Final Exam

e Thursday, December 11, 4:30pm-6:30pm
e room: pending...

e No books, no questions, work alone, everything seen in class.
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Artificial Neural Networks and Al

Artificial Neural Networks provide...

- A new computing paradigm

- A technique for developing trainable classifiers, memories,
dimension-reducing mappings, etc

- A tool to study brain function
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Converging Frameworks

e Artificial intelligence (Al): build a
“packet of intelligence” into a machine

e Cognitive psychology: explain human behavior by interacting
processes (schemas) “in the head” but not localized in the brain

. interactions of components of the brain -

e and abstracting from them as both Artificial intelligence and
Cognitive psychology:

- connectionism: networks of trainable “quasi-neurons” to provide “parallel
distributed models” little constrained by neurophysiology

- abstract (computer program or control system) information processing
models
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Vision, Al and ANNS

S

\C%/

McCullogh & Pitts, 1942
input neuron output Zi WiXi 2 6

Perceptron learning rule (Rosenblatt, 1962)
Backpropagation

Hopfield networks (1982)

Kohonen self-organizing maps
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Vision, Al and ANNS

Aim: give to machines same or better vision capability as ours
Drive: Al, robotics applications and factory automation

Initially: passive, feedforward, layered and hierarchical process
that was just going to provide input to higher reasoning
processes (from Al)

But soon: realized that could not handle real images

make the system more robust by allowing the

vision to adapt with the ongoing recognition/interpretation
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Brodmann’s cytoarchitectural
map ol Cortical Areas

Lateral View




Major Functional Areas

 Primary motor: voluntary movement
« Primary somatosensory: tactile, pain, pressure, position, temp., mvt.
 Motor association: coordination of complex movements

 Prefrontal: planning, emotion, judgement

« Speech center (Broca’'s area): speech production and articulation
e Wernicke's area: comprehen-

. sion of speech
 Auditory: hearing

e Auditory association: complex
. auditory processing
 Visual: low-level vision
 Visual association: higher-level
. vision
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Interconnect
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Remember?
Neurons & synapses

Key terms:

Axon

Dendrites
Synapses

Soma (cell body)




Electron Micrograph of a Real Neuron

— _? -.

_"ﬁ_ R Cell body (B8
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Remember? Transmenbrane lonic Transport

L |

e
e

e [on channels act as gates that allow or block the flow of specific
lons into and out of the cell.

| OUTSIDE | e Y OUTSIDE
' OF CELL R gar—"—] OF CELL




Approaches to neural modeling

e Biologically-realistic, detailed models
e E.g., cable equation, multi-compartment models
e The Hodgkin-Huxley model
e Simulators like NEURON (Yale) or GENESIS (Caltech)

e More abstract models, still keeping realism in mind

 E.g., Integrate & fire model, simple and low detalil but preserves
spiking behavior

e Highly abstract models, neurons as operators
e E.g., McCulloch & Pitts model
e Classical “neural nets” modeling
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The Cable Equation

e See
http.//diwww.epfl.ch/~gerstner/SPNM/SPNM.html|
for excellent additional material (some reproduced here).

e Just a piece of passive dendrite can yield complicated differential
equations which have been extensively studied by electronicians in
the context of the study of coaxial cables (TV antenna cable):

1. r.w"
3 TR S
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The Hodgkin-Huxley Model

Example spike trains obtained...
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Detailed Neural Modeling

A simulator, called “Neuron” has been developed at Yale to simulate

the Hodgkin-Huxley equations, as well as other

membranes/channels/etc. See http://www.neuron.yale.edu/
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The "basic" biological neuron

4

Dendrites Soma Axon with branches and
synaptic terminals
e The soma and dendrites act as the input surface; the axon carries the
outputs.

e The tips of the branches of the axon form synapses upon other neurons or
upon effectors (though synapses may occur along the branches of an axon
as well as the ends). The arrows indicate the direction of "typical"
information flow from inputs to outputs.
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Warren McCulloch and Walter Pitts (1943)

A McCulloch-Pitts neuron operates on a discrete
time-scale, t = 0,1,2,3, ... with time tick equal to
one refractory period

X4(t)

X (1)

axon

P y(t+1)

X ()

At each time step, an input or output is
on or off — 1 or 0O, respectively.

