Solution:

Question1

1. "Every graduate student is committed to academic honesty."

Ay (Graduate(y) -> CommitedTo(y, AcademicHonesty)), or
Ex AcademicHonesty(x) \& Ay (Graduate(y) -> CommitedTo(y, x))
Or assuming that small alphabet stands for variable:
Graduate(y) -> CommitedTo(y, AcademicHonesty)
Ex AcademicHonesty(x) \& (Graduate(y) -> CommitedTo(y, x))

2. "Only Bill can get his car started."

There is two different readings leading to two different answers:
First reading: "Bill is the only individual X such that X can get Bill's car started."
CanStart(Bill, $\operatorname{car}($ Bill $)) \&$ Ax (CanStart(x, $\operatorname{car(Bill))~}->x=$ Bill), or
$\operatorname{Ex}(\operatorname{Car}(\mathrm{x}) \& \operatorname{Owns}($ Bill, x$) \& \operatorname{CanStart}(\operatorname{Bill}, \mathrm{x}) \& \operatorname{Ay}(\operatorname{CanStart}(\mathrm{y}, \mathrm{x})->\mathrm{x}=\operatorname{Bill}))$
CanStart(Bill, $\operatorname{car}($ Bill $)) \&(\operatorname{CanStart}(x, \operatorname{car}($ Bill $))->x=$ Bill) , or
$\operatorname{Ex}(\operatorname{Car}(\mathrm{x}) \& \operatorname{Owns}(\operatorname{Bill}, \mathrm{x}) \& \operatorname{CanStart}(\operatorname{Bill}, \mathrm{x}) \&(\operatorname{CanStart}(\mathrm{y}, \mathrm{x})->\mathrm{x}=\operatorname{Bill}))$
The below sentence is also complete:
Ax (CanStart($\mathrm{x}, \operatorname{car}($ Bill $))->\mathrm{x}=$ Bill $)$
CanStart($\mathrm{x}, \operatorname{car}($ Bill $))->\mathrm{x}=$ Bill
Second reading: "Bill is the only individual X such that X can get X's car started."
CanStart(Bill, $\operatorname{car}(\operatorname{Bill})) \& A x(\operatorname{CanStart}(x, \operatorname{car}(x))->x=$ Bill $)$, or
$\operatorname{Ex}(\operatorname{Car}(\mathrm{x}) \& \operatorname{Owns}($ Bill, x$) \& \operatorname{CanStart}($ Bill, x$)) \& \operatorname{Ax}((\operatorname{Ey} \operatorname{Car}(\mathrm{y}) \& \operatorname{Owns}(\mathrm{x}, \mathrm{y})$ \& CanStart($\mathrm{x}, \mathrm{y}))->\mathrm{x}=$ Bill)

CanStart(Bill, $\operatorname{car}($ Bill $)) \&(\operatorname{CanStart}(x, \operatorname{car}(x))->x=$ Bill $)$, or
$\operatorname{Ex}(\operatorname{Car}(\mathrm{x}) \& \operatorname{Owns}(\operatorname{Bill}, \mathrm{x}) \& \operatorname{CanStart}($ Bill, x$)) \&((\operatorname{Ey} \operatorname{Car}(\mathrm{y}) \& \operatorname{Owns}(\mathrm{x}, \mathrm{y}) \&$ CanStart(x, y)) -> $\mathrm{x}=$ Bill)

Ax (CanStart($x, \operatorname{car}(\mathrm{x}))->\mathrm{x}=$ Bill $)$
CanStart($x, \operatorname{car}(x))->x=$ Bill
3. "Things near the earth fall to the ground unless something holds them up."

Ez Ax (Near(x, Earth) \& ~HoldsUp(z, x)=>FallsTo(x,Ground)) or
They can use Ey Earth(y) and Et Ground(t) and continue the same stuff.

Ax (Near(x, Earth) -> (FallsTo(x, Ground) |Ez HoldsUp(z, x)))
4. "Dinner is available only if booked in advance for at least two persons."

Ad Ap Party (p) \& Dinner(d) \& BookedFor(d, p) \& sizeOf(p)>=2 => AvailableFor(d, p)
5. "No man helps another without helping himself."

