
CS 460, Session 16-18 1

Inference in First-Order Logic

• Proofs

• Unification
• Generalized modus ponens
• Forward and backward chaining

• Completeness

• Resolution

• Logic programming
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Inference in First-Order Logic

• Proofs – extend propositional logic inference to deal with quantifiers

• Unification
• Generalized modus ponens
• Forward and backward chaining – inference rules and reasoning

program
• Completeness – Gödel’s theorem: for FOL, any sentence entailed by

another set of sentences can be proved from that set
• Resolution – inference procedure that is complete for any set of

sentences
• Logic programming
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Logic as a representation of the World

FactsWorld Factfollows

Refers to 
(Semantics)

Representation: Sentences Sentence
entails
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Desirable Properties of Inference Procedures

entail

Follows – from-1

derivation

Facts Fact

Sentences Sentence
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Remember:
propositional
logic
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Reminder

• Ground term: A term that does not contain a variable.
• A constant symbol
• A function applies to some ground term

• {x/a}: substitution/binding list
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Proofs



CS 460, Session 16-18 8

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

• Universal Elimination (UE):
for any sentence α, variable x and ground term τ,

∀x   α
α{x/τ}

• Existential Elimination (EE):
for any sentence α, variable x and constant symbol k not in KB,

∃x   α
α{x/k}

• Existential Introduction (EI):
for any sentence α, variable x not in α and ground term g in α,

α
∃x   α{g/x}
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Proofs

The three new inference rules for FOL (compared to propositional logic) are:

• Universal Elimination (UE):
for any sentence α, variable x and ground term τ,

∀x   α e.g., from ∀x Likes(x, Candy) and {x/Joe}
α{x/τ} we can infer Likes(Joe, Candy)

• Existential Elimination (EE):
for any sentence α, variable x and constant symbol k not in KB,

∃x   α e.g., from ∃x Kill(x, Victim) we can infer
α{x/k} Kill(Murderer, Victim), if Murderer new symbol

• Existential Introduction (EI):
for any sentence α, variable x not in α and ground term g in α,

α e.g., from Likes(Joe, Candy) we can infer
∃x   α{g/x} ∃x Likes(x, Candy)
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Example Proof
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Example Proof
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Example Proof
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Example Proof
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Search with primitive example rules
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Unification

Goal of unification: finding σ
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Unification
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Extra example for unification

{x/coke, x/Bob}
Is it correct?

Sells(x, coke)Sells(Bob, x)

{x/Bob}Student(Bob)Student(x)

σQP
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Extra example for unification

{x/coke, y/Bob}Sells(y, coke)Sells(Bob, x)

{x/Bob}Student(Bob)Student(x)

σQP
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More Unification Examples

1 – unify(P(a,X), P(a,b)) σ = {X/b}

2 – unify(P(a,X), P(Y,b)) σ = {Y/a, X/b}

3 – unify(P(a,X), P(Y,f(a)) σ = {Y/a, X/f(a)}

4 – unify(P(a,X), P(X,b)) σ = failure

Note: If P(a,X) and P(X,b) are independent, then we can 
replace X with Y and get the unification to work.

VARIABLE     term
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Generalized Modus Ponens (GMP)
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Soundness of GMP
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Properties of GMP

• Why is GMP and efficient inference rule?

- It takes bigger steps, combining several small inferences into one

- It takes sensible steps: uses eliminations that are guaranteed
to help (rather than random UEs)

- It uses a precompilation step which converts the KB to canonical
form (Horn sentences)

Remember: sentence in Horn from is a conjunction of Horn clauses
(clauses with at most one positive literal), e.g.,
(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D), that is (B ⇒ A) ∧ ((C ∧ D) ⇒ B)
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Horn form

• We convert sentences to Horn form as they are entered into the KB
• Using Existential Elimination and And Elimination

• e.g., ∃x Owns(Nono, x) ∧ Missile(x) becomes

Owns(Nono, M)
Missile(M)

