Last time: Summary

e Definition of AI?
e Turing Test?
e Intelligent Agents:

e Anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through its effectors to
maximize progress towards its goals.

o PAGE (Percepts, Actions, Goals, Environment)
e Described as a Perception (sequence) to Action Mapping: f: P* —» A

e Using look-up-table, closed form, etc.

e Agent Types: Reflex, state-based, goal-based, utility-based

o Rational Action: The action that maximizes the expected value of
the performance measure given the percept sequence to date

CS 561, Lectures 3-5 1

Outline: Problem solving and search

e Introduction to Problem Solving
o Complexity

e Uninformed search
e Problem formulation
e Search strategies: depth-first, breadth-first

 Informed search
e Search strategies: best-first, A*
e Heuristic functions

CS 561, Lectures 3-5

Example: Measuring problem!

Problem: Using these three buckets,
measure 7 liters of water.

CS 561, Lectures 3-5

Example: Measuring problem!

(one possible) Solution:

a b C

P00 start

CS 561, Lectures 3-5

Example: Measuring problem!

(one possible) Solution:

CS 561, Lectures 3-5

Example: Measuring problem!

(one possible) Solution:

CS 561, Lectures 3-5

Example: Measuring problem!

(one possible) Solution:

CS 561, Lectures 3-5

Example: Measuring problem!

e (one possible) Solution:

a b C

R0 start

O W o w
o O o o
O W wo

CS 561, Lectures 3-5 8

Example: Measuring problem!

e (one possible) Solution:

a b C

R0 start

W o wow
o O O O O
OOy W WO

CS 561, Lectures 3-5 9

Example: Measuring problem!

e (one possible) Solution:

a b C

R0 start

O WO Wwow
W o oo oo
O OO WW O

CS 561, Lectures 3-5 10

Example: Measuring problem!

(one possible) Solution:

a b C

R0 start

W o wowow
wWwwooo oo
OO O W WO

CS 561, Lectures 3-5

11

Example: Measuring problem!

(one possible) Solution:

a b C

R0 start

R WO WoOWwWwOoWw
U1 W W o oo o o
AOYOOO O W W O

CS 561, Lectures 3-5

12

Example: Measuring problem!

e (one possible) Solution:

a b C

R0 start

R WO WoOWwWwOoWw
U1 W W o oo o o
AOYOOO O W W O

Q
<)
=3

CS 561, Lectures 3-5 13

Example: Measuring problem!

Another Solution:

CS 561, Lectures 3-5

14

Example: Measuring problem!

Another Solution:

CS 561, Lectures 3-5

15

Example: Measuring problem!

Another Solution:

CS 561, Lectures 3-5

16

Example: Measuring problem!

Another Solution:

0
3
3
3

U1 O N U
N N O O

CS 561, Lectures 3-5

17

Example: Measuring problem!

e Another Solution:

a b C

w w w o

U1 O N U

N N O O
Q)
o
@]

goal

CS 561, Lectures 3-5 18

Which solution do we prefer?

e Solution 1: e Solution 2:

a b C a b C

00T stert | 0RO 0] star

w w w o

OO O W WO

o1 O N U
N N O O

goal

WO WO WOoOWw
o1 W W O O O O O

Q
<)
=3

CS 561, Lectures 3-5 19

Problem-Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty
state, some description of the current world state
¢, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, p) // What is the current state?

if 5 is empty then
¢+ FORMULATE-GOAL(state) // From LA to San Diego (given curr. state)
problem +— FORMULATE-PROBLEM(state, g) // e.g., Gas usage
$4— SEARCH(problem)

action +— RECOMMENDATION(8, state)

$4— REMAINDER(s, state) // If fails to reach goal, update

return action

Note: This is offline problem-solving. Online problem-solving involves
acting w/o complete knowledge of the problem and environment

Example: Buckets

Measure 7 liters of water using a 3-liter, a 5-liter, and a 9-
liter buckets.

e Formulate goal: Have 7 liters of water
in 9-liter bucket

e Formulate problem:
e States: amount of water in the buckets
e Operators: Fill bucket from source, empty bucket

e Find solution: sequence of operators that bring you

from current state to the goal state
21

Remember (lecture 2): Environment types

Environment Accessible | Deterministic | Episodic | Static Discrete
Operating Yes Yes No No Yes
System

Virtual Reality | Yes Yes Yes/No No Yes/No
Office No No No No No
Environment

Mars No Semi No Semi No

The environment types largely determine the agent design.

CS 561, Lectures 3-5

22

Problem types

Single-state problem: deterministic, accessible
Agent knows everything about world, thus can
calculate optimal action sequence to reach goal state.

Multiple-state problem: deterministic, inaccessible

Agent must reason about sequences of actions and
states assumed while working towards goal state.

Contingency problem: nondeterministic, inaccessible
o Must use sensors during execution
e Solution is a tree or policy
o Often interleave search and execution

Exploration problem: unknown state space

Discover and learn about environment while taking actions. -

Problem types

e Single-state problem: deterministic, accessible
e Agent knows everything about world (the exact state),

e Can calculate optimal action sequence to reach goal state.

e E.g., playing chess. Any action will result in an exact state

CS 561, Lectures 3-5 24

Problem types

e Multiple-state problem: deterministic, inaccessible

e Agent does not know the exact state (could be in any of
the possible states)
e May not have sensor at all

o Assume states while working towards goal state.

e E.g., walking in a dark room
e If you are at the door, going straight will lead you to the kitchen
o If you are at the kitchen, turning left leads you to the bedroom

. []
25

Problem types

o Contingency problem: nondeterministic, inaccessible

e Must use sensors during execution

e Solution is a tree or policy
e Often interleave search and execution

e E.g., a new skater in an arena

e Sliding problem.
e Many skaters around

CS 561, Lectures 3-5 26

Problem types

o Exploration problem: unknown state space

Discover and learn about environment while
taking actions.

e £.g., Maze

CS 561, Lectures 3-5

27

Example: Vacuum world

Simplified world: 2 locations, each may or not contain dirt,
each may or not contain vacuuming agent.
Goal of agent: clean up the dirt.

Single-state, start in #£5. Solution??

1 2

Multiple-state, start in {1,2,3,4,5,6,7,8} f;a 28 2R T:Q
e.g., Right goes to {2,4,6,8}. Solution??

g.. Right g { ;. Solution?? — 4 —

_] L L
Contingency, start in #5
Murphy's Law: Suck can dirty a clean car- 5 |=d] : =
2 L

pet
Local sensing: dirt, location only. 7 | =) 8 A
Solution??