It means that if you help someone else, then you have helped yourself.
Ax Ey (Human(x) \& $\operatorname{Helps}(\mathrm{x}, \mathrm{y}))$-> $\operatorname{Helps}(\mathrm{x}, \mathrm{x})$
Ax Ey $\operatorname{Helps}(x, y)->\operatorname{Helps}(x, x)$
$\sim(E x E y(H u m a n(x) \& H e l p s(x, y))->\sim H e l p s(x, x))$
I hope everyone understand the same thing from this sentence.

Question 2

1) Ex Ay ~Brother(x, y)
~VxEy Brother (x, y)
2) Ax,y Sister(x, y)=>Female(y)
3) Ax,y,f,m (Mother(x,m) \&\& Father(x,f) \&\& Mother(y,m) \&\& Father(y,f)) => (Sister(x,y) || Brother(x,y))
4) Ax,y, (Cousin(x,y) $<=>$
(Ef1,m1,f2,m2 Father(x,f1) \&\& Mother(x,m1) \& \& Father(y,f2) \& \& Father $(\mathrm{y}, \mathrm{m} 2)$ \& \&
(Brother(fl,f2) || Brother(m1,f2) || Sister(m1,f2) || Sister(m1,m2))

Question 3

For this question there might be different orderings in using the sentences:
Step 1 convert to CNF

1. ᄀice_cteam $(x) \vee$ food (x)
2. $\neg f u d g e(x) \vee f \operatorname{cod}(x)$
3. $\neg f \operatorname{cod}(x) \vee \neg \operatorname{food}(y) \vee \neg \operatorname{cold}(x) \vee \neg \operatorname{combin} \in(x, y) \vee \operatorname{cold}(y)$

Note that we can convert the statement

$$
\exists x \exists y \text { ice_cream }(x) \wedge \operatorname{cold}(x) \wedge \text { fudge }(y) \wedge \operatorname{combine}(x, y)
$$

as follows: Start by replacing existential variables with Skolem constants MysteryIceCream for x, and Mystery Fudge for y.

```
    ice_cream(MysteryIceCream) ^cold(MysteryIceCream) \ fudge(Mystery Fudge)^
    combine(MysteryIceCream, Mystery Fudge)
```

Use AND elimination to break the above statement into four new ones:
4. ice_cteam(Mystety IceCteam)
5. cold(MysteryIceCream)
6. fudge(MysteryFudge)
7. combine(MysteryIceCream, MysteryFudge)

Negated Query: $\neg \exists x($ fudge $(x) \wedge \operatorname{cold}(x))$
8. \neg fudge $(x) \vee \neg \operatorname{cold}(x)$

Step 2 Resolution with refutation
Combine 8 and 6 with resolution using substitution $x /$ Mystery Fudge
9. \neg cold (MysteryFudge)

Combine 1 and 4 with resolution using substitution $x /$ MysteryIceCream.
10. food(MysteryIceCteam)

Combine 2 and 6 with resolution using substitution $x /$ Mystery Fudge
11. food(MysteryFudge)

Combine 11 and 3 with resolution using substitution $y /$ Mystery Fudge
12. \neg food $(x) \vee \neg \operatorname{cold}(x) \vee \neg$ combine $(x$, Mystery Fudge $) \vee \operatorname{cold}($ Mystery Fudge)

Combine 12 and 10 with resolution using substitution x/MysteryI IceCream
13. $\neg \operatorname{cold}($ MysteryIceCream $) \vee \neg$ combine (MysteryIceCteam. Mystery Fudge) Vcold(Mystery Fudge)

Combine 13 and 5 with resolution
14. ᄀcombine (MystetyIceCteam, MysteryFudge) \vee cold(MysteryFudge)

Combine 14 and 7 with resolution
15. cold(Mystery Fudge)

Combine 15 and 9 with resolution which results in a contradiction.
Therefore there exists cold fudge.

Question 4

a) $p \rightarrow q \Leftrightarrow \sim p \vee q \Leftrightarrow \sim(p \wedge \sim q)$
b) $p \wedge q \Leftrightarrow \sim(\sim p \vee \sim q)$
c) $p \leftrightarrow q \Leftrightarrow(p \rightarrow q) \wedge(q \rightarrow p) \Leftrightarrow \sim((p \rightarrow q) \rightarrow \sim(q \rightarrow p))$

