Logical reasoning systems

- Theorem provers and logic programming languages
- Production systems
- Frame systems and semantic networks
- Description logic systems
Logical reasoning systems

- **Theorem provers and logic programming languages** – Provers: use resolution to prove sentences in full FOL. Languages: use backward chaining on restricted set of FOL constructs.
- **Production systems** – based on implications, with consequents interpreted as action (e.g., insertion & deletion in KB). Based on forward chaining + conflict resolution if several possible actions.
- **Frame systems and semantic networks** – objects as nodes in a graph, nodes organized as taxonomy, links represent binary relations.
- **Description logic systems** – evolved from semantic nets. Reason with object classes & relations among them.
Basic tasks

• Add a new fact to KB – TELL

• Given KB and new fact, derive facts implied by conjunction of KB and new fact. In forward chaining: part of TELL

• Decide if query entailed by KB – ASK

• Decide if query explicitly stored in KB – restricted ASK

• Remove sentence from KB: distinguish between correcting false sentence, forgetting useless sentence, or updating KB re. change in the world.
Indexing, retrieval & unification

- **Implementing sentences & terms:** define syntax and map sentences onto machine representation.

 Compound: has operator & arguments.

 e.g., \(c = P(x) \land Q(x) \)
 \(\text{Op}[c] = \land; \text{Args}[c] = [P(x), Q(x)] \)

- **FETCH:** find sentences in KB that have same structure as query.
 ASK makes multiple calls to FETCH.

- **STORE:** add each conjunct of sentence to KB. Used by TELL.

 e.g., implement KB as list of conjuncts

 TELL(KB, A \land \neg B) \rightarrow \neg C \land D)
 then KB contains: \([A, \neg B, \neg C, D]\)
Complexity

• With previous approach,

 FETCH takes $O(n)$ time on n-element KB

 STORE takes $O(n)$ time on n-element KB (if check for duplicates)

Faster solution?
Table-based indexing

- What are you indexing on? Predicates (relations/ functions).
 Example:

<table>
<thead>
<tr>
<th>Key</th>
<th>Positive</th>
<th>Negative</th>
<th>Conclusion</th>
<th>Premise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td>Mother(ann,sam)</td>
<td>-Mother(ann,al)</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td></td>
<td>Mother(grace,joe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>dog(rover)</td>
<td>-dog(alice)</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td></td>
<td>dog(fido)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table-based indexing

- Use hash table to avoid looping over entire KB for each TELL or FETCH

 e.g., if only allowed literals are single letters, use a 26-element array to store their values.

- More generally:
 - convert to Horn form
 - index table by predicate symbol
 - for each symbol, store:
 - list of positive literals
 - list of negative literals
 - list of sentences in which predicate is in conclusion
 - list of sentences in which predicate is in premise
Tree-based indexing

- Hash table impractical if many clauses for a given predicate symbol

- Tree-based indexing (or more generally combined indexing): compute indexing key from predicate and argument symbols
Tree-based indexing

Example:

Person(age, height, weight, income)
Person(30, 72, 210, 45000)
Fetch(Person(age, 72, 210, income))
Fetch(Person(age, height>72, weight<210, income))
Unification algorithm: Example

Understands(mary,x) implies Loves(mary,x)
Understands(mary,pete) allows the system to substitute pete for x and make the implication that IF
Understands(mary,pete) THEN Loves(mary,pete)
Unification algorithm

• Using clever indexing, can reduce number of calls to unification

• Still, unification called very often (at basis of modus ponens) => need efficient implementation.

• See AIMA p. 303 for example of algorithm with $O(n^2)$ complexity
 (n being size of expressions being unified).
Logic programming

Remember: knowledge engineering vs. programming...

Sound bite: computation as inference on logical KBs

<table>
<thead>
<tr>
<th>Logic programming</th>
<th>Ordinary programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify problem</td>
<td>Identify problem</td>
</tr>
<tr>
<td>2. Assemble information</td>
<td>Assemble information</td>
</tr>
<tr>
<td>3. Tea break</td>
<td>Figure out solution</td>
</tr>
<tr>
<td>4. Encode information in KB</td>
<td>Program solution</td>
</tr>
<tr>
<td>5. Encode problem instance as facts</td>
<td>Encode problem instance as data</td>
</tr>
<tr>
<td>6. Ask queries</td>
<td>Apply program to data</td>
</tr>
<tr>
<td>7. Find false facts</td>
<td>Debug procedural errors</td>
</tr>
</tbody>
</table>