Example: Romania

e In Romania, on vacation. Currently in Arad.
e Flight leaves tomorrow from Bucharest.

e Formulate goal:
> be in Bucharest

e Formulate problem:
» states: various cities
» operators: drive between cities

e Find solution:
» sequence of cities, such that total driving distance is
minimized.
CS 561, Lectures 3-5

29

Example: Traveling from Arad To Bucharest

Arad

Sibiu Fagaras

Timisoara

Lugoj

Mehadia

Hirsova
Urzicani

Eforie

Dobrela

Cralova Ij/
Giurgiu

Problem formulation

A problem. is defined by four items:

initial state e.g., “at Arad”

operators (or successor function S(x))
e.g., Arad — Zerind Arad — Sibiu etc.

qoal test, can be
erplicit, e.g., r = “at Bucharest”
implicit, e.g., NoDirt(x)

path _cost (additive)
e.g., sum of distances, number of operators executed, etc.

A solution is a sequence of operators
leading from the initial state to a goal state

Selecting a state space

Real world is absurdly complex; some abstraction is necessary to
allow us to reason on it...

Selecting the correct abstraction and resulting state space is a
difficult problem!

Abstract states & real-world states

Abstract operators & sequences or real-world actions
(e.g., going from city i to city j costs Lij < actually drive from city i to j)

Abstract solution < set of real actions to take in the
real world such as to solve problem

Example: 8-puzzle

5 4 1 2 3
6 (|| 1] 8 8 4
7 3 2 7 6 5
start state goal state

State:

Operators:

Goal test:

Path cost:

CS 561, Lectures 3-5

Example: 8-puzzle

5 4 1 2 3
6!l 1/l s 8 4
7 3 2 Fi 6 5
start state goal state
State: integer location of tiles (ignore intermediate locations)

Operators: moving blank left, right, up, down (ignore jamming)
Goal test: does state match goal state?
Path cost: 1 per move

CS 561, Lectures 3-5 34

Example: 8-puzzle

5 (|| 4 1] 2 ||| 3
6 (|| 1] 8 8 Z
710l 3 [l 2 718 ||l 5
start state goal state

Why search algorithms?
e 8-puzzle has 362,800 states
e 15-puzzle has 10”12 states
e 24-puzzle has 10725 states

So, we need a principled way to look for a solution in these
huge search spaces...

CS 561, Lectures 3-5 35

Back to Vacuum World

LQdﬂ =

states??
operators??
goal test??
path cost??

Back to Vacuum World

OQT SN

NSO
|
N
-

states??: integer dirt and robot locations (ignore dirt amounts)
operators??. Left, Right, Suck

goal test??: no dirt

path cost??:. 1 per operator

Example: Robotic Assembly

o "”‘%‘"
states??: real-valued coordinates of

robot joint angles
parts of the object to be assembled

operators??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute

CS 561, Lectures 3-5

38

Real-life example: VLSI Layout

VYV VYV VYV

Given schematic diagram comprising components (chips,
resistors, capacitors, etc) and interconnections (wires),
find optimal way to place components on a printed
circuit board, under the constraint that only a small
number of wire layers are available (and wires on a
given layer cannot cross!)

“optimal way"??

minimize surface area

minimize number of signal layers

minimize number of vias (connections from one layer to another)
minimize length of some signal lines (e.g., clock line)

distribute heat throughout board

etc. CS 561, Lectures 3-5 39

ire crossing

7/

do not worry about placement & w

Enter schematics

—

L' Mosign Cuploier - [D:3Pogram FiesiDesign Ceple e SHALsonplessL G0 Conteolies. Ddb)

Esplanes | Brwan zch | LD Contode i | SAERSE - Cordrobe i Touch i coren Diriver. sch
b Dasign Desbiop = : = T
=W fcsive Dmsign Stskons = Sany
- LCD Comiioder Ddb = =]
41 g Dreign Taam 2339990
‘¥ Recrle Bin - r T
2 () Lo Controbed | =
12 Library —I—|
o Procsssos 1120 | . B o
il LED: Cornle ERC : ” I | _— e
LD Conboller pch E = 2o
] LLCD Cortrodier. pri — =1E =x Cal
g HTSE Ensuda 5o E M “é_':"" s o
Touch S D gk e kb R ._.*_.
: £t

it Henzip soh
LD Prgszeo, ech
®

e Conr s -
RBG 08 5ch 1 .I'_l-
Dl Dipnewains ach

Saoreen At sch KTSC Eroodersch

Prosepr 5 gy ot : : : 1)

e Lighi | rveste zoin
A Estesalineriace soh
0l LCD ot FER

|

)

= {5] Wi Elscinonics Bow
W L) Eeckplaie Hoaid
1] Plotier Conbls

| 1l

= = T Py & Bk

C gt e R] = :'
a) g Dotign Taan o=

P "]

2] = &

v Fiecpriefin = B

- _| Cosblirng g

-1 = Elidiorsici = EE

———
|5

1 2] At Condnols: e
(] L Sy M oo e v E
1] Photohesd |
] Possr Supply '
* _| LIy B pasch f N =
#- 1] Enclosuns -
W] I Profect Manegersen it L=
I : I : = H
K =
Pt AT e et e b b e e e e P b P

Fratel's hierarchical schematic design features let you take a "bottom up” or "top down" approach,
depending on your preferred methodology. Protel can automatically generate sub-sheets I:uas4ec|):l on

