Logical reasoning systems

- Theorem provers and logic programming languages

- Production systems

- Frame systems and semantic networks

- Description logic systems
Logical reasoning systems

- **Theorem provers and logic programming languages** – Provers: use resolution to prove sentences in full FOL. Languages: use backward chaining on restricted set of FOL constructs.

- **Production systems** – based on implications, with consequents interpreted as action (e.g., insertion & deletion in KB). Based on forward chaining + conflict resolution if several possible actions.

- **Frame systems and semantic networks** – objects as nodes in a graph, nodes organized as taxonomy, links represent binary relations.

- **Description logic systems** – evolved from semantic nets. Reason with object classes & relations among them.
Basic tasks

• Add a new fact to KB – TELL

• Given KB and new fact, derive facts implied by conjunction of KB and new fact. In forward chaining: part of TELL

• Decide if query entailed by KB – ASK

• Decide if query explicitly stored in KB – restricted ASK

• Remove sentence from KB: distinguish between correcting false sentence, forgetting useless sentence, or updating KB re. change in the world.
Indexing, retrieval & unification

- **Implementing sentences & terms**: define syntax and map sentences onto machine representation.

 Compound: has operator & arguments.

 e.g., \(c = P(x) \land Q(x) \) \hspace{1cm} \(\text{Op}[c] = \land; \text{Args}[c] = [P(x), Q(x)] \)

- **FETCH**: find sentences in KB that have same structure as query. ASK makes multiple calls to FETCH.

- **STORE**: add each conjunct of sentence to KB. Used by TELL.

 e.g., implement KB as list of conjuncts

 \[\text{TELL}(KB, A \land \neg B) \text{ TELL}(KB, \neg C \land D) \]

 then KB contains: \([A, \neg B, \neg C, D]\)
Complexity

• With previous approach,

 FETCH takes $O(n)$ time on n-element KB

 STORE takes $O(n)$ time on n-element KB (if check for duplicates)

Faster solution?
Table-based indexing

- What are you indexing on? Predicates (relations/ functions).

Example:

<table>
<thead>
<tr>
<th>Key</th>
<th>Positive</th>
<th>Negative</th>
<th>Conclusion</th>
<th>Premise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td>Mother(ann,sam)</td>
<td>-Mother(ann,al)</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td></td>
<td>Mother(grace,joe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dog</td>
<td>dog(rover)</td>
<td>-dog(alice)</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
<tr>
<td></td>
<td>dog(fido)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table-based indexing

- Use hash table to avoid looping over entire KB for each TELL or FETCH

 e.g., if only allowed literals are single letters, use a 26-element array to store their values.

- More generally:
 - convert to Horn form
 - index table by predicate symbol
 - for each symbol, store:
 - list of positive literals
 - list of negative literals
 - list of sentences in which predicate is in conclusion
 - list of sentences in which predicate is in premise
Tree-based indexing

• Hash table impractical if many clauses for a given predicate symbol

• Tree-based indexing (or more generally combined indexing): compute indexing key from predicate and argument symbols

```
  Predicate?
    |     |
  First arg?  
    |     |
          `--
```

Predicate
 | |
First arg
 | |
 `--
Tree-based indexing

Example:

Person(age, height, weight, income)
Person(30, 72, 210, 45000)
Fetch(Person(age, 72, 210, income))
Fetch(Person(age, height>72, weight<210, income))
Unification algorithm: Example

Understands(mary,x) implies Loves(mary,x)
Understands(mary,pete) allows the system to substitute pete for x and make the implication that IF
Understands(mary,pete) THEN Loves(mary,pete)
Unification algorithm

• Using clever indexing, can reduce number of calls to unification

• Still, unification called very often (at basis of modus ponens) => need efficient implementation.

• See AlMA p. 303 for example of algorithm with $O(n^2)$ complexity
 (n being size of expressions being unified).
Logic programming

Remember: knowledge engineering vs. programming...