(with M a new symbol that was not already in the KB)
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Forward chaining
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Forward chaining example
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Example: Forward Chaining

Current available rules
• A ^ C => E
• D ^ C => F
• B ^ E => F
• B => C
• F => G
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Example: Forward Chaining

Current available rules
• A ^ C => E (1)
• D ^ C => F (2)
• B ^ E => F (3)
• B => C (4)
• F => G (5)

Percept 1. A  (is true)
Percept 2. B  (is true)

then, from (4), C is true, then the premises of (1) will be satisfied, 
resulting to make E true, then the premises of (3) are going to be 
satisfied, thus F is true, and finally from (5) G is true.
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Example of Deduction: What can we prove?

s(Y,Z) /\ r(Z) → r(Y)                   
r(a).
s(b,c)
s(c,a).

¬r(c)
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¬s(Y,Z) \/ ¬r(Z) \/ r(Y)                   
r(a).
s(b,c)
s(c,a).

¬r(c)

¬s(Y,Z) \/ ¬r(Z) \/ r(Y) 
s(c,a)        θ = {Y/c, Z/a}

¬r(a) \/ r(c) 
r(a)

r(c) 
¬r(c)

[  ]

Example of Deduction: What can we prove?
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¬s(Y,Z) \/ ¬r(Z) \/ r(Y)                   
r(a).
s(b,c)
s(c,a).

¬r(c)

deadend.

¬s(Y,Z) \/ ¬r(Z) \/ r(Y) 
s(b,c)        θ = {Y/b, Z/c}

¬r(c) \/ r(b) 

Example of Deduction: What can we prove?
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¬s(Y,Z) \/ ¬r(Z) \/ r(Y)                   
r(a).
s(b,c)
s(c,a).

¬r(X)

¬r(X) 
r(a)          θ = {X/a}

[  ]

Example of Deduction: What can we prove?
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Inference example

quaker(X) => pacifist(X).
republican(X) => ¬pacifist(X).

republican(george). 
quaker(richard).

republican(richard)?
Can we use forward chaining to achieve this?
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Backward chaining
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Backward chaining example
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A simple example

• B^C=> G
• A^G=> I
• D^G=>J
• E=>    C
• D^C=>K
• F=>C

• Q: I?



CS 460, Session 16-18 36

A simple example

• B^C=> G
• A^G=> I
• D^G=>J
• E=>    C
• D^C=>K
• F=>C

• Q: I?

1. A^G
2. A?

1. USER

3. G?
1. B^C

1. USER
2. E v F
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Another Example (from Konelsky)

• Nintendo example.
• Nintendo says it is Criminal for a programmer to provide 

emulators to people.  My friends don’t have a Nintendo 64, but 
they use software that runs N64 games on their PC, which is 
written by Reality Man, who is a programmer.
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Forward Chaining

• The knowledge base initially contains:

• Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x)

• Use(friends, x) ∧ Runs(x, N64 games) ⇒

Provide(Reality Man, friends, x)

• Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x)
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y) ⇒
Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) 

⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) 

⇒ Emulator(x) (3)

• Now we add atomic sentences to the KB sequentially, and call on the 
forward-chaining procedure:

• FORWARD-CHAIN(KB, Programmer(Reality Man))
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y) 
⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) 
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) 
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

• This new premise unifies with (1) with
subst({x/Reality Man}, Programmer(x))
but not all the premises of (1) are yet known, so 
nothing further happens.
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) 
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) 
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

• Continue adding atomic sentences:
• FORWARD-CHAIN(KB, People(friends))
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) 
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) 
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)

• This also unifies with (1) with subst({z/friends}, 
People(z)) but other premises are still missing.
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧
Provide(x,z,y) ⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) 
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) 
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)

• Add:
• FORWARD-CHAIN(KB, Software(U64))
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)
⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) 

⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) 

⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)

• This new premise unifies with (3) but the other premise 
is not yet known.
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)
⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) 
⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) 
⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)