- - =t

Frnmraro iyl
i LI ILECE R R SR

—JIH o] 1RO
= E - o Lo | /TRO
Fi T AT Iy @ |= 104 2 o=
g —— _ m.{ i cel frm I | XIRI
_ T‘E n:u"iflEr:- = N, s 7 BER c El' ol e _ SHIRE
mr:@]l:m * _ . Eéﬁu - = it oI E i Cdors RES
] I (DESET
I + -
: i Nr{l% ﬂ‘,{hz E
= e i e L [PLLE
= 1@ B PCLB.] l
N PLLE..
HLD. .15
105 -
o F 1@ il R
£-3 EPRan a s | B O e ErE STl Fomoes
AAR =- H = FAl 10] BTarl Prepm b EITHLI}ﬂﬁ 4 A I
. ni o I-0= " STErd lotnoe HODA G2l or 755 [H
LcC i M3 I3 A ST&s5 5Teard Al .- HIR
. = 16 M4 g R e == ARST Gg—e £ ETEe?
o My i A4 L-O< 5 517 STérB 71 11 L pce
ikl |2 f 5 17 [£ A opes PRI Cg— ETEC
= i AE LG A ET4r9 ETarlld f3 11 - P
A 4 1 ee Loe LB 05 4 T—roe PES =T iz Ak e STheAl §onn
= A STeqz |- oo PEF O He e LT
T " Eg A1 0 E T E:é g e Ch4 S5 Ezgi
) P : K- G T . STE-19
o |y e St mu T ey i NTGRCE]
e . = 1 a1z S BER STE2L lorre P T Te 24 DFI PG STE-23 § -hee
RrH L3 25 | g 2:; _EE?_E-Eﬁg ity D”g STL/2E PL3 PRz ETEAZE §one-
ICZE I T stegr (oo d RaoKsrecss ccimm BEL sroes oo
0 E503 L et o fab DHE - -IFR7
FARCTLA g ~HE oL FETH i e o sTeraz ob 2.1 S tops
i = ~0E 14 PHE ST6-33 | ory = pH4 5163t PH4 BT ETE-GE galShEr]
fLEPR M Y e s L o BFEHE S16-35 | e CHe o216 r 38 PHE Edl—=rpoesfapa
H menE Tlenor o Hmng_ [} = 51627 | rorm LnH ol 51 & <38 ETc—STEon opT=
IC& 5 R13 > f STE30 [orore peny Gd S1Er 4 [APTS
— ET&r4T [T84 § nis
18 i STEAH loer PADS O _ T - -
KAT Coan [OFTDE PRDS G £ES STh-45 [Rt
1# os B e P T STertn STE47 | e
e lomoe s
ool STe49 | ey e STﬁrES ST5-19 1 orumy
Iz oz -
1z 0Oz KIT12 =
oM PHLE. . 7] .
15
s o= _Q el
= o Il 55 PAOCA. . 7] PT[E": C O
3 1 PILE, o
ill gy bzd 278 S84 @ : : :
= T} i1 2y I alfa
UEE =y
I N L@ E, 2k
- LI Ll o

"Ei!l"-"l!r«'-'ﬂpﬁr:';'{nhw I:I_*
#Eﬁwfnﬂf-ﬁl ;

Brosses Mets

-.-z EJ

u
Al
:-.
CT54
LIsE
L0
LT50
e =
Highlight | Clear |

¥ Comporaniz
[Sdkecraen
¥ Coppes
[Taat

[~ 'whis Fiame

Use automated tools to place components

and route wiring.

« W18 Y ¥

..:, [r:\Wp Dociments V0K 790 Cxamples™d Pot Senal Ivted sce. ddb
leﬁu-idlmln:ed:I:l 4 Pt Seorial Inbarisce :,'.I 4 Pont SH bosid pob]

e Ry

||I|II'II-I

; T (TITIT
4] B | el
I'TEI': ok & Ty II;E'_-'\.-E' A FEmepllut 4 Hech] ll:h'ly_-h? § i 1l
3 Tv_4 Post 5M boadpe |

Frotel 99 SE's unigque 30 visualization feature lets you see your finished board before it leaves your
desktop. Sophisticated 30 rru:udeling and extrusion techniques render your board in stunning 30 without

e

=1 i, - e Tt T T = = e T T == =T L =T =Ty

4L - =l Fme = Al [|
lIIU figed T0F Gooitiongr IIUIHIIL IIIILIIIII:-HILlII F‘.LILGIU: G LO0i lLl Eagirine every GI‘DI\Jl:L-l LII _'|'L|LII nioar.

42

h[Gocoocoocooq 0000000000
g @lelololo t}iL'..:-:G'_l.‘_'.:i-"1={:I|-""IEI_:""-

ololojoiolo

CS 561, Lectures 3-5 43

Search algorithms

Basic idea:

offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do
iIf there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
iIf the node contains a goal state then
return the corresponding solution

else expand the node and add resulting nodes to the search tree
end

Last time: Problem-Solving

 Problem solving:
¢ Goal formulation
e Problem formulation (states, operators)
e Search for solution

e Problem formulation:

e Initial state
o ?

. ?
. ?

 Problem types:
e single state: accessible and deterministic environment
e multiple state: ?
e contingency: ?

e exploration: ?
CS 561, Lectures 3-5

45

Last time: Problem-Solving

 Problem solving:
¢ Goal formulation
e Problem formulation (states, operators)
e Search for solution

e Problem formulation:
¢ Initial state
e Operators
e Goal test
e Path cost

 Problem types:
e single state: accessible and deterministic environment
e multiple state: ?
e contingency: ?

e exploration: ?
CS 561, Lectures 3-5

46

Last time: Problem-Solving

 Problem solving:
¢ Goal formulation
e Problem formulation (states, operators)
e Search for solution

e Problem formulation:
¢ Initial state
e Operators
e Goal test
e Path cost

 Problem types:
e single state: accessible and deterministic environment
e multiple state: inaccessible and deterministic environment
e contingency: inaccessible and nondeterministic environment
e exploration: unknown state-space

47

Last time: Finding a solution

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by

generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem

loop do
if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

CS 561, Lectures 3-5

48

Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state
to the goal state.

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding).

Function General-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state problem

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Strategy: The search strategy is determined by ??7?

CS 561, Lectures 3-5 49

Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state
to the goal state

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree
end

Strategy: The search strategy is determined by the order in which
the nodes are expanded.

CS 561, Lectures 3-5 50

Example: Traveling from Arad To Bucharest

I:I Vaslui

Timisoara

Lugoj

Mehadia

Hirsova
Urzicani

Craiova Eforie
Giurgiu

Dobreta

CS 561, Lectures 3-5

91

From problem space to search tree

e Some material in this and following slides is from

http://www.cs.kuleuven.ac.be/~dannyd/FAI/

check it out!

Problem space

3AA—4—B—4—O

40D

Associated B)
loop-free
search tree

Vi

Paths in search trees

Denotes:.
SDEBA

CS 561, Lectures 3-5 53

General search example

CS 561, Lectures 3-5

54

General search example

CS 561, Lectures 3-5

95

General search example

CS 561, Lectures 3-5

o6

General search example

Y

Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes < make-queue(make-node(initial-state[problem]))
loop do
if nodes is empty then return failure
node < Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes < Queuing-Fn(nodes, Expand(node, Operators[problem]))
end

Queuing-Fn(gueue, elements) is a queuing function that inserts a set
of elements into the queue and determines the order of node expansion.
Varieties of the queuing function produce varieties of the search algorithm.

CS 561, Lectures 3-5 58

Encapsulating state information in nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent
State || 5 4 Node depth =6
g==6
6 1 8
- tat.a
7 3 2 s 4 %
children

The ExpPAND function creates new nodes, filling in the various fields and
using the OPERATORS (or SUCCESSORFN) of the problem to create the
corresponding states.