Sound bite: computation as inference on logical KBs

<table>
<thead>
<tr>
<th>Logic programming</th>
<th>Ordinary programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify problem</td>
<td>Identify problem</td>
</tr>
<tr>
<td>2. Assemble information</td>
<td>Assemble information</td>
</tr>
<tr>
<td>3. Tea break</td>
<td>Figure out solution</td>
</tr>
<tr>
<td>4. Encode information in KB</td>
<td>Program solution</td>
</tr>
<tr>
<td>5. Encode problem instance as facts</td>
<td>Encode problem instance as data</td>
</tr>
<tr>
<td>6. Ask queries</td>
<td>Apply program to data</td>
</tr>
<tr>
<td>7. Find false facts</td>
<td>Debug procedural errors</td>
</tr>
</tbody>
</table>

Should be easier to debug *Capital(NewYork, US)* than $x := x + 2$!
Logic programming systems

e.g., **Prolog:**

- Program = sequence of sentences (implicitly conjoined)
- All variables implicitly universally quantified
- Variables in different sentences considered distinct
- Horn clause sentences only (= atomic sentences or sentences with no negated antecedent and atomic consequent)
- Terms = constant symbols, variables or functional terms
- Queries = conjunctions, disjunctions, variables, functional terms
- Instead of negated antecedents, use negation as failure operator: goal NOT P considered proved if system fails to prove P
- Syntactically distinct objects refer to distinct objects
- Many built-in predicates (arithmetic, I/O, etc)
Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ 10 million LIPS

Program = set of clauses = head :- literal₁, ... literalₙ.
Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption ("negation as failure")
 e.g., not PhD(X) succeeds if PhD(X) fails
Basic syntax of facts, rules and queries

\[
\begin{align*}
\text{<fact> } &::= \text{ <term> .} \\
\text{<rule> } &::= \text{ <term> :- <term> .} \\
\text{<query> } &::= \text{ <term> .} \\
\text{<term> } &::= \text{ <number> | <atom> | <variable>} \\
& \quad \quad \quad \quad \quad \quad | \text{ <atom> (<terms>)} \\
\text{<terms> } &::= \text{ <term> | <term>, <terms>}
\end{align*}
\]
A PROLOG Program

- A PROLOG program is a set of **facts** and **rules**.
- A simple program with just facts:

  ```prolog
  parent(alice, jim).
  parent(jim, tim).
  parent(jim, dave).
  parent(jim, sharon).
  parent(tim, james).
  parent(tim, thomas).
  ```
A PROLOG Program

- c.f. a table in a relational database.

- Each line is a **fact** (a.k.a. a tuple or a row).

- Each line states that some person X is a parent of some (other) person Y.

- In GNU PROLOG the program is kept in an ASCII file.
• Now we can ask PROLOG questions:
 | ?- parent(alice, jim).
 yes
 | ?- parent(jim, herbert).
 no
 | ?-
• Not very exciting. But what about this:

<table>
<thead>
<tr>
<th></th>
<th>?- parent(alice, Who).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Who = jim</td>
</tr>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>?-</td>
</tr>
</tbody>
</table>

• Who is called a **logical variable**.

• PROLOG will set a logical variable to any value which makes the query succeed.
A PROLOG Query II

- Sometimes there is more than one correct answer to a query.
- PROLOG gives the answers one at a time. To get the next answer type ;.

```
| ?- parent(jim, Who).
Who = tim ? ;
Who = dave ? ;
Who = sharon ? ;
yes
| ?-
```

NB: The ; do not actually appear on the screen.
| ?- parent(jim, Who).
Who = tim ;
Who = dave ;
Who = sharon ;
yes
| ?-

- After finding that jim was a parent of sharon
GNU PROLOG detects that there are no more alternatives for parent and ends the search.

NB: The ; do not actually appear on the screen.
Prolog example

Depth-first search from a start state X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S) ; dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([], Y, Y).
append([X|L], Y, [X|Z]) :- append(L, Y, Z).

query: append(A, B, [1,2]) ?
answers: A=[] B=[1,2]
 A=[1,2] B=[]
Append

- \texttt{append([], L, L)}
- \texttt{append([H| L1], L2, [H| L3]) :- append(L1, L2, L3)}