Should be easier to debug $Capital(New_York, \text{US})$ than $x := x + 2$!
Logic programming systems

e.g., Prolog:

- Program = sequence of sentences (implicitly conjoined)
- All variables implicitly universally quantified
- Variables in different sentences considered distinct
- Horn clause sentences only (= atomic sentences or sentences with no negated antecedent and atomic consequent)
- Terms = constant symbols, variables or functional terms
- Queries = conjunctions, disjunctions, variables, functional terms
- Instead of negated antecedents, use negation as failure operator: goal NOT P considered proved if system fails to prove P
- Syntactically distinct objects refer to distinct objects
- Many built-in predicates (arithmetic, I/O, etc)
Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques \Rightarrow 10 million LIPS

Program = set of clauses = head :- literal$_1$, ... literal$_n$.
Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)
 e.g., not PhD(X) succeeds if PhD(X) fails
Basic syntax of facts, rules and queries

<fact> ::= <term> .

<rule> ::= <term> :- <term> .

<query> ::= <term> .

<term> ::= <number> | <atom> | <variable>
 | <atom> (<terms>)

<terms> ::= <term> | <term>, <terms>
A PROLOG Program

• A PROLOG program is a set of facts and rules.
• A simple program with just facts:

 parent(alice, jim).
 parent(jim, tim).
 parent(jim, dave).
 parent(jim, sharon).
 parent(tim, james).
 parent(tim, thomas).
A PROLOG Program

- c.f. a table in a relational database.

- Each line is a **fact** (a.k.a. a tuple or a row).

- Each line states that some person X is a parent of some (other) person Y.

- In GNU PROLOG the program is kept in an ASCII file.
• Now we can ask PROLOG questions:
 | ?- parent(alice, jim).
 yes
 | ?- parent(jim, herbert).
 no
 | ?-
A PROLOG Query

- Not very exciting. But what about this:

 \[
 \text{| ?- parent(alice, Who).} \\
 \text{Who = jim} \\
 \text{yes} \\
 \text{| ?-}
 \]

- \text{Who} is called a \textit{logical variable}.

- PROLOG will set a logical variable to any value which makes the query succeed.
• Sometimes there is more than one correct answer to a query.

• PROLOG gives the answers one at a time. To get the next answer type ;.

| ?- parent(jim, Who).
Who = tim ;
Who = dave ;
Who = sharon ;
yes
| ?-

NB: The ; do not actually appear on the screen.
| ?- parent(jim, Who).
Who = tim ? ;
Who = dave ? ;
Who = sharon ? ;
yes
| ?-

- After finding that jim was a parent of sharon GNU PROLOG detects that there are no more alternatives for parent and ends the search.

NB: The ; do not actually appear on the screen.
Prolog example

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S);dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
A=[1,2] B=[]
Append

• `append([], L, L)`
• `append([H| L1], L2, [H| L3]) :- append(L1, L2, L3)`

• Example join `[a, b, c]` with `[d, e]`.
 • `[a, b, c]` has the recursive structure `[a| [b, c]]`.
 • Then the rule says:
 • IF `[b,c]` appends with `[d, e]` to form `[b, c, d, e]` THEN `[a|[b, c]]` appends with `[d,e]` to form `[a|[b, c, d, e]]`
 • i.e. `[a, b, c]` `[a, b, c, d, e]`
Expanding Prolog

- **Parallelization:**
 - OR-parallelism: goal may unify with many different literals and implications in KB
 - AND-parallelism: solve each conjunct in body of an implication in parallel

- **Compilation:** generate built-in theorem prover for different predicates in KB

- **Optimization:** for example through re-ordering

 e.g., “what is the income of the spouse of the president?”

 \[
 \text{Income}(s, i) \land \text{Married}(s, p) \land \text{Occupation}(p, \text{President})
 \]

 faster if re-ordered as:

 \[
 \text{Occupation}(p, \text{President}) \land \text{Married}(s, p) \land \text{Income}(s, i)
 \]
Theorem provers

- Differ from logic programming languages in that:
 - accept full FOL
 - results independent of form in which KB entered
OTTER

- Organized Techniques for Theorem Proving and Effective Research (McCune, 1992)

- **Set of support (sos):** set of clauses defining facts about problem
- Each resolution step: resolves member of sos against other axiom
- **Usable axioms** (outside sos): provide background knowledge about domain
- **Rewrites** (or demodulators): define canonical forms into which terms can be simplified. E.g., \(x+0=x \)
- **Control strategy:** defined by set of parameters and clauses. E.g., heuristic function to control search, filtering function to eliminate uninteresting subgoals.
OTTER