Evaluation of search strategies

e A search strategy is defined by picking the order of node
expansion.

e Search algorithms are commonly evaluated according to the
following four criteria:
o Completeness: does it always find a solution if one exists?
 Time complexity: how long does it take as function of num. of nodes?
e Space complexity: how much memory does it require?
o Optimality: does it guarantee the least-cost solution?

e Time and space complexity are measured in terms of:
e b — max branching factor of the search tree
o d— depth of the least-cost solution
e m —max depth of the search tree (may be infinity)

Binary Tree Example

Depth = 0 @
Depth = 1 @ @

Depth = 2 @ @ @ @

Number of nodes:; n = 2 maxdepth
Number of levels (max depth) = log(n) (could be n)

Complexity
o Why worry about complexity of algorithms?

» because a problem may be solvable in principle but may
take too long to solve in practice

CS 561, Lectures 3-5 62

Complexity: Tower of Hanoi

Figure 11-6 Tower of Hanoi problem with three disks

Complexity:
Tower of Hanoi

Hovae disk 1| from noendle 1 to noedle 3

Mowe 1

:

Hove disk F from nodedle 1 to noedle 2

Mowve 2 ;,-—-\!.

Hove diek 1 from needle 3 to needle 2

:

Hove 3

N,

Hove disk ¥ from peedle 1 to needle 3

:

Move 4

:

Hove disk | from noeedle 2 to noedle 1

Mawe &

:

Hove diak Z from epdle 2 to needie 3

Hovae &

e

2

Howve disk | from peedle 1 to needle 3

HMova 7

2

Figure 11-7 Solution of Tower of Hanoi problem with three disks

Complexity: Tower of Hanoi

e 3-disk problem: 23 - 1 = 7 moves

e 64-disk problem: 264 - 1.
e 210 = 1024 = 1000 = 103,
e 264 = 24 * 260 < 24 * 1018 = 1,6 * 1019

e Oneyear=3.2 * 107 seconds

CS 561, Lectures 3-5

65

Complexity: Tower of Hanoi

e The wizard’s speed = one disk / second
1.6 * 10° = 5 * 3.2 * 108 =

5 % (3.2 * 107) * 10t =
(3.2 * 107) * (5 * 10%%)

CS 561, Lectures 3-5

66

Complexity: Tower of Hanoi

e The time required to move all 64 disks from needle
1 to needle 3 is roughly 5 * 102! years.

e It is estimated that our universe is about 15 billion
= 1.5 * 102° years old.

5 * 101 = 50 * 101%= 33 * (1.5 * 101%9),

CS 561, Lectures 3-5 67

Complexity: Tower of Hanoi

e Assume: a computer with 1 billion = 10° moves/second.
e Moves/year=(3.2 *107) * 10° = 3.2 * 10%°

e To solve the problem for 64 disks:
e 264 =~ 1.6 * 101° = 1.6 * 1016 * 103 =
(3.2 * 10%6) * 500

e 500 years for the computer to generate 264 moves at the
rate of 1 billion moves per second.

CS 561, Lectures 3-5 68

Complexity

e Why worry about complexity of algorithms?

» because a problem may be solvable in principle
but may take too long to solve in practice

e How can we evaluate the complexity of
algorithms?

» through asymptotic analysis, i.e., estimate time
(or number of operations) necessary to solve an
instance of size n of a problem when n tends
towards infinity

» See AIMA, Appendix A.

CS 561, Lectures 3-5 69

Complexity example: Traveling Salesman Problem

There are n cities, with a road of length L;; joining
city i to city j.
The salesman wishes to find a way to visit all cities that
is optimal in two ways:
each city is visited only once, and
the total route is as short as possible.

o O

CS 561, Lectures 3-5 70

Complexity example: Traveling Salesman Problem

W m

This is a /hard problem: the only known algorithms (so far)
to solve it have exponential complexity, that is, the
number of operations required to solve it grows as
exp(n) for n cities.

CS 561, Lectures 3-5 71

Why is exponential complexity “hard”?

It means that the number of operations necessary to
compute the exact solution of the problem grows
exponentially with the size of the problem (here, the
number of cities).

e exp(1) = 2.72

e exp(10) = 2.20 10* (daily salesman trip)

e exp(100) = 2.69 104 (monthly salesman planning)
o exp(500) = 1.40 10217 (music band worldwide tour)

o exp(250,000) = 10108573 (fedex, postal services)
e Fastest

computer = 1012 operations/second
CS 561, Lectures 3-5 72

So...

In general, exponential-complexity problems cannot be
solved for any but the smallest instances!

CS 561, Lectures 3-5

73

Complexity

e Polynomial-time (P) problems: we can find algorithms
that will solve them in a time (=number of operations)
that grows polynomially with the size of the input.

» for example: sort n numbers into increasing order: poor
algorithms have n2 complexity, better ones have n

log(n) complexity.

CS 561, Lectures 3-5 74

Complexity

e Since we did not state what the order of the polynomial
s, it could be very large! Are there algorithms that
require more than polynomial time?

e Yes (until proof of the contrary); for some algorithms,
we do not know of any polynomial-time algorithm to
solve them. These are referred to as nondeterministic-
polynomial-time (NP) algorithms.

» for example: traveling salesman problem.

e In particular, exponential-time algorithms are believed
to be NP.

CS 561, Lectures 3-5 75

Note on NP-hard problems

e The formal definition of NP problems is:

A problem is nondeterministic polynomial if there exists some
algorithm that can guess a solution and then verify
whether or not the guess is correct in polynomial time.

(one can also state this as these problems being solvable in
polynomial time on a nondeterministic Turing machine.)

In practice, until proof of the contrary, this means that
known algorithms that run on known computer
architectures will take more than polynomial time to solve

the problem.
CS 561, Lectures 3-5 76

Complexity: O() and o() measures (Landau symbols)

e How can we represent the complexity of an algorithm?

e Given: Problem input (or instance) size: n
Number of operations to solve problem: 7(n)

e If, for a given function g(n), we have:
dke N, dn,e N,Vne N,n=>n,, f(n) < kg(n)
then fe0(g) f is dominated by g

e If, for a given function g(n), we have:
Vke R,dn,e N,Vne N,n=>n,, f(n) < kg(n)
then feo(g) f is negligible compared to g

CS 561, Lectures 3-5 77

Landau symbols

fe0(g) e 3k, f(n) < kg(n) < L is boundec
oo g
fn)

feo(g) o Vi, f(n) < kg(h) & —0
11 —>00 g(l’l) N—>00

CS 561, Lectures 3-5 78

Examples, properties

e f(n)=n, g(n)=n"2:
nis o(n”2), because n/n*2 = 1/n -> 0 as n ->infinity
similarly, log(n) is o(n)
nAC is o(exp(n)) for any C

o if fis O(g), then for any K, K.f is also O(g); idem for o()
e if fis O(h) and g is O(h), then for any K, L: K.f + L.g is O(h)
idem for o()

o iffis O(g) and g is O(h), then fis O(h)
e if fis O(g) and g is o(h), then fis o(h)
o iffiso(g) and g is O(h), then fis o(h)

CS 561, Lectures 3-5 79

Polynomial-time hierarchy

e From Handbook of Brain
Theory & Neural Networks
(Arbib, ed.;

MIT Press 1995).

