Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - ?
 - ?
 - ?

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: ?
 - contingency: ?
 - exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: ?
 - contingency: ?
 - exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: inaccessible and deterministic environment
 - contingency: inaccessible and nondeterministic environment
 - exploration: unknown state-space
Last time: Finding a solution

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add resulting nodes to the search tree
 end
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state.

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding).

```plaintext
Function General-Search(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add resulting nodes to the search tree
    end
```

Strategy: The search strategy is determined by ???
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

```plaintext
Function General-Search(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add resulting nodes to the search tree
    end
```

Strategy: The search strategy is determined by the order in which the nodes are expanded.
A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure

open ← make-queue(make-node(initial-state[problem]))
closed ← [empty]

loop do
 if open is empty then return failure
 currnode ← Remove-Front(open)
 if Goal-Test[problem] applied to State(currnode) then return currnode
 children ← Expand(currnode, Operators[problem])
 while children not empty

 […] see next slide …]

end

closed ← Insert(closed, currnode)
open ← Sort-By-PathCost(open)

end
A Clean Robust Algorithm

[…] see previous slide …]

children \leftarrow Expand(currnode, Operators[problem])

while children not empty

child \leftarrow Remove-Front(children)

if no node in open or closed has child’s state

open \leftarrow Queuing-Fn(open, child)

else if there exists node in open that has child’s state

if PathCost(child) $<$ PathCost(node)

open \leftarrow Delete-Node(open, node)

open \leftarrow Queuing-Fn(open, child)

else if there exists node in closed that has child’s state

if PathCost(child) $<$ PathCost(node)

closed \leftarrow Delete-Node(closed, node)

open \leftarrow Queuing-Fn(open, child)

end

[…] see previous slide …]
Last time: search strategies

Uninformed: Use only information available in the problem formulation
- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

Informed: Use heuristics to guide the search
- Best first
- A*
Evaluation of search strategies

- Search algorithms are commonly evaluated according to the following four criteria:
 - \textbf{Completeness:} does it always find a solution if one exists?
 - \textbf{Time complexity:} how long does it take as a function of number of nodes?
 - \textbf{Space complexity:} how much memory does it require?
 - \textbf{Optimality:} does it guarantee the least-cost solution?

- Time and space complexity are measured in terms of:
 - b – max branching factor of the search tree
 - d – depth of the least-cost solution
 - m – max depth of the search tree (may be infinity)
Last time: uninformed search strategies

Uninformed search:

Use only information available in the problem formulation

- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening
This time: informed search

Informed search:
Use heuristics to guide the search
- Best first
- A*
- Heuristics
- Hill-climbing
- Simulated annealing
Best-first search

• **Idea:**

u use an evaluation function for each node; estimate of
 “desirability”
⇒ expand most desirable unexpanded node.

• **Implementation:**

 QueueingFn = insert successors in decreasing order of
 desirability

• **Special cases:**

greedy search
 A* search
Romania with step costs in km

Straight-line distance to Bucharest

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374

CS 561, Session 6
Greedy search

- **Estimation function:**
 \[h(n) = \text{estimate of cost from } n \text{ to goal (heuristic)} \]

- **For example:**
 \[h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest} \]

- Greedy search expands first the node that **appears** to be closest to the goal, according to \(h(n) \).
Greedy search example

Arad

366
Properties of Greedy Search

• Complete?

• Time?

• Space?

• Optimal?
Properties of Greedy Search

• Complete? No – can get stuck in loops
 e.g., Iasi > Neamt > Iasi > Neamt > …
 Complete in finite space with repeated-state checking.

• Time? \(O(b^m) \) but a good heuristic can give
dramatic improvement

• Space? \(O(b^m) \) – keeps all nodes in memory

• Optimal? No.
A* search

• **Idea:** avoid expanding paths that are already expensive

 evaluation function: \(f(n) = g(n) + h(n) \) with:
 - \(g(n) \) – cost so far to reach \(n \)
 - \(h(n) \) – estimated cost to goal from \(n \)
 - \(f(n) \) – estimated total cost of path through \(n \) to goal

• **A* search** uses an **admissible** heuristic, that is,
 \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \).
 For example: \(h_{SLD}(n) \) never overestimates actual road distance.

• **Theorem:** **A* search** is optimal
A* search example

Arad

366
AIMA Slides ©Stuart Russell and Peter Norvig, 1998
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

$$f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0$$
$$> g(G_1) \quad \text{since } G_2 \text{ is suboptimal}$$
$$\geq f(n) \quad \text{since } h \text{ is admissible}$$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Optimality of A* (more useful proof)

Lemma: A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
f-contours

How do the contours look like when $h(n) = 0$?
Properties of A*

• Complete?

• Time?

• Space?

• Optimal?
Properties of A*

- Complete? Yes, unless infinitely many nodes with \(f \leq f(G) \)
- Time? Exponential in \([(\text{relative error in } h) \times (\text{length of solution})]\)
- Space? Keeps all nodes in memory
- Optimal? Yes – cannot expand \(f_{i+1} \) until \(f_i \) is finished
Proof of lemma: pathmax

For some admissible heuristics, f may decrease along a path.

E.g., suppose n' is a successor of n.

\[
\text{n} \quad \text{g=5} \quad \text{h=4} \quad \text{f=9}
\]

\[
\text{1}
\]

\[
\text{n'} \quad \text{g'=6} \quad \text{h'=2} \quad \text{f'=8}
\]

But this throws away information!

$f(n) = 9 \Rightarrow$ true cost of a path through n is ≥ 9.

Hence true cost of a path through n' is ≥ 9 also.

Pathmax modification to A*:

Instead of $f(n') = g(n') + h(n')$, use $f(n') = \max(g(n') + h(n'), f(n))$.

With pathmax, f is always nondecreasing along any path.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
5 & 4 & \text{ } \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & \text{ } & 4 \\
7 & 6 & 5 \\
\end{array}
\]

\[h_1(S) = ?? \]
\[h_2(S) = ?? \]
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]

\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
5 & 4 & \text{ } \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\quad \begin{array}{ccc}
1 & 2 & 3 \\
8 & \text{ } & 4 \\
7 & 6 & 5 \\
\end{array}
\]

\[
h_1(S) = ?? \quad 7
\]

\[
h_2(S) = ?? \quad 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18
\]
Relaxed Problem

• Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

• If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Next time

- Iterative improvement
- Hill climbing
- Simulated annealing