Planning

- Search vs. planning
- STRIPS operators
- Partial-order planning
What we have so far

• Can TELL KB about new percepts about the world

• KB maintains model of the current world state

• Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent, i.e., an agent that constructs plans that can achieve its goals, and that then executes these plans?
Example: Robot Manipulators

- Example: (courtesy of Martin Rohrmeier)
 - Puma 560
 - Kr6
Remember: Problem-Solving Agent

\begin{verbatim}
function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty
 state, some description of the current world state
 g, a goal, initially null
 problem, a problem formulation

state ← UPDATE-STATE(state, p)
if s is empty then
 g ← FORMULATE-GOAL(state)
 problem ← FORMULATE-PROBLEM(state, g)
 s ← SEARCH(problem)
action ← RECOMMENDATION(s, state)
s ← REMAINDER(s, state)
return action
\end{verbatim}

Note: This is offline problem-solving. Online problem-solving involves acting w/o complete knowledge of the problem and environment
Simple planning agent

- Use percepts to build model of current world state

- IDEAL-PLANNER: Given a goal, algorithm generates plan of action

- STATE-DESCRIPTION: given percept, return initial state description in format required by planner

- MAKE-GOAL-QUERY: used to ask KB what next goal should be
A Simple Planning Agent

function SIMPLE-PLANNING-AGENT(percept) **returns** an action

static:
- KB, a knowledge base (includes action descriptions)
- p, a plan (initially, NoPlan)
- t, a time counter (initially 0)

local variables:
- G, a goal
- current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current ← STATE-DESCRIPTION(KB, t)

if p = NoPlan **then**
 G ← ASK(KB, MAKE-GOAL-QUERY(t))
 p ← IDEAL-PLANNER(current, G, KB)

if p = NoPlan **or** p is empty **then**
 action ← NoOp

else
 action ← FIRST(p)
 p ← REST(p)

 Like popping from a stack

 TELL(KB, MAKE-ACTION-SENTENCE(action, t))
 t ← t+1

return action
Search vs. planning

Consider the task *get milk, bananas, and a cordless drill*

Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate
Search vs. planning

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>Lisp data structures</td>
<td>Logical sentences</td>
</tr>
<tr>
<td>Actions</td>
<td>Lisp code</td>
<td>Preconditions/outcomes</td>
</tr>
<tr>
<td>Goal</td>
<td>Lisp code</td>
<td>Logical sentence (conjunction)</td>
</tr>
<tr>
<td>Plan</td>
<td>Sequence from S_0</td>
<td>Constraints on actions</td>
</tr>
</tbody>
</table>
Planning in situation calculus

PlanResult(p, s) is the situation resulting from executing p in s
PlanResult([], s) = s
PlanResult([a | p], s) = PlanResult(p, Result(a, s))

Initial state $At(Home, S_0) \land \neg Have(Milk, S_0) \land \ldots$

Actions as Successor State axioms
Have(Milk, Result(a, s)) \iff
$[(a = Buy(Milk) \land At(Supermarket, s)) \lor (Have(Milk, s) \land a \neq \ldots)]$

Query
$s = PlanResult(p, S_0) \land At(Home, s) \land Have(Milk, s) \land \ldots$

Solution
$p = [Go(Supermarket), Buy(Milk), Buy(Bananas), Go(HWS), \ldots]$

Principal difficulty: unconstrained branching, hard to apply heuristics
Basic representation for planning

• Most widely used approach: uses STRIPS language

• **states:** conjunctions of function-free ground literals (i.e., predicates applied to constant symbols, possibly negated); e.g.,

\[
\text{At(Home)} \land \lnot \text{Have(Milk)} \land \lnot \text{Have(Bananas)} \land \lnot \text{Have(Drill)} \ldots
\]

• **goals:** also conjunctions of literals; e.g.,

\[
\text{At(Home)} \land \text{Have(Milk)} \land \text{Have(Bananas)} \land \text{Have(Drill)}
\]

but can also contain variables (implicitly universally quant.); e.g.,

\[
\text{At}(x) \land \text{Sells}(x, \text{Milk})
\]
Planner vs. theorem prover

- **Planner:** ask for sequence of actions that makes goal true if executed

- **Theorem prover:** ask whether query sentence is true given KB
STRIPS operators

Tidily arranged actions descriptions, restricted language

ACTION: \(\text{Buy}(x) \)

PRECONDITION: \(\text{At}(p), \text{Sells}(p, x) \)

EFFECT: \(\text{Have}(x) \)

[Note: this abstracts away many important details!]

Restricted language \(\Rightarrow \) efficient algorithm

Precondition: conjunction of positive literals

Effect: conjunction of literals

Graphical notation:

\[
\begin{array}{c}
\text{At}(p) \quad \text{Sells}(p, x) \\
\hline
\text{Buy}(x) \\
\hline
\text{Have}(x)
\end{array}
\]
Types of planners

• Situation space planner: search through possible situations

• Progression planner: start with initial state, apply operators until goal is reached
 Problem: high branching factor!