NC!) NC P complete NP complete

ACP: can be solved using gates of constant depth

NC!: can be solved in logarithmic depth using 2-input gates

NC: can be solved by small, fast parallel computer

P: can be solved in polynomial time

P-complete: hardest problems in P; if one of them can be proven to be
NC, then P = NC

NP: nondeterministic-polynomial algorithms

NP-complete: hardest NP problems; if one of them can be proven to be
P, then NP =P

PH: polynomial-time hierarchy

80

Complexity and the human brain

e Are computers close to human brain power?

e Current computer chip (CPU):

1073 inputs (pins)

1077 processing elements (gates)

2 inputs per processing element (fan-in = 2)
processing elements compute boolean logic (OR, AND, NOT, etc)

e Typical human brain:

1077 inputs (sensors)

10710 processing elements (neurons)

fan-in = 103 5 B¢

processing elements compute complicated | {
functions l

Still a lot of improvement needed for computers; but

computer clusters come closel
CS 561, Lectures 3-5 81

Remember: Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes < make-queue(make-node(initial-state[problem]))
loop do
if nodes is empty then return failure
node < Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes < Queuing-Fn(nodes, Expand(node, Operators[problem]))
end

Queuing-Fn(gueue, elements) is a queuing function that inserts a set
of elements into the queue and determines the order of node expansion.
Varieties of the queuing function produce varieties of the search algorithm.

CS 561, Lectures 3-5 82

Encapsulating state information in nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent
State || 2 4 Node depth =6
g=6
6 1 8
- tata
7 3 2 5 ’ b
children

The ExrAND function creates new nodes, filling in the various fields and
using the OPERATORS (or SUCCESSORFN) of the problem to create the
corresponding states.

CS 561, Lectures 3-5 83

Evaluation of search strategies

e A search strategy is defined by picking the order of node expansion.

e Search algorithms are commonly evaluated according to the following
four criteria:
o Completeness: does it always find a solution if one exists?
 Time complexity: how long does it take as function of num. of nodes?
o Space complexity: how much memory does it require?
o Optimality: does it guarantee the least-cost solution?

e Time and space complexity are measured in terms of:
e b — max branching factor of the search tree
e d - depth of the least-cost solution
e m —max depth of the search tree (may be infinity)

CS 561, Lectures 3-5 84

Note: Approximations

e In our complexity analysis, we do not take the built-in loop-
detection into account.

e The results only ‘formally” apply to the variants of our algorithms
WITHOUT loop-checks.

e Studying the effect of the loop-checking on the complexity is
hard:

e overhead of the checking MAY or MAY NOT be compensated by the
reduction of the size of the tree.

e Also: our analysis DOES NOT take the length (space) of
representing paths into account !

http://www.cs.kuleuven.ac.be/~dannyd/FAI/
CS 561, Lectures 3-5 85

Uninformed search strategies

Use only information available in the problem formulation

e Breadth-first

e Uniform-cost

o Depth-first

e Depth-limited

e [terative deepening

CS 561, Lectures 3-5

86

Breadth-first search

Expand shallowest unexpanded node

Implementation:
QUEUEINGFN = put successors at end of queue

CS 561, Lectures 3-5

87

Breadth-first search

Move downwards,
level by level,
until goal is
reached.

88

Example: Traveling from Arad To Bucharest

I:I Vaslui

Timisoara

Lugoj

Mehadia

Hirsova
Urzicani

Craiova Eforie
Giurgiu

Dobreta

CS 561, Lectures 3-5

89

Breadth-first search

90

CS 561, Lectures 3-5

Breadth-first search

mitis:Dara

Siiliu

radaa

-
L

Arad

91

CS 561, Lectures 3-5

Breadth-first search

Riminkey
Vilcea

Luga

Arad

ragaras

radaa

-
]

radaa

-
]
—

ad

92

CS 561, Lectures 3-5

Properties of breadth-first search

o Completeness:

e Time complexity:
e Space complexity:
e Optimality:

e Search algorithms are commonly evaluated according to the following four criteria:
e Completeness: does it always find a solution if one exists?
o Time complexity: how long does it take as function of num. of nodes?
e Space complexity: how much memory does it require?
e Optimality: does it guarantee the least-cost solution?

e Time and space complexity are measured in terms of:
e b — max branching factor of the search tree
e d - depth of the least-cost solution
e m —max depth of the search tree (may be infinity)

CS 561, Lectures 3-5

93

Properties of breadth-first search

o Completeness: Yes, if bis finite

Time complexity: 1+b+b%+...+bd = O(b 9), i.e., exponential in ¢
Space complexity: O(b 9), keeps every node in memory
Optimality: Yes (assuming cost = 1 per step)

Why keep every node in memory? To avoid revisiting already-visited
nodes, which may easily yield infinite loops.

CS 561, Lectures 3-5 94

Time complexity of breadth-first search

e If a goal node is found on depth d of the tree, all nodes up till that
depth are created.

CS 561, Lectures 3-5 95

Space complexity of breadth-first

e Largest number of nodes in QUEUE is reached on the level d of

the goal node.
& Zﬁ

e QUEUE contains all @ and (@) nodes. (Thus: 4).

