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Abstract 
In this paper we describe an approach for inferring the 
body posture using a 3D visual-hull constructed from a 
set of silhouettes. We introduce an appearance-based, 
view-independent, 3D shape description for classifying 
and identifying human posture using a support vector 
machine. The proposed global shape description is 
invariant to rotation, scale and translation and varies 
continuously with 3D shape variations. This shape 
representation is used for training a support vector 
machine allowing the characterization of human body 
postures from the computed visual hull. The main 
advantage of the shape description is its ability to capture 
human shape variation allowing the identification of body 
postures across multiple people. The proposed method is 
illustrated on a set of video streams of body postures 
captured by four synchronous cameras. 

1. Introduction 
Multimodal interaction systems represent a considerable 
shift from classical windows, icons, menus and pointing 
(WIMP) interfaces. Gesture and speech represent the 
main component of such interface as they correspond to 
the foundation of natural human communication. While 
speech recognition systems are commercially available, 
gesture recognition is still in its infancy. This is partially 
due to the fact that speech modality is linear and very 
structured while gesture is a spatial modality that is still 
challenging to capture and interpret.  
Human body motion tracking and analysis has received a 
significant amount of attention in the computer vision 
research community in the past decade. This has been 
motivated by the ambitious goal of achieving a vision-
based perceptual user interface in which the state and the 
action of the user(s) are automatically inferred from a set 
of video cameras. The objective is to extend the current 
mouse-keyboard interaction techniques in order to allow 
the user to behave naturally in an immersed environment, 
as the system perceives and responds appropriately to user 
actions. Understanding human action in an environment is 
a challenging task as it involves different granularity in its 
analysis and description according to the targeted 
application. For example, describing a human activity in 
term of its trajectory constitutes a first level of 

representation, which may be satisfactory for surveillance 
applications but remains quite insufficient for 
understanding human gesture in an interactive 
environment. Indeed, in such situations richer descriptions 
are required in order to understand the human activity and 
recognize the performed gestures. In this paper we will 
focus on the capture and the description of human body 
3D shape for the identification of human body posture. 
We believe that posture recognition is a first step towards 
gesture recognition. Indeed gestures can be decomposed 
into a set of “basic” postures that characterize temporal 
evolution of the performed gesture. 

1.1. Previous Work 
Various methods have been proposed for the estimation 
and analysis of full-body structure (see [8] and references 
therein). The objective is to develop real-time interactive 
systems with more sophisticated 2D and 3D tracking and 
representations [11][17]. Understanding the human 
motion from a monocular image sequence is challenging 
since only the 2D projection of these arbitrary motions is 
captured. Recently several researchers focused on the 
inference of 3D body model from a monocular camera 
using a human body model [6][15] or temporal templates 
[25]. The main drawback of these techniques is that 
roughly one third of the degrees of freedom of the human 
model are nearly unobservable due to motion ambiguities 
and self-occlusion. Multiple views are therefore required 
to disambiguate or identify the human motion.  

Several approaches have been proposed for 
estimating human postures in the 3D case. These 
approaches rely on two to an array of cameras to capture 
the human shape and motion [7][12] or use 3D body 
scanners [19]. The body postures are then characterized 
through the use of shape descriptors or by characterizing 
body joints configurations. While the use of an articulated 
body model provides accurate measurements of body 
joints configurations, it requires intensive computing and 
state of the art techniques still lack robustness and 
accuracy for rapid hand motion.  

1.2.  Outline of the Proposed Approach 
We present in this paper a shape posture identification 
technique based on the classification of the human body 
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shape. The human body 3D shape inferred from a set of 
silhouettes and the corresponding visual hull is 
characterized by a shape description defined by a 
distribution.  We introduce in this paper a 3D shape 
description allowing identifying various body postures.  
The shape description accounts for variability in people’s 
body proportions and provides invariance to translation, 
rotation and scale. Continuity properties are also satisfied 
providing a robust shape descriptor that exhibits localized 
variation of the distribution for localized 3D shape 
variation. Moreover, the 3D shape descriptor we propose 
can selectively encode privileged axis of symmetry or 
desired rotation invariance. These properties are 
important for human posture identification, since the 
human body possesses a symmetry axis.  

Identifying body postures from its 3D shape is 
challenging as the 3D description of the shape has to 
account for shape variability in characterizing a posture. 
Indeed, several people will perform similar posture 
differently and therefore identifying a posture from the 
2D/3D shape descriptions will require a learning step. We 
present an appearance-based, learning formalism that is 
view point independent and uses a 3D shape descriptor of 
the visual-hull for classifying and identifying human 
posture. The proposed method does not require an 
articulated body model fitted onto the reconstructed 3D 
geometry of the human body. In fact, it complements the 
articulated body model since we can define a mapping 
between the observed shape and the learned descriptions 
for inferring the parameters of the articulated body model. 
In the following section we will present the shape 
descriptor considered and the learning algorithm based on 
Support Vector Machine (SVM).Our approach is based on 
the integration of 2D silhouettes captured by two or more 
cameras and the description of the human body shape 
using a 3D shape descriptor generated from the visual hull 
of the human body.  An overview of the proposed 
approach is given in Figure 1. 