- Example join \([a, b, c]\) with \([d, e]\).
 - \([a, b, c]\) has the recursive structure \([a| [b, c]\)]
 - Then the rule says:
 - IF \([b, c]\) appends with \([d, e]\) to form \([b, c, d, e]\) THEN \([a| [b, c]\)] appends with \([d, e]\) to form \([a| [b, c, d, e]\)]
 - i.e. \([a, b, c]\) \hspace{1cm} \([a, b, c, d, e]\)
Expanding Prolog

- **Parallelization:**
 - OR-parallelism: goal may unify with many different literals and implications in KB
 - AND-parallelism: solve each conjunct in body of an implication in parallel

- **Compilation:** generate built-in theorem prover for different predicates in KB

- **Optimization:** for example through re-ordering
 - e.g., “what is the income of the spouse of the president?”
 \[\text{Income}(s, i) \land \text{Married}(s, p) \land \text{Occupation}(p, \text{President}) \]
 - faster if re-ordered as:
 \[\text{Occupation}(p, \text{President}) \land \text{Married}(s, p) \land \text{Income}(s, i) \]
Theorem provers

• Differ from logic programming languages in that:
 - accept full FOL
 - results independent of form in which KB entered
OTTER

- Organized Techniques for Theorem Proving and Effective Research (McCune, 1992)

- **Set of support (sos):** set of clauses defining facts about problem
- Each resolution step: resolves member of sos against other axiom
- **Usable axioms** (outside sos): provide background knowledge about domain
- **Rewrites** (or demodulators): define canonical forms into which terms can be simplified. E.g., \(x+0=x \)
- **Control strategy:** defined by set of parameters and clauses. E.g., heuristic function to control search, filtering function to eliminate uninteresting subgoals.
OTTER

- Operation: resolve elements of sos against usable axioms

- Use best-first search: heuristic function measures “weight” of each clause (lighter weight preferred; thus in general weight correlated with size/difficulty)

- At each step: move lightest close in sos to usable list, and add to usable list consequences of resolving that close against usable list

- Halt: when refutation found or sos empty
Otter: An Automated Deduction System

Contents

1. Description
2. Computational Environment
3. Availability/Version 3.2
4. Documentation
5. Example Inputs
6. Recent Accomplishments
7. Performance on the TPTP Problems
8. Bugs and Fixes
9. Otter-users Mailing List

Related Pages

- Try Otter right now with Son of BirdBrain
- A sample Otter proof
- New Results obtained with Otter and related programs
- MACE, a program that searches for small models
- EPL, a prover for equational logic with associative unification
- Automated Reasoning at Argonne

External Work

- Johan Belinfante's Set Theory Work with Otter
- Some other theorem provers
- Otter magic for Eimacs (from Holger Schauer)
- GOAL, by Guoqiang Huang and Dale Myers
- A student project on Otter by Jackson Paul

Description

Our current automated deduction system Otter is designed to prove theorems stated in first-order logic with equality. Otter's inference rules are based on resolution and paramodulation, and it includes facilities for term rewriting, term orderings, Knuth-Bendix completion, weighting, and strategies for directing
Example: Robbins Algebras Are Boolean

- The Robbins problem---are all Robbins algebras Boolean?---has been solved: Every Robbins algebra is Boolean. This theorem was proved automatically by EQP, a theorem proving program developed at Argonne National Laboratory.
Example: Robbins Algebras Are Boolean

Historical Background

- In 1933, E. V. Huntington presented [1,2] the following basis for Boolean algebra:
 - \(x + y = y + x \). \([\text{commutativity}]\)
 - \((x + y) + z = x + (y + z)\). \([\text{associativity}]\)
 - \(n(n(x) + y) + n(n(x) + n(y)) = x. \) \([\text{Huntington equation}]\)

- Shortly thereafter, Herbert Robbins conjectured that the Huntington equation can be replaced with a simpler one [5]:
 - \(n(n(x + y) + n(x + n(y))) = x. \) \([\text{Robbins equation}]\)
 - Robbins and Huntington could not find a proof, and the problem was later studied by Tarski and his students
Example: Winker Conditions (1979)

- all x, $n(n(x)) = x$
- $\exists 0$ all x, $x + 0 = x$
- all x, $x + x = x$
- 1^{st}: $\exists C \exists D$, $C + D = C$
- 2^{nd}: $\exists C \exists D$, $n(C + D) = n(C)$
Example: Otter: October 10, 1996

- \(n(n(n(y)+x)+n(x+y)) = x \). [Robbins equation]
- \(n(x+y) \neq n(x) \). [denial of 2nd Winker condition]
The Robbins problem---are all Robbins algebras Boolean?---has been solved: Every Robbins algebra is Boolean. This theorem was proved automatically by EQP, a theorem proving program developed at Argonne National Laboratory.