~d

e In General: bd

CS 561, Lectures 3-5

96

Uniform-cost search

Expand least-cost unexpanded node

Implementation:
QUEUEINGFN = insert in order of increasing path cost

So, the gqueueing function keeps the node list sorted by increasing
path cost, and we expand the first unexpanded node (hence with

smallest path cost)

A refinement of the breadth-first strategy:

Breadth-first = uniform-cost with path cost = node depth

CS 561, Lectures 3-5 97

Romania with step costs in km

Arad

118)
| | Vaslui

Timisoara

Hirsova
Urziceni
75 86
Bucharest
Dobreta [L 90
Craiova Eforie

[] Giurgiu

CS 561, Lectures 3-5

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

98

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Uniform-cost search

99

CS 561, Lectures 3-5

Uniform-cost search

Ta

Dradaa

CS 561, Lectures 3-5

SRR
A
LGS

75 140]

e

:‘Ift Sibiu Timisoara

Ja¥ 2

100

Uniform-cost search

ey

SRS,

o

75 140 18
O Sl
Sy (om0
eratalti®ty et
ThH 71
Arad Dradaa

CS 561, Lectures 3-5

L8]

Luga

101

Properties of uniform-cost search

e Completeness: Yes, if step cost > £ >0

e Time complexity: # nodes with g < cost of optimal solution, < O(b ?)
e Space complexity: # nodes with g < cost of optimal solution, < O(b 9)
o Optimality: Yes, as long as path cost never decreases

g(n) is the path cost to node n
Remember:

b = branching factor

d = depth of least-cost solution

CS 561, Lectures 3-5 102

Implementation of uniform-cost search

e Initialize Queue with root node (built from start state)

e Repeat until (Queue empty) or (first node has Goal state):

e Remove first node from front of Queue
e Expand node (find its children)

e Reject those children that have already been considered, to avoid
loops

e Add remaining children to Queue, in a way that keeps entire
queue sorted by increasing path cost

o If Goal was reached, return success, otherwise failure

CS 561, Lectures 3-5 103

Caution!

Uniform-cost search not optimal if it is terminated when any node

in the queue has goal state.

Uniform cost returns
the path with cost
102 (if any goal

node is considered a
solution), while there
is a path with cost
25.

104

Note: Loop Detection

e In class, we saw that the search may fail or be sub-optimal if:

- no loop detection: then algorithm runs into infinite cycles
(A->B->A->B->..)

- not queuing-up a node that has a state which we have
already visited: may vyield suboptimal solution

- simply avoiding to go back to our parent: looks promising,
but we have not proven that it works

Solution? do not enqueue a node if its state matches the state of any
of its parents (assuming path costs>0).

Indeed, if path costs > 0, it will always cost us more to consider a
node with that state again than it had already cost us the first time.

Is that enough??
CS 561, Lectures 3-5 105

Example

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/

Example Hlustrating Uninform ed Search Strategies

06

Breadth-First Search Solution

From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/

Breadth-First Search

return GENEEAL-SEARE CHiproblem, EWNOUETE-AT-ENL)
exp. hode nodes list

{2}
S {ABC)
A {BCDEG)
E (CDEGG
¢ (DEGGG)
D (EG QG
E {GGG")
G {aa)

solution path foundis 5 A G <--thiz G also has cost 10

Mumber of nodes expanded (including goal node) =7 107

Uniform-Cost Search Solution
From: http://www.csee.umbc.edu/471/current/notes/uninformed-search/

Uniform-Cost Search
GENERAL-SEAR CHfproblem, ENQUEUE-BY PATH-COST)

exXp. node nodes list
L)

= CACL) BO3) CEE))

A T D BOOy Ol Edey GU10Y b (ME, we don't return)
D B CUEY E(B) G100

E L CE) ECRY GO (100

- CEEY (9 G0y G(13) }

E G0 GO0y G013)

(3 i}
solution path found s 5 B G <--this Ghas cost 9, not 10
Mumber of nodes expanded (including goal node) =7 108

Note: Queueing in Uniform-Cost Search

In the previous example, it is wasteful (but not incorrect) to queue-up
three nodes with G state, if our goal if to find the least-cost

solution:

Although they represent different paths, we know for sure that the one
with smallest path cost (9 in the example) will yield a solution with
smaller total path cost than the others.

So we can refine the queueing function by:
- queue-up node if
1) its state does not match the state of any parent

and 2) path cost smaller than path cost of any

unexpanded node with same state in the queue
(and in this case, replace old node with same

state by our new node)

Is that it??
CS 561, Lectures 3-5 109

A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure
open < make-queue(make-node(initial-state[problem]))
closed €« [empty]
loop do
if open is empty then return failure
currnode € Remove-Front(open)
if Goal-Test[problem] applied to State(currnode) then return currnode
children €« Expand(currnode, Operators[problem])
while children not empty

[... see next slide ...]
end
closed < Insert(closed, currnode)
open < Sort-By-PathCost(open)
end

CS 561, Lectures 3-5 110

A Clean Robust Algorithm

[... see previous slide ...]
children €< Expand(currnode, Operators[problem])
while children not empty
child €< Remove-Front(children)
if no node in open or closed has child’s state
open € Queuing-Fn(open, child)
else if there exists node in open that has child’s state
if PathCost(child) < PathCost(node)
open € Delete-Node(open, node)
open €< Queuing-Fn(open, child)
else if there exists node in closed that has child’s state
if PathCost(child) < PathCost(node)
closed < Delete-Node(closed, node)
open €< Queuing-Fn(open, child)
end
[... see previous slide ...] CS 561, Lectures 3-5

111

State Depth Cost Parent

1 S 0 0

CS 561, Lectures 3-5 112

State Depth Cost Parent

Black = open queue

Insert expanded nodes
Such as to keep open queue
sorted

CS 561, Lectures 3-5 113

State Depth Cost Parent

O R S
O W >=Wm
=N = O
ON = O
_ N =

Node 2 has 2 successors: one with state B
and one with state S.

We have node #1 in closed with state S;
but its path cost 0 is smaller than the path

cost obtained by expanding from A to S.
So we do not queue-up the successor of
node 2 that has state S.

CS 561, Lectures 3-5 114

State Depth Cost Parent

5 C 3 3 4
6 G 3 102 4

Node 4 has a successor with state C and
Cost smaller than node #3 in gpen that
Also had state C; so we update open
To reflect the shortest path.