• Add:
• FORWARD-CHAIN(KB, Use(friends, U64))
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)

• This premise unifies with (2) but one still lacks.
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)

• Add:
• FORWARD-CHAIN(Runs(U64, N64 games))
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)

• This new premise unifies with (2) and (3).
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)

• Premises (6), (7) and (8) satisfy the implications fully.
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)
Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)
Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)

• So we can infer the consequents, which are now added to the 
knowledge base (this is done in two separate steps).
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

People(friends) (5)

Software(U64) (6)

Use(friends, U64) (7)

Runs(U64, N64 games) (8)
Provide(Reality Man, friends, U64) (9)

Emulator(U64) (10)

• Addition of these new facts triggers further forward chaining.
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Forward Chaining

Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y)⇒ Criminal(x) (1)

Use(friends, x) ∧ Runs(x, N64 games) ⇒ Provide(Reality Man, friends, x) (2)

Software(x) ∧ Runs(x, N64 games) ⇒ Emulator(x) (3)

Programmer(Reality Man) (4)

People(friends) (5)

Software(U64) (6)

Use(friends, U64) (7)

Runs(U64, N64 games) (8)
Provide(Reality Man, friends, U64) (9)

Emulator(U64) (10)

Criminal(Reality Man) (11)

• Which results in the final conclusion: Criminal(Reality Man)
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Forward Chaining

• Forward Chaining acts like a breadth-first search at the 
top level, with depth-first sub-searches.

• Since the search space spans the entire KB, a large KB 
must be organized in an intelligent manner in order to 
enable efficient searches in reasonable time.
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Backward Chaining

• Current knowledge:
• hurts(x, head)

• What implications can lead to this fact?
• kicked(x, head)
• fell_on(x, head)
• brain_tumor(x)
• hangover(x)

• What facts do we need in order to prove these?



CS 460, Session 16-18 55

Backward Chaining

• The algorithm (available in detail in Fig. 9.2 on page 275 of the text):
• a knowledge base KB

• a desired conclusion c or question q

• finds all sentences that are answers to q in KB or proves c
• if q is directly provable by premises in KB, infer q and remember how 

q was inferred (building a list of answers).

• find all implications that have q as a consequent.

• for each of these implications, find out whether all of its premises are 
now in the KB, in which case infer the consequent and add it to the 
KB, remembering how it was inferred.  If necessary, attempt to prove 
the implication also via backward chaining

• premises that are conjuncts are processed one conjunct at a time
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

• Criminal(Reality Man)

• Possible answers:

• Steal(x, y) ⇒ Criminal(x)

• Kill(x, y) ⇒ Criminal(x)

• Grow(x, y) ∧ Illegal(y) ⇒ Criminal(x)

• HaveSillyName(x) ⇒ Criminal(x)

• Programmer(x) ∧ Emulator(y) ∧ People(z) ∧ Provide(x,z,y) 
⇒Criminal(x)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Criminal(x)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Criminal(x)

Steal(x,y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

FAIL

Criminal(x)

Steal(x,y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

FAIL

Criminal(x)

Kill(x,y)Steal(x,y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

FAIL FAIL

Criminal(x)

Kill(x,y)Steal(x,y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

FAIL FAIL

Criminal(x)

Kill(x,y)Steal(x,y) grows(x,y) Illegal(y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

FAIL FAIL FAIL FAIL

Criminal(x)

Kill(x,y)Steal(x,y) grows(x,y) Illegal(y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

FAIL FAIL FAIL FAIL

• Backward Chaining is a depth-first search: in any 
knowledge base of realistic size, many search paths will 
result in failure.

