Genetic Algorithms
The Traditional Approach

• Ask an expert
• Adapt existing designs
• Trial and error
Nature’s Starting Point
Optimised Man!
Example: Pursuit and Evasion

• Using NNs and Genetic algorithm
• 0 learning
• 200 tries
• 999 tries
Comparisons

• Traditional
 • best guess
 • may lead to local, not global optimum

• Nature
 • population of guesses
 • more likely to find a better solution
More Comparisons

• Nature
 • not very efficient
 • at least a 20 year wait between generations
 • not all mating combinations possible

• Genetic algorithm
 • efficient and fast
 • optimization complete in a matter of minutes
 • mating combinations governed only by “fitness”
The Genetic Algorithm Approach

- Define limits of variable parameters
- Generate a random population of designs
- Assess “fitness” of designs
- Mate selection
- Crossover
- Mutation
- Reassess fitness of new population
A “Population”
Ranking by Fitness:
Mate Selection:
Fittest are copied and replaced less-fit
Mate Selection Roulette:
Increasing the likelihood but not guaranteeing the fittest reproduction
Crossover:
Exchanging information through some part of information (representation)
Mutation:
Random change of binary digits from 0 to 1 and vice versa (to avoid local minima)
Best Design
The GA Cycle
Genetic Algorithms

Adv:

• Good to find a region of solution including the optimal solution. But slow in giving the optimal solution
Genetic Approach

• When applied to strings of genes, the approaches are classified as genetic algorithms (GA)

• When applied to pieces of executable programs, the approaches are classified as genetic programming (GP)

• GP operates at a higher level of abstraction than GA
Example: Karl Sim’s creatures

- Creatures
- Sea Horse
- Snake
Typical “Chromosome”