- Operation: resolve elements of sos against usable axioms

- Use best-first search: heuristic function measures “weight” of each clause (lighter weight preferred; thus in general weight correlated with size/difficulty)

- At each step: move lightest close in sos to usable list, and add to usable list consequences of resolving that close against usable list

- Halt: when refutation found or sos empty
Otter: An Automated Deduction System

Contents
1. Description
2. Computational Environment
3. Availability/Version 3.2
4. Documentation
5. Example Inputs
6. Recent Accomplishments
7. Performance on the TPTP Problems
8. Bugs and Fixes
9. Otter-users Mailing List

Related Pages
- Try Otter right now with Son of BirdBrain
- A sample Otter proof
- New Results obtained with Otter and related programs
- MACE, a program that searches for small models
- EQP, a prover for equational logic with associative unification
- Automated Reasoning at Argonne

External Work
- Johan Belinfante's Set Theory Work with Otter
- Some other theorem provers
- Otter mode for Eimacs (from Holger Schaufer)
- GOAL, by Guoping Huang and Dale Myers
- A student project on Otter by Jackson Pauls

Description
Our current automated deduction system Otter is designed to prove theorems stated in first-order logic with equality. Otter's inference rules are based on resolution and paramodulation, and it includes facilities for term rewriting, term orderings, Knuth-Bendix completion, weighting, and strategies for directing
Example: Robbins Algebras Are Boolean

• The Robbins problem---are all Robbins algebras Boolean?---has been solved: Every Robbins algebra is Boolean. This theorem was proved automatically by EQP, a theorem proving program developed at Argonne National Laboratory.
Example: Robbins Algebras Are Boolean

Historical Background

• In 1933, E. V. Huntington presented [1,2] the following basis for Boolean algebra:
 • \(x + y = y + x \). [commutativity]
 • \((x + y) + z = x + (y + z) \). [associativity]
 • \(n(n(x) + y) + n(n(x) + n(y)) = x \). [Huntington equation]

• Shortly thereafter, Herbert Robbins conjectured that the Huntington equation can be replaced with a simpler one [5]:
 • \(n(n(x + y) + n(x + n(y))) = x \). [Robbins equation]
 • Robbins and Huntington could not find a proof, and the problem was later studied by Tarski and his students.
Example: Winker Conditions (1979)

- all x, $n(n(x)) = x$
- $\exists 0$ all x, $x + 0 = x$
- all x, $x + x = x$
- 1^{st}: $\exists C \exists D$, $C + D = C$
- 2^{nd}: $\exists C \exists D$, $n(C + D) = n(C)$
Example: Otter: October 10, 1996

- \(n(n(n(y)+x)+n(x+y)) = x. \) [Robbins equation]
- \(n(x+y) \neq n(x). \) [denial of 2nd Winker condition]
The Robbins problem---are all Robbins algebras Boolean?---has been solved: Every Robbins algebra is Boolean. This theorem was proved automatically by EQP, a theorem proving program developed at Argonne National Laboratory.

Historical Background

In 1933, E. V. Huntington presented [1,2] the following basis for Boolean algebra:

\[
\begin{align*}
 x + y &= y + x. & \text{[commutativity]} \\
 (x + y) + z &= x + (y + z). & \text{[associativity]} \\
 n(n(x) + y) + n(n(x) + n(y)) &= x. & \text{[Huntington equation]}
\end{align*}
\]

Shortly thereafter, Herbert Robbins conjectured that the Huntington equation can be replaced with a simpler one [5]:

\[
 n(n(x + y) + n(x + n(y))) = x. \quad \text{[Robbins equation]}
\]

Robbins and Huntington could not find a proof, and the problem was later studied by Tarski and his students [6].
Given to
the system

--- end of proof ---
Forward-chaining production systems

• Prolog & other programming languages: rely on backward-chaining
 (i.e., given a query, find substitutions that satisfy it)

• Forward-chaining systems: infer everything that can be inferred from KB each time new sentence is TELL’ed

• Appropriate for agent design: as new percepts come in, forward-chaining returns best action
Implementation

• One possible approach: use a theorem prover, using resolution to forward-chain over KB

• More restricted systems can be more efficient.

