-18 96

Backward Chaining
Negation of goal wff: ¬ eats(jo, fish)

¬ eats(jo, fish) ¬ cat(y) ∨ ¬likes(y, z) ∨ eats(y, z)

θ = {y/jo, z/fish}

¬ cat(jo) ∨ ¬likes(jo, fish) cat(jo)

θ = ∅

¬ cat(x) ∨ likes(x, fish) ¬ likes(jo, fish)

θ = {x/jo}

¬ cat(jo) cat(jo)

⊥ (contradiction)

CS 460, Session 16-18 97

Forward chaining

cat (jo) ¬cat (X) ∨ likes (X,fish)
\ /

likes (jo,fish) ¬cat (Y) ∨ ¬likes (Y,Z) ∨ eats (Y,Z)
\ /

¬cat (jo) ∨ eats (jo,fish) cat (jo)
\ /

eats (jo,fish) ¬ eats (jo,fish)
\ /

[]

CS 460, Session 16-18 98

Question:

• When would you use forward chaining? What
about backward chaining?

• A:
• FC: If expert needs to gather information before any

inferencing
• BC: If expert has a hypothetical solution