CS 561, Lectures 3-5 115

State Depth Cost Parent

7
6 G 3 102 4

CS 561, Lectures 3-5 116

State Depth Cost Parent

o OO
G m

3 102 4

CS 561, Lectures 3-5 117

State Depth Cost Parent

9 F
6 G 3 102 4

CS 561, Lectures 3-5 118

State Depth Cost Parent

6 G 3 102 4

CS 561, Lectures 3-5 119

State Depth Cost Parent

6 G 3 102 4

Goal reached

CS 561, Lectures 3-5 120

More examples...

e See the great demos at:

http://pages.pomona.edu/~jbm04747/courses/spring2001/cs151/Search/Strategies.html

CS 561, Lectures 3-5 121

Depth-first search

Expand deepest unexpanded node

Implementation:
QUEUEINGFN = insert successors at front of queue

Arad

CS 561, Lectures 3-5 122

Depth First Search

CS 561, Lectures 3-5 123

Romania with step costs in km

Arad

118)
| | Vaslui

Timisoara

Hirsova
Urziceni
75 86
Bucharest
Dobreta [L 90
Craiova Eforie

[] Giurgiu

CS 561, Lectures 3-5

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

124

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Depth-first search

125

CS 561, Lectures 3-5

Depth-first search

CS 561, Lectures 3-5 126

Depth-first search

KSR
yratatatey!
Ry -
ﬁt*ttﬂhﬁ Sihiu Tirmisoara
S Pataba®. 2!
e,
R Tatatatr el

l.e., depth-first search can perform infinite cyclic excursions

Need a finite, non-cyclic search space (or repeated-state checking)
CS 561, Lectures 3-5 127

Properties of depth-first search

o Completeness: No, fails in infinite state-space (yes if finite

Time complexity: o)
e Space complexity: O(bm)
e Optimality: No

Remember:
b = branching factor

m = max depth of search tree

CS 561, Lectures 3-5

state space)

128

Time complexity of depth-first: details

e In the worst case:
e the (only) goal node may be on the right-most branch,

Y,
e Time complexity == bM+pM1 4 41 =pm+tl_4
e Thus: O(b™) b-1

CS 561, Lectures 3-5 129

Space complexity of depth-first

e Largest number of nodes in QUEUE is reached in bottom left-
most node.

e Example:m=3, b=3:

e QUEUE contains all @ nodes. Thus: 7.
e InGeneral: ((b-1) *m) +1
e Order: O(m*b)

CS 561, Lectures 3-5 130

Avoiding repeated states

In increasing order of effectiveness and computational
overhead:

e do not return to state we come from, i.e., expand
function will skip possible successors that are in same
state as node’s parent.

e do not create paths with cycles, i.e., expand function
will skip possible successors that are in same state as
any of node’s ancestors.

e do not generate any state that was ever generated
before, by keeping track (in memory) of every state
generated, unless the cost of reaching that state is
lower than last time we reached it.

CS 561, Lectures 3-5 131

Depth-limited search

Is a depth-first search with depth limit /

Implementation:
Nodes at depth / have no successors.

Complete: if cutoff chosen appropriately then it is
guaranteed to find a solution.

Optimal: it does not guarantee to find the least-cost
solution

CS 561, Lectures 3-5

132

Iterative deepening search

Function Iterative-deepening-Search(problem) returns a solution,
or failure
for depth = 0 to - do
result < Depth-Limited-Search(problem, depth)
iIf result succeeds then return result
end
return failure

Combines the best of breadth-first and depth-first search
strategies.

o Completeness: Yes,

e Time complexity: O(b“?)

e Space complexity: O(bd)

o Optimality: Yes, if step cost = 1

Romania with step costs in km

Arad

118)
| | Vaslui

Timisoara

Hirsova
Urziceni
75 86
Bucharest
Dobreta [L 90
Craiova Eforie

[] Giurgiu

CS 561, Lectures 3-5

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

134

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Adobe Acrobat - [chapter03.pdf] M=
@Eile Edit Document Tools Miew ‘window Help ;Iilﬂ
NMeghs BN v es DO@E S AREQEOL

¥ r
[

B .

2 || Iterative deepening search | =0

&

H

i

ul

£

T,

AIMA Shdes @5tuart Russell and Peter Norvig, 1998 Chapter 3, Sections 1§ =K}
=
] 153% || M| 4] Szorez |[M|M 11 %85 in E] 4 ¥
@l start| yCs 564 | yiaurent | gtaks | —ycsse1a | yaima |[E]Adobe Acr_ | [ElMierosoit Pow. |] Telnet - pollus .| ybacks | F4dabe Photas.. M ozoru

Adobe Acrobat - [chapter03.pdf] M=
@Eile Edit Document Tools Miew ‘window Help ;Iilﬂ
NMeghs BN v es DO@E S AREQEOL

¥ r
[

B .

2 || Iterative deepening search [=1

&

H

i

ul

£

T,

AIMA Shdes @5tuart Russell and Peter Norvig, 1998 Chapter 3, Sections 1§ 54
=
] 153% || M| 4] S40rez |[F|M 11 %85 in E] 4 ¥
@l start| yCs 564 | yiaurent | gtaks | —ycsse1a | yaima |[E]Adobe Acr_ | [ElMierosoit Pow. |] Telnet - pollus .| ybacks | F4dabe Photas.. M ozapu

Adobe Acrobat - [chapter03.pdf] M=

@Eile Edit Document Toolz “iew ‘window Help _|ﬁ'|5|
EEHE E N« «» DO %S a8 10k

D

B

HrAcem R~ gH L3 =

AIMA Shdes @5tuart Russell and Peter Norvig, 1998 Chapter 3, Sections 1§ j515)

-
k] 1523 ||| M| 4] SSorez [(R(M 11 x85in | E l r
=] Slaltl 3 CS BE4 | 4 laurent | A talks I 3 CS Gl | 3 Aima ”Adohe Acr.. Microsoft F'ow...I gﬂ Telnet - pollu:-:...l books | EAdobe Fhotos... B 8:24 PM

Adobe Acrobat - [chapter03.pdf] M=
@Eile Edit Document Tools Miew ‘window Help ;Iilﬂ
NMeghs BN v es DO@E S AREQEOL

¥ r
[

B .

2 || Iterative deepening search | =2

&

H

i

ul

£

T,

AIMA Shdes @5tuart Russell and Peter Norvig, 1998 Chapter 3, Sections 1§ 5]
=
] 153% || M| 4] ceorez | MM 11 %85 in E] 4 ¥
@l start| yCs 564 | yiaurent | gtaks | —ycsse1a | yaima |[E]Adobe Acr_ | [ElMierosoit Pow. |] Telnet - pollus .| ybacks | F4dabe Photas.. ™ o2spu

Adobe Acrobat - [chapterD3.pdf] _[2]
ﬁEile Edit Document Tool: View Window Help _|51|5|

EEHS E N« «» OO0 %5 800

HrAsedR=mgHLE =

-

AIMA Shdes @5tuart Russell and Peter Norvig, 19958 Chapter 3, Sections 1 6 67

] 1533 |=||M] 4] sToefsz | MM 11 x2S [E] |4

] Slaltl 4 CS 564 | 4 laurent | A talks I 4 CS Bl | A Aima ”Adobe Acr... Microsoft F'ow...I gﬂTeInet - pollu:-:...l —books | EAdobe Phatos... B 9:25 PM

- [=]x]

Adobe Acrobat - [chapter03.pdf]

@ File Edt Document Tool: iew ‘window Help — |ﬁ'|5|
NMeERS E KC») «» DO S Ml o0k
™| D
\ r
7

Ell

v,

&,

=

%

Ul

¥

3

AIMA Shdes @5tuart Russell and Peter Norvig, 1998 Chapter 3, Sections 1§ [t
L

A sz ||l 4] szerez M| ks | EL]S

Emald 95 564 | yiaurent | gtaks | cycsseia | ysima

| EAdobe Phatos...