Criminal(x)

Kill(x,y)Steal(x,y) grows(x,y) Illegal(y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Criminal(x)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Yes, {x/Reality Man}

Criminal(x)

Programmer(x)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Criminal(x)

People(Z)Programmer(x)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Criminal(x)

People(Z)Programmer(x) Emulator(y)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE} yes, {}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)

Runs(UltraHLE, N64 games)



CS 460, Session 16-18 71

Backward Chaining

• Question:  Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE} yes, {}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)

Runs(UltraHLE, N64 games)

Provide
(reality man,

ultraHLE,
friends)
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Backward Chaining

• Question:  Has Reality Man done anything criminal?

Yes, {x/Reality Man} Yes, {z/friends}

Yes, {y/UltraHLE}

yes, {}

Criminal(x)

People(Z)Programmer(x) Emulator(y)

Software(ultraHLE)

Runs(UltraHLE, N64 games)

Provide
(reality man,

ultraHLE,
friends)

Use(friends, UltraHLE)
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Backward Chaining

• Backward Chaining benefits from the fact that it is 
directed toward proving one statement or answering 
one question.

• In a focused, specific knowledge base, this greatly 
decreases the amount of superfluous work that needs to 
be done in searches.

• However, in broad knowledge bases with extensive 
information and numerous implications, many search 
paths may be irrelevant to the desired conclusion.

• Unlike forward chaining, where all possible inferences 
are made, a strictly backward chaining system makes 
inferences only when called upon to answer a query.
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Completeness

• As explained earlier, Generalized Modus Ponens 
requires sentences to be in Horn form:
• atomic, or

• an implication with a conjunction of atomic sentences as 
the antecedent and an atom as the consequent.

• However, some sentences cannot be expressed in 
Horn form.
• e.g.: ∀x ¬ bored_of_this_lecture (x)

• Cannot be expressed in Horn form due to presence of 
negation.
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Completeness

• A significant problem since Modus Ponens 
cannot operate on such a sentence, and thus 
cannot use it in inference.

• Knowledge exists but cannot  be used.

• Thus inference using Modus Ponens  is 
incomplete.
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Completeness

• However, Kurt Gödel in 1930-31 developed the 
completeness theorem, which shows that it is 
possible to find complete inference rules.

• The theorem states:
• any sentence entailed by a set of sentences can be proven from 

that set.

=> Resolution Algorithm which is a complete 
inference method.
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Completeness

• The completeness theorem says that a sentence can be 
proved if it is entailed by another set of sentences.

• This is a big deal, since arbitrarily deeply nested 
functions combined with universal quantification make a 
potentially infinite search space.

• But entailment in first-order logic is only semi-
decidable, meaning that if a sentence is not entailed 
by another set of sentences, it cannot necessarily be 
proven.
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Completeness in FOL
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Historical note
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Kinship Example

KB:

(1) father (art, jon)
(2) father (bob, kim)
(3) father (X, Y) ⇒ parent (X, Y)

Goal:parent (art, jon)?



CS 460, Session 16-18 81

Refutation Proof/Graph

¬parent(art,jon)      ¬ father(X, Y) \/ parent(X, Y)
\ /

¬ father (art, jon)      father (art,  jon)
\ /                       

[]
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Resolution



CS 460, Session 16-18 83

Resolution inference rule
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Remember: normal forms

“sum of products of 
simple variables or
negated simple variables”

“product of sums of 
simple variables or
negated simple variables”
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Conjunctive normal form
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Skolemization
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Examples: Converting FOL sentences to clause form…

Convert the sentence 

1. (∀x)(P(x) => ((∀y)(P(y) => P(f(x,y))) ^ ¬(∀y)(Q(x,y) => P(y))))
(like A => B ^ C)

2. Eliminate => (∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ^ ¬(∀y)(¬Q(x,y) 
∨ P(y)))) 

3. Reduce scope of negation
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ^ (∃y)(Q(x,y) ^ ¬P(y)))) 

4. Standardize variables
(∀x)(¬P(x) ∨ ((∀y)(¬P(y) ∨ P(f(x,y))) ^ (∃z)(Q(x,z) ^ ¬P(z)))) 
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Examples: Converting FOL sentences to clause form…