Each connection or synapse from the output of one neuron to the
iInput of another, has an attached weight.
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Excitatory and Inhibitory Synapses

e We call a synapse
excitatory if w, > 0, and

inhibitory if w; < O.

e \We also associate a threshold 0 with each neuron

e A neuron fires (i.e., has value 1 on its output line) at time t+1 if the
weighted sum of inputs at t reaches or passes 0:

y(t+1) =1 ifandonlyif X wx(t) >0
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From Logical Neurons to Finite Automata

1 Brains, Machines, and
AND Mathematics, 2nd Edition,
1987
1 l ¢ ¢ Boolean Net
1
X—> Y
OR ¢ ¢
1
NOT Xy { |
Finite
1 7 Automaton

Y Q
CS 460, S¥Bsions 24-25
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Increasing the Realism of Neuron Models

e The McCulloch-Pitts neuron of 1943 is important

as a basis for
. logical analysis of the neurally computable, and

. current design of some neural devices (especially when
augmented by learning rules to adjust synaptic weights).

e However, it is no longer considered a useful model for making
contact with neurophysiological data concerning real neurons.
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Leaky Integrator Neuron

e The simplest "realistic" neuron model is a
continuous time model based on using the firing rate (e.g., the
number of spikes traversing the axon in the most recent 20 msec.)
as a continuously varying measure of the cell's activity

e The state of the neuron is described by a single variable, the
membrane potential.

e The firing rate is approximated by a sigmoid, function of membrane
potential.

M(t) = o (m(t))
4

sigmoid curve o

1

. ——p m(t)
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Leaky Integrator Model

© m@®) = -m(@) +h

has solution m(t) = eY*m(0) + (1 -e¥)h
— h for time constant T > 0.
e We now add synaptic inputs to get the
Leaky Integrator Model:
T r;1(t) = -m(t) + 2w, X(t) + h

where X(t) is the firing rate at the it input.
e Excitatory input (w; > 0) will increase r;] t
e Inhibitory input (w; < 0) will have the opposite effect.

e X(t) = g(m(t)) with g() a sigmoid relates output to membrane
potential
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Hopfield Networks

A paper by John Hopfield in 1982 was the catalyst
In attracting the attention of many physicists to
"Neural Networks".

e |n a network of McCulloch-Pitts neurons
whose output is 1 iff 2wij sj > 6, and is otherwise O,

neurons are updated synchronously: every neuron processes its
inputs at each time step to determine a new output.

CS 460, Sessions 24-25
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Hopfield Networks

e A Hopfield net (Hopfield 1982) is a net of such units
subject to the asynchronous rule for updating one
neuron at a time:

"Pick a unit 1 at random.

If 2wij sj > 6,, turn it on.
Otherwise turn it off."

e Moreover, Hopfield assumes symmetric weights:
Wij = Wiji

CS 460, Sessions 24-25
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“Energy” of a Neural Network

Hopfield defined the “energy”:
E=-%22;s5wW; + ;S0

If we pick unit i and the firing rule (previous slide) does not
change its s;, it will not change E.

CS 460, Sessions 24-25
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si: 0to 1 transition

 If sinitially equals 0, and 2 w;s; = 6,

then s; goes from 0 to 1 with all other s; constant,
and the "energy gap", or change in E, Is given by

AE = -%2 % (W,
- (2 w;s
< 0.

S; + wjs;) + 6,

ij°]
iSj - 6i) (by symmetry)

CS 460, Sessions 24-25
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si: 1 to O transition

 If s;initially equals 1, and 2 w;s; < 6,
then s; goes from 1 to 0 with all other s; constant

The "energy gap,” or change in E, is given, for symmetric wy,
by:

CS 460, Sessions 24-25
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Minimizing Energy

On every updating we have AE <0

Hence the dynamics of the net tends to move E toward a minimum.

We stress that there may be different such states — they are /oca/ minima.
Global minimization is not guaranteed.

Basin of
-~} s

Attraction for C

C
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Assoclative Memories

e http://www.shef.ac.uk/psychology/gurney/notes " "™ =*~

e |dea: store: sese Original ‘T’

- half of image
corrupted by

-a ed Bews noise
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Associative memory with Hopfield nets

Setup a Hopfield net such that local minima correspond

to the stored patterns.

Issues:

- because of weight symmetry, anti-patterns (binary reverse) are stored as
well as the original patterns (also spurious local minima are created when
many patterns are stored)

- if one tries to store more than about
patterns, the network exhibits unstable behavior

- works well only if patterns are uncorrelated

b
™ ﬁg =4

iX1,%- X3 X4 ..} are the ‘memories’
stored



Self-Organizing Feature Maps

e The neural sheet is Input

. . . fibres
represented in a discretized e
form by a (usually) 2-D C =
lattice A of formal neurons. R

Neuron layer

e The input pattern is a vector x from some pattern space V. Input
vectors are normalized to unit length.

e The responsiveness of a neuron at a site r in A is measured by
X.Wr = Zi X wri
where wr is the vector of the neuron's synaptic efficacies.

e The "Image" of an external event is regarded as the unit with the
maximal response to it
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Self-Organizing Feature Maps

. plot the weights (wr) as vertices
and draw links between neurons that are nearest neighbors in A.