”Adohe Acr.. Microsoft F'ow...I gﬂTeInet ° pollu:-:...l A books

B e26pM

Adobe Acrobat - [chapter03.pdf] M=
@ File Edt Document Tools iew ‘window Help ;Iilﬂ
NMeghs BN v es DO@E S AREQEOL
& D
5 B
B
E
¢,
£,
H s
% PO
n KEXk
A O i s S~ vy Al
T, (b Y SRR @
XL 1L
CPTEREINRG, KT i
RGREL TR
AIMA Shdes @5tuart Russell and Peter Norvig, 1998 Chapter 3, Sections 1§ Ba

Al

153% (=] M4

@l start| yCs 564

SIof e | b

| 4 laurent

[

11x85in |

| A talks

A

| —ycsse1a

| 3 Aima

”Adohe Acr.. Microsoft F'ow...I gﬂTeInet ° pollu:-:...l A books

| EAdobe Phatos...

¥

B s26PM

=71 x|

Adobe Acrobat - [chapter03.pdf]
@Eile Edit Document Toolz “iew ‘window Help

HrAcem R~ gH L3 =

EEHE E N« «» DO %S a8 10k

CLEEAEBL
SULIHE,
A ERINCA K g TREGL 3 e
ONELAEL e 1ORES K LG
0 s NS vivis ORI s TR S crwas OO s AR i
T ARSI T TSI TSRO S Bt Ry
NELTB PRSI SS . PRIEES . DA RS EE S RN

e

AIMA Shdes @5tuart Russell and Peter Norvig, 1998

@l start| yCs 564

Al iszm ||| 4] soerez [B|M

11 =85in |[EL|N

| 4 laurent | A talks I 3 CE BEla | 3] Aima

”Adohe Acr.. Microsoft F'ow...I gﬂTeInet ° pollu:-:...l A books

Chapter 3, Sections 1§

| EAdobe Phatos...

i}

-

¥

B] s27pM

Iterative deepening complexity

e [terative deepening search may seem wasteful because
SO many states are expanded multiple times.

e In practice, however, the overhead of these multiple
expansions is small, because most of the nodes are
towards leaves (bottom) of the search tree:

thus, the nodes that are evaluated several times
(towards top of tree) are in relatively small number.

CS 561, Lectures 3-5 143

Iterative deepening complexity

e In iterative deepening, nodes at bottom level are expanded
once, level above twice, etc. up to root (expanded d+1 times)
so total number of expansions is:

(d+1)1 + (d)b + (d-1)bA2 + ... + 3bA(d-2) + 2b~(d-1) + 1b~Ad = O(b~d)

e In general, iterative deepening is preferred to depth-first or
breadth-first when search space large and depth of solution
not known.

CS 561, Lectures 3-5 144

Bidirectional search

e Both search forward from initial state, and backwards from goal.
e Stop when the two searches meet in the middle.

e Problem: how do we search backwards from goal??
e predecessor of node n = all nodes that have n as successor
o this may not always be easy to compute!

o if several goal states, apply predecessor function to them just as
we applied successor (only works well if goals are explicitly
known; may be difficult if goals only characterized implicitly).

INYVARN

CS 561, Lectu g

Bidirectional search

e Problem: how do we search backwards from goal?? (cont.)

e for bidirectional search to work well, there must be an efficient
way to check whether a given node belongs to the other search
tree.

e select a given search algorithm for each half.

>)/ tar 2 Gj

CS 561, Lectu

Bidirectional search

1. QUEUE1 <-- path only containing the root;
QUEUE2 <-- path only containing the goal;

2. WHILE both QUEUESs are not empty
AND QUEUE1 and QUEUE2 do NOT share a state

DO remove their first paths;
create their new paths (to all children);
reject their new paths with loops;
add their new paths to back;

3. IF QUEUE1 and QUEUE2 share a state
THEN success;
ELSE failure;

CS 561, Lectures 3-5

147

Bidirectional search

e Completeness: Yes,

e Time complexity: 2*0(b 4?) = O(b ?)
e Space complexity: O(b ™?)

e Optimality: Yes

e To avoid one by one comparison, we need a hash table of
size O(b ")

o [f hash table is used, the cost of comparison is

0(1)

CS 561, Lectures 3-5 148

Bidirectional Search

Final State

Initial State C)\ /Q O\ /

CS 561, Lectures 3-5 149

Bidirectional search

e Bidirectional search merits:

e Big difference for problems with branching factor b6 in
both directions
e A solution of length dwill be found in O(2672) = O(£72)

e For b=10and d = 6, only 2,222 nodes are needed instead of
1,111,111 for breadth-first search

CS 561, Lectures 3-5 150

Bidirectional search

¢ Bidirectional search issues

e Predecessors of a node need to be generated
e Difficult when operators are not reversible

e What to do if there is no explicit list of goal states?

e For each node: check if it appeared in the other search
e Needs a hash table of O(5H72)

e What is the best search strategy for the two searches?

CS 561, Lectures 3-5 151

Comparing uninformed search strategies

Criterion Breadth- Uniform Depth- Depth- Iterative Bidirectional
first cost first limited deepening (if applicable)

Time bAd bAd bAm b~ bAd b~ (d/2)
Space bAd b~d bm bl bd b~ (d/2)
Optimal? Yes Yes No No Yes Yes
Complete? Yes Yes No Yes, Yes Yes

if 1>d

e b — max branching factor of the search tree

d — depth of the least-cost solution

e m —max depth of the state-space (may be infinity)
/— depth cutoff

CS 561, Lectures 3-5 152

Summary

e Problem formulation usually requires abstracting away real-world
details to define a state space that can be explored using computer
algorithms.

e Once problem is formulated in abstract form, complexity analysis
helps us picking out best algorithm to solve problem.

e Variety of uninformed search strategies; difference lies in method
used to pick node that will be further expanded.

e [terative deepening search only uses linear space and not much
more time than other uniformed search strategies.

CS 561, Lectures 3-5 153