• Typical components:
 - KB called “working memory” (positive literals, no variables)
 - rule memory (set of inference rules in form
 \[p_1 \land p_2 \land \ldots \Rightarrow act_1 \land act_2 \land \ldots \]
 - at each cycle: find rules whose premises satisfied by working memory (match phase)
 - decide which should be executed (conflict resolution phase)
 - execute actions of chosen rule (act phase)
Match phase

- Unification can do it, but inefficient

- Rete algorithm (used in OPS-5 system): example

 rule memory:

 $A(x) \land B(x) \land C(y) \Rightarrow \text{add } D(x)$
 $A(x) \land B(y) \land D(x) \Rightarrow \text{add } E(x)$
 $A(x) \land B(x) \land E(x) \Rightarrow \text{delete } A(x)$

 working memory:

 $\{A(1), A(2), B(2), B(3), B(4), C(5)\}$

- Build Rete network from rule memory, then pass working memory through it
Rete network

Circular nodes: fetches to WM; rectangular nodes: unifications

- A(x) \land B(x) \land C(y) \Rightarrow add D(x)
- A(x) \land B(y) \land D(x) \Rightarrow add E(x)
- A(x) \land B(x) \land E(x) \Rightarrow delete A(x)

\{A(1), A(2), B(2), B(3), B(4), C(5)}
Rete match

\[A(x) \land B(x) \land C(y) \Rightarrow \text{add } D(x) \]
\[A(x) \land B(y) \land D(x) \Rightarrow \text{add } E(x) \]
\[A(x) \land B(x) \land E(x) \Rightarrow \text{delete } A(x) \]

\(\{ A(1), A(2), B(2), B(3), B(4), C(5), D(2), E(2) \} \)
Advantages of Rete networks

• Share common parts of rules

• Eliminate duplication over time (since for most production systems only a few rules change at each time step)
Conflict resolution phase

• one strategy: execute all actions for all satisfied rules

• or, treat them as suggestions and use conflict resolution to pick one action.

• Strategies:
 - no duplication (do not execute twice same rule on same args)
 - regency (prefer rules involving recently created WM elements)
 - specificity (prefer more specific rules)
 - operation priority (rank actions by priority and pick highest)
Frame systems & semantic networks

- Other notation for logic; equivalent to sentence notation

- Focus on categories and relations between them (remember ontologies)

\[\text{Subset} \]

- e.g., Cats \(\rightarrow \) Mammals
Syntax and Semantics

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \subset B)</td>
<td>(A \in B)</td>
</tr>
<tr>
<td>(R(A,B))</td>
<td></td>
</tr>
<tr>
<td>(\forall x \ x \in A \Rightarrow R(x,y))</td>
<td></td>
</tr>
<tr>
<td>(\forall x \ \exists y \ x \in A \Rightarrow y \in B \wedge R(x,y))</td>
<td></td>
</tr>
</tbody>
</table>
Semantic Network Representation

Animal

- Is a: Bird
- has: Skin
 - can: Move
 - can: Breath

Bird

- Is a: Canary
 - can: Sing
 - is: Yellow

- Is a: Ostrich
 - cannot: Fly
 - is: Tall

- Is a: Fish
 - has: Wings
 - has: Feathers
Semantic network link types

<table>
<thead>
<tr>
<th>Link type</th>
<th>Semantics</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset</td>
<td>$A \subset B$</td>
<td>Cats \rightarrow Mammals</td>
</tr>
<tr>
<td>Member</td>
<td>$A \in B$</td>
<td>Bill \rightarrow Cats</td>
</tr>
<tr>
<td>R</td>
<td>$R(A, B)$</td>
<td>Bill \rightarrow 12</td>
</tr>
<tr>
<td>$\forall x \in A \Rightarrow R(x, B)$</td>
<td>Birds \rightarrow 2</td>
<td></td>
</tr>
<tr>
<td>$\forall x \exists y x \in A \Rightarrow y \in B \land R(x, y)$</td>
<td>Birds \rightarrow Birds</td>
<td></td>
</tr>
</tbody>
</table>
Description logics

- FOL: focus on objects

- Description logics: focus on categories and their definitions

- Principal inference tasks:
 - subsumption: is one category subset of another?
 - classification: object belonging to category?
CLASSIC

- `And(concept, ...)`
- `All(RoleName, Concept)`
- `AtLeast(Integer, RoleName)`
- `AtMost(Integer, RoleName)`
- `Fills(RoleName, IndividualName, ...)`
- `SameAs(Path, Path)`
- `OneOf(IndividualName, ...)`

e.g., Bachelor = `And(Unmarried, Adult, Male)`