Typical graphical representation

34
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Self-Organizing Feature Maps

e These maps are typically useful to achieve some dimensionality-
reducing mapping between inputs and outputs.
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Applications: Classification

Business :
«Credit rating and risk assessment Secu r|ty
eInsurance risk evaluation eFace recognition
eFraud detection eSpeaker verification
eInsider dealing detection eFingerprint analysis

eMarketing analysis
eMailshot profiling
eSignature verification
eInventory control

Medicine

] . eGeneral diagnosis
Engineering -Detection of heart defects

eMachinery defect diagnosis

eSignal processing

eCharacter recognition

eProcess supervision :

*Process fault analysis Science

eSpeech recognition eRecognising genes

eMachine vision eBotanical classification

eSpeech recognition eBacteria identification

eRadar signal classification .
Lo 400, Sessions 36



Applications: Modelling

Business

ePrediction of share and
commodity prices

ePrediction of economic indicators
eInsider dealing detection
eMarketing analysis

eMailshot profiling

eSignature verification

_ _ Science
Engineering =Prediction of the performance of
eTransducer linerisation drugs from the molecular structure
«Colour discrimination Weather prediction
<Robot control and Sunspot prediction
navigation
eProcess control ..
<Aircraft landing control Medicine
-Car active suspension ». Medical imaging
control and image processing
ePrinted Circuit auto
routing

eIntegrated circuit layout

) S 460, Sessions 24-25
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Applications: Forecasting

eFuture sales

eProduction Requirements
eMarket Performance
eEconomic Indicators
eEnergy Requirements
Time Based Variables

CS 460, Sessions 24-25
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Applications: Novelty Detection

eFault Monitoring
ePerformance Monitoring
eFraud Detection
eDetecting Rate Features
eDifferent Cases

CS 460, Sessions 24-25
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Multi-layer Perceptron Classifier

Level Output Classes

Input Pattern feature Values

CS 460, Sessions 24-25

Output Layer

Hidden Loyer

Ingut Loyer
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Start with random weights

Multi-layer Perceptron
Classifier

. Apply training pattern

Compute output error

Compute adjustments to weights

Training
dataset

exhausted
?

NO

Evaluate average
systemn error

http://ams.egeo.sai.jrc.it/eurost
at/Lot16-
SUPCOM95/node7.html

NO Error YES

scceptable (EnD )
?
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Classifiers

e http://www.electronicsletters.com/papers/2001/0020/paper.asp

—» decision

X, —»
e 1-stage approach mnpu classifier [ decision
X, —»
e 2-stage
approach
L Y1
' X; — feature —>
input : . : | classifier
- | eXtraction ,
% — Va




Example: face recognition

Here using the 2-stage approach:

SEX  IDENTITY

FACE

CLASSIFICATION MLP

FEATURE EXTRACTION MLP

CS 460, Sessions 24-25
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Training

http://www.neci.nec.

com/homepages/law

rence/papers/face-
tro6/latex.html




Learming Rate

[
045
04
0.35
03
0.5
0z
0.5
0.l
0.05

Learning rate

Layer L —
Layer 2 —

50

LOO

L50 200 50
Epoch
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Testing / Evaluation

Test Evvor Yo

Look at performance as a function of network complexity

LD

P

LD 20
Mumber of classes
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Test Evvor %o

Testing / Evaluation

e Comparison with other known techniques

40
I EIgEﬂ'I'FHJ:-tE - Iﬂl‘:mgq: Fq:L- gllln R —
igenfaces - one per image --—+--—
0 B . _ CA+CHN === _
N ' | SOM+CN —a—
R +
20 F e H_-“.-“-'""“-r:-. . .
TR I
e .
0 b CET TR T, |
TreEa_ *
"I_\_\_\__\_\_‘—l..E
D ; | | 1 \

MNumber of Traumng lmages Fer Fewson

CS 460, Sessions 24-25 47



Capabilities and Limitations of Layered Networks

Issues:

what can given networks do?

What can they learn to do?

How many layers required for given task?
How many units per layer?

When will a network generalize?

What do we mean by generalize?

CS 460, Sessions 24-25
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Capabilities and Limitations of Layered Networks

e \What about boolean functions?

e Single-layer perceptrons are very limited:
- XOR problem
- etc.

e But what about multilayer perceptrons?

We can represent any boolean function with a network with just one
hidden layer.

How??

CS 460, Sessions 24-25
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Capabilities and Limitations of Layered Networks

To approximate a set of functions of the inputs by a layered network
with continuous-valued units and sigmoidal activation function...

Cybenko, 1988: ... are necessary, with
arbitrary accuracy attainable by adding more hidden units.

Cybenko, 1989: IS enough to approximate any
continuous function.

decompose function to be approximated into a sum
of localized “bumps.” The bumps can be constructed with two hidden
layers.

Similar in spirit to Fourier decomposition. Bumps = radial basis
functions.
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Optimal Network Architectures

How can we determine the number of hidden units?

- evaluate variations of the network, using a metric
that combines its performance and its complexity. Then apply various
mutations to the network (change number of hidden units) until the
best one is found.

- apply weight decay (remember reinforcement
learning) during training

- eliminate connections with weight below threshold
- re-train

- For example, eliminate units with total
synaptic input weight smaller than threshold.
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For further information

e See

Hertz, Krogh & Palmer: Introduction to the theory of neural
computation (Addison Wesley)

In particular, the end of chapters 2 and 6.
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