Historical Background

In 1933, E. V. Huntington presented [1,2] the following basis for Boolean algebra:

\[
\begin{align*}
 x + y &= y + x. & \text{[commutativity]} \\
 (x + y) + z &= x + (y + z). & \text{[associativity]} \\
 n(n(x) + y) + n(n(x) + n(y)) &= x. & \text{[Huntington equation]}
\end{align*}
\]

Shortly thereafter, Herbert Robbins conjectured that the Huntington equation can be replaced with a simpler one [5]:

\[
 n(n(x + y) + n(x + n(y))) = x. \quad \text{[Robbins equation]}
\]

Robbins and Huntington could not find a proof, and the problem was later studied by Tarski and his students [6].
Given to the system

Success, in 1.28 seconds!

------------- PROOF -------------

1 n(n(A)+B)+n(n(A)+n(B)) !\equiv A.
2 x=x.
3 x+y=y+x.
4 (x+y)+z=x+ (y+z).
5 n(n(x+y)+n(x+n(y))) =x.
8 x+x=x.
10 n(n(A)+n(B)) +n (n(A)+B) !\equiv A.
13 x+ (x+y)=x+y.
15 x+ (y+z)=y+ (x+z).
23, 22 x+ (y+x)=x+y.
26 n(n(x)+n(x+n(x))) =x.
36 n(n(n(x)+x)+n(n(x))) =n(x).
42 n(n(x+n(y))) +n(x+y) !\equiv x.
52 x+ (y+z)=x+ (z+y).
81, 80 n(n(x+n(x)) +n(x)) =x.
82 n(n(x)+x)+x) =n(x).
125 n(n(n(x)+n(x))+ (n(x)+x)) +x) =n(x+n(x)) +n(x).
139 n(n(x+n(x)) +x) +x) =n(x+n(x)).
166, 165 n(n(x+n(x)) +x) =n(x).
180, 179 n(n(x)+x) =n(x+n(x)).
195 n(n(x)+n(x)) +n(n(x))) =n(x).
197 n(n(x)+ (n(x)+n(x+x))) + (n(x+n(x))+x)) =n(x).
206, 205 n(n(x)+ (n(x)+n(x+n(x)))) +n(x)) =n(x+n(x))+x.
223, 222 n(n(x+y)+ (y+x)) =n(x+ (y+x)).
231, 230 n(n(x)+ (n(x)+n(x+n(x)))) +x) =n(x+n(x)) +n(x).
564, 563 n(x+n(x)) +x=x.
582, 581 n(x+n(x)) +n(x) =n(x).
586, 585 n(n(x)) =x.
606, 605 n(x+n(y)) +n(x+y) =n(x).
621 A!=A.
622 F.

------------------------------ end of proof ------------------
Forward-chaining production systems

• Prolog & other programming languages: rely on backward-chaining
 (i.e., given a query, find substitutions that satisfy it)

• Forward-chaining systems: infer everything that can be inferred from KB each time new sentence is TELL’ed

• Appropriate for agent design: as new percepts come in, forward-chaining returns best action
Implementation

• One possible approach: use a theorem prover, using resolution to forward-chain over KB

• More restricted systems can be more efficient.