• Regression planner: start from goal state and apply operators until start state reached
 Why desirable? usually many more operators are applicable to initial state than to goal state.
 Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner
State space vs. plan space

Standard search: node = concrete world state
Planning search: node = partial plan

Defn: open condition is a precondition of a step not yet fulfilled

Operators on partial plans:
 add a link from an existing action to an open condition
 add a step to fulfill an open condition
 order one step wrt another

Gradually move from incomplete/vague plans to complete, correct plans
Operations on plans

- Refinement operators: add constraints to partial plan

- Modification operator: every other operators
Types of planners

- **Partial order planner**: some steps are ordered, some are not

- **Total order planner**: all steps ordered (thus, plan is a simple list of steps)

- **Linearization**: process of deriving a totally ordered plan from a partially ordered plan.
A plan is complete iff every precondition is achieved.

A precondition is achieved iff it is the effect of an earlier step and no possibly intervening step undoes it.
Plan

We formally define a plan as a data structure consisting of:

• Set of plan steps (each is an operator for the problem)

• Set of step ordering constraints

 e.g., $A \mathrel{\ll} B$ means “A before B”

• Set of variable binding constraints

 e.g., $v = x$ where v variable and x constant or other variable

• Set of causal links

 e.g., $A \xrightarrow{c} B$ means “A achieves c for B”
POP algorithm sketch

```plaintext
function POP(initial, goal, operators) returns plan

    plan ← Make-Minimal-Plan(initial, goal)
    loop do
        if Solution?(plan) then return plan
        S_{need}, c ← Select-Subgoal(plan)
        Choose-Operator(plan, operators, S_{need}, c)
        Resolve-Threats(plan)
    end

function Select-Subgoal(plan) returns S_{need}, c

    pick a plan step S_{need} from Steps(plan)
    with a precondition c that has not been achieved
    return S_{need}, c
```
POP algorithm (cont.)

```plaintext
procedure Choose-Operator(plan, operators, Sneed, c)
    choose a step S_add from operators or STEPS(plan) that has c as an effect
    if there is no such step then fail
    add the causal link \( S_{add} \rightarrow c \rightarrow S_{need} \) to LINKS(plan)
    add the ordering constraint \( S_{add} < S_{need} \) to ORDERINGS(plan)
    if \( S_{add} \) is a newly added step from operators then
        add \( S_{add} \) to STEPS(plan)
        add Start < \( S_{add} < \) Finish to ORDERINGS(plan)

procedure Resolve-Threats(plan)
    for each \( S_{threat} \) that threatens a link \( S_i \rightarrow^c S_j \) in LINKS(plan) do
        choose either
            Demotion: Add \( S_{threat} < S_i \) to ORDERINGS(plan)
            Promotion: Add \( S_j < S_{threat} \) to ORDERINGS(plan)
        if not CONSISTENT(plan) then fail
    end
```

POP is sound, complete, and **systematic** (no repetition)

Extensions for disjunction, universals, negation, conditionals
Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition achieved by a causal link. E.g., $Go(Home)$ clobbers $At(HWS)$:

Demotion: put before $Go(HWS)$

Promotion: put after $Buy(Drill)$
Example: block world

"Sussman anomaly" problem

Start State

\[\text{Clear}(x) \ \text{On}(x,z) \ \text{Clear}(y) \]
\[\text{PutOn}(x,y) \]
\[\neg\text{On}(x,z) \ \neg\text{Clear}(y) \]
\[\text{Clear}(z) \ \text{On}(x,y) \]

Goal State

\[\text{Clear}(x) \ \text{On}(x,z) \]
\[\text{PutOnTable}(x) \]
\[\neg\text{On}(x,z) \ \text{Clear}(z) \ \text{On}(x,\text{Table}) \]

+ several inequality constraints
Example (cont.)

\[
\begin{align*}
&\text{START} \\
&\text{On}(C,A) \quad \text{On}(A,\text{Table}) \quad \text{On}(B) \quad \text{On}(B,\text{Table}) \quad \text{On}(C)
\end{align*}
\]

\[
\begin{align*}
&\text{FINISH} \\
&\text{On}(A,B) \quad \text{On}(B,C)
\end{align*}
\]
Example (cont.)

\[\text{On}(C,A) \quad \text{On}(A,\text{Table}) \quad \text{Cl}(B) \quad \text{On}(B,\text{Table}) \quad \text{Cl}(C) \]

\[\text{Cl}(B) \quad \text{On}(B,z) \quad \text{Cl}(C) \]

\[\text{PutOn}(B,C) \]

\[\text{On}(A,B) \quad \text{On}(B,C) \]

\[\text{FINISH} \]
Example (cont.)

\[\text{On}(C,A) \text{ On}(A,\text{Table}) \text{ Cl}(B) \text{ On}(B,\text{Table}) \text{ Cl}(C) \]

\[\text{Cl}(A) \text{ On}(A,z) \text{ Cl}(B) \]

\[\text{Cl}(B) \text{ On}(B,z) \text{ Cl}(C) \]

\[\text{PutOn}(A,B) \]

\[\text{PutOn}(B,C) \]

\[\text{On}(A,B) \text{ On}(B,C) \]

\[\text{FINISH} \]

\[\text{PutOn}(A,B) \text{ clobbers Cl}(B) \Rightarrow \text{order after PutOn}(B,C) \]
Example (cont.)