5. Eliminate existential quantification
(∀x)(¬P(x) ∨((∀y)(¬P(y) ∨ P(f(x,y))) ^ (Q(x,g(x)) ^ 

¬P(g(x))))) 

6. Drop universal quantification symbols
(¬P(x) ∨ ((¬P(y) ∨ P(f(x,y))) ^ (Q(x,g(x)) ^ ¬P(g(x))))) 

7. Convert to conjunction of disjunctions
(¬P(x) ∨ ¬P(y) ∨ P(f(x,y))) ^ (¬P(x) ∨ Q(x,g(x))) 

^(¬P(x) ∨ ¬P(g(x))) 
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Examples: Converting FOL sentences to clause form…

8. Create separate clauses
¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 
¬P(x) ∨ Q(x,g(x)) 
¬P(x) ∨ ¬P(g(x)) 

9. Standardize variables
¬P(x) ∨ ¬P(y) ∨ P(f(x,y)) 
¬P(z) ∨ Q(z,g(z)) 
¬P(w) ∨ ¬P(g(w))
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Resolution proof
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Resolution proof
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Inference in First-Order Logic

• Canonical forms for resolution

Conjunctive Normal Form (CNF)     Implicative Normal Form (INF)

)()( wQwP ∨¬
)()( xRxP ∨
)()( ySyQ ∨¬
)()( zSzR ∨¬

)()( wQwP ⇒
)()( xRxPTrue ∨⇒

)()( ySyQ ⇒
)()( zSzR ⇒



CS 460, Session 16-18 93

Reference in First-Order Logic 

• Resolution Proofs
In a forward- or backward-chaining algorithm, just as Modus Ponens.

)()( wQwP ⇒ )()( ySyQ ⇒

)()( wSwP ⇒ )()( xRxPTrue ∨⇒

)()( xRxSTrue ∨⇒ )()( zSzR ⇒

)(ASTrue⇒

{y/w}

{w/x}

{x/A,z/A}
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Inference in First-Order Logic

• Refutation

)()( wQwP ⇒ )()( ySyQ ⇒

)()( wSwP ⇒ )()( xRxPTrue ∨⇒

)()( xRxSTrue ∨⇒ )()( zSzR ⇒

)(ASTrue⇒

{y/w}

{w/x}

{z/x}

FalseAS ⇒)(

FalseTrue ⇒

{x/A}

)()( PKBFalsePKB ⇒⇔⇒¬∧



CS 460, Session 16-18 95

Example of Refutation Proof
(in conjunctive normal form)

(1) Cats like fish
(2) Cats eat everything they like
(3) Josephine is a cat.
(4) Prove:  Josephine eats fish.

¬cat (x) ∨ likes (x,fish)
¬cat (y) ∨ ¬likes (y,z) ∨ eats (y,z)
cat (jo) 
eats (jo,fish)
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Backward Chaining
Negation of goal wff:  ¬ eats(jo, fish)

¬ eats(jo, fish)              ¬ cat(y) ∨ ¬likes(y, z) ∨ eats(y, z) 

θ = {y/jo, z/fish}

¬ cat(jo) ∨ ¬likes(jo, fish)              cat(jo) 

θ = ∅

¬ cat(x) ∨ likes(x, fish)                   ¬ likes(jo, fish) 

θ = {x/jo}

¬ cat(jo)                        cat(jo)

⊥ (contradiction)
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Forward chaining

cat (jo)            ¬cat (X) ∨ likes (X,fish)
\ /

likes (jo,fish)          ¬cat (Y) ∨ ¬likes (Y,Z) ∨ eats (Y,Z)
\ /     

¬cat (jo) ∨ eats (jo,fish)        cat (jo) 
\ /

eats (jo,fish)       ¬ eats (jo,fish)
\ /                    

[]  
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Question:

• When would you use forward chaining? What 
about backward chaining?

• A: 
• FC: If expert needs to gather information before any 

inferencing
• BC: If expert has a hypothetical solution