• Typical components:
 - KB called “working memory” (positive literals, no variables)
 - rule memory (set of inference rules in form
 \[p_1 \land p_2 \land ... \Rightarrow \text{act}_1 \land \text{act}_2 \land ... \]
 - at each cycle: find rules whose premises satisfied by working memory (match phase)
 - decide which should be executed (conflict resolution phase)
 - execute actions of chosen rule (act phase)
Match phase

• Unification can do it, but inefficient

• Rete algorithm (used in OPS-5 system): example

rule memory:
- \(A(x) \land B(x) \land C(y) \Rightarrow \text{add } D(x) \)
- \(A(x) \land B(y) \land D(x) \Rightarrow \text{add } E(x) \)
- \(A(x) \land B(x) \land E(x) \Rightarrow \text{delete } A(x) \)

working memory:
- \{A(1), A(2), B(2), B(3), B(4), C(5)\}

• Build Rete network from rule memory, then pass working memory through it
Rete network

Circular nodes: fetches to WM; rectangular nodes: unifications

\[
\begin{align*}
A(x) \land B(x) \land C(y) & \Rightarrow add \ D(x) \\
A(x) \land B(y) \land D(x) & \Rightarrow add \ E(x) \\
A(x) \land B(x) \land E(x) & \Rightarrow delete \ A(x)
\end{align*}
\]

\{A(1), A(2), B(2), B(3), B(4), C(5)\}
Rete match

\[A(x) \land B(x) \land C(y) \Rightarrow \text{add } D(x) \]
\[A(x) \land B(y) \land D(x) \Rightarrow \text{add } E(x) \]
\[A(x) \land B(x) \land E(x) \Rightarrow \text{delete } A(x) \]
Advantages of Rete networks

• Share common parts of rules

• Eliminate duplication over time (since for most production systems only a few rules change at each time step)
Conflict resolution phase

- one strategy: execute all actions for all satisfied rules

- or, treat them as suggestions and use conflict resolution to pick one action.

- Strategies:
 - no duplication (do not execute twice same rule on same args)
 - regency (prefer rules involving recently created WM elements)
 - specificity (prefer more specific rules)
 - operation priority (rank actions by priority and pick highest)
Frame systems & semantic networks

- Other notation for logic; equivalent to sentence notation

- Focus on categories and relations between them (remember ontologies)

 Subset

- e.g., Cats → Mammals
Syntax and Semantics

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^\text{Subset}) A (\rightarrow) B</td>
<td>(A \subset B)</td>
</tr>
<tr>
<td>(^\text{Member}) A (\rightarrow) B</td>
<td>(A \in B)</td>
</tr>
<tr>
<td>(R) A (\rightarrow) B</td>
<td>(R(A,B))</td>
</tr>
<tr>
<td>(\square R) A (\rightarrow) B</td>
<td>(\forall x \ x \in A \Rightarrow R(x,y))</td>
</tr>
<tr>
<td>(\square R) A (\rightarrow) B</td>
<td>(\forall x \ \exists y \ x \in A \Rightarrow y \in B \land R(x,y))</td>
</tr>
</tbody>
</table>
Semantic Network Representation

```
Animal
  has
    Skin
  can
    Move

Bird
  has
    Wings
  can
    Fly

Fish
  has
    Feathers

Canary
  can
    Sing
  is
    Yellow

Ostrich
  cannot
    Fly
  is
    Tall
```
Semantic network link types

<table>
<thead>
<tr>
<th>Link type</th>
<th>Semantics</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset</td>
<td>$A \subset B$</td>
<td>Cats \rightarrow Mammals</td>
</tr>
<tr>
<td>Member</td>
<td>$A \in B$</td>
<td>Bill \rightarrow Cats</td>
</tr>
<tr>
<td>R</td>
<td>$R(A, B)$</td>
<td>Bill \rightarrow 12</td>
</tr>
<tr>
<td>$\forall x \ x \in A \Rightarrow R(x, B)$</td>
<td>Birds \rightarrow Legs \rightarrow 2</td>
<td></td>
</tr>
<tr>
<td>$\forall x \ \exists y \ x \in A \Rightarrow y \in B \land R(x, y)$</td>
<td>Birds \rightarrow Birds</td>
<td></td>
</tr>
</tbody>
</table>
Description logics

• FOL: focus on objects

• Description logics: focus on categories and their definitions

• Principal inference tasks:
 - subsumption: is one category subset of another?
 - classification: object belongs to category?
CLASSIC

- And(concept, …)
- All(RoleName, Concept)
- AtLeast(Integer, RoleName)
- AtMost(Integer, RoleName)
- Fills(RoleName, IndividualName, …)
- SameAs(Path, Path)
- OneOf(IndividualName, …)

e.g., Bachelor = And(Unmarried, Adult, Male)