Figure 1: Overview of the proposed approach. 

The paper is organized as follows; section 2 describes the 
2D shape descriptor and its generalization to 3D. Section 
3 presents the body postures classification and 
identification based on SVM approach. Section 4 exposes 
the experimental side of this work. It describes the 
definition of the model postures and illustrates the 
classification results. The paper is concluded by 
discussing the results, potential improvements and future 
work. 

2. Human Body Shape Description 
Shape descriptors have been well studied in various fields 
as they are used for determining the similarity between 
two shapes. The derived descriptors can be classified in 
terms of the shapes they characterize i.e. 2D contours, 3D 
surfaces, 3D volumes... For example, bending energy 
functions, spin images [10], shape context descriptors [1]. 
These descriptors were mainly used for shape matching 
and therefore focused on characterizing the local 
properties of the shape. Global models, assume a 
description of the objects into a set of features or parts 
segment. Common descriptions rely on parametric models 
[16], deformable regions [2][3], shock graphs [14] or 
wavelet decomposition [19] and spherical harmonics [22]. 
Shape similarity is then measured by comparing location 
of features and their spatial distributions. The 
performances of these approaches depend on the difficult 
task of segmenting the shape into its corresponding parts. 
These techniques perform well in the case of shapes of 
fixed configurations and are not suitable for modeling 
variability in the observed shapes such as the 3D visual 
hull of a gesturing person. Finally, a third description 
approach is based on modeling the geometric distribution 
of the shape properties such as histograms of angles [9] 
and distances between pair of arbitrarily sampled points 
[23], ... These descriptions are histogram based and do not  
perform well as the localization of the features is lost in 
the statistical representation used.  

We present a statistical shape description model 
that preserves the localization of the geometric features 
considered. This global representation allows a robust 
description of shape that accommodates for variation of 
the shape. Indeed, as one would expect, small shape 
variation should induce a small change in the object 
description. Moreover, this variation is localized and does 
not interfere with the global representation of the object. 
These properties of the proposed shape description are 
crucial for efficiently representing the human shape and 
its variations. 

The proposed shape descriptor describes a 3D 
polygon with regard to a reference shape. The reference 
shape considered characterizes the properties of the 
descriptor. Using a circle as reference for a 2D shape will 
guarantee rotation invariance and similarly a sphere for a 
3D shape. This allows to selectively choosing the 
properties of the descriptor according to the desired 
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application.  The use of a cylinder as reference shape will 
guarantee rotation invariance only along its main axis and 
will enforce an axial symmetry. These properties are 
particularly interesting for human body shape descriptors. 
Indeed a human body shape has such properties.  

Our shape description approach is based on the 
3D visual hull reconstructed from the detected 2D 
silhouettes. Let’s first describe the proposed description 
scheme in 2D and then generalize it to 3D visual hulls. 

2.1. 2D Shape Description 
Given a 2D silhouette of an object we compute a 
reference circle  defined by the centroid of the 
silhouette and its main axis. This circle is uniformly 
sampled into a set of control points  . We then consider 
a polar encoding of the projection of the silhouette onto 
the set of points . For every point of the silhouette 
we compute the polar encoding of , defined 

by

RC
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infer a binned polar distribution where in each bin
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We then store the number of silhouette points 
projected onto that bin. In Figure 2 we show the 

contribution of a single point  to the shape descriptor. 
The geometry of the bin is depicted in hashed green lines. 
The 2D shape description is obtained by adding and 
normalizing the set of descriptions derived from each 
point : 
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Figure 2: Illustration of the global shape descriptor of 
a 2D silhouette 

The shape description derived here is independent of the 
scale of the silhouette as the description is normalized by 
the radius of the considered reference circle . The 
translation invariance is obvious while the rotation 
invariance is also guaranteed. Indeed, rotating a silhouette 
in the image plane implies a cyclic permutation of the 
points  leaving the signature unchanged. In Figure 3 we 
show an example of such representation where the 

signature function, in polar coordinates was centered on 
the centroid and rendered in Cartesian coordinates. Note 
that this only a visualization of the representation map. 
The real shape signature is in the polar coordinate system. 

RC

iP

 
(a) (b) (c) 

Figure 3: Example of a 2D global shape descriptor of a 
walking person. (a) the 2D silhouette. (b) 2D shape 
descriptor reprojected on the silhouette. (c) 2D shape 
descriptor in polar coordinates.  

2.2.     3D Shape Description 
The 2D shape description we described previously can be 
generalized to 3D without losing its properties (ie. scale, 
rotation and translation invariance). In the 3D case, 
instead of considering a single human body silhouette, a 
set of silhouettes are acquired synchronously. The 3D 
shape description is derived in two steps: 

1. Construct the triangulated visual hull surface 
from the set of silhouettes.  

2. Derive the 3D shape description of the human 
body based on the triangulated surface 
representation of the visual hull. 

2.2.1. 3D human body visual-hull reconstruction 
Integrating multiple silhouettes acquired simultaneously 
from different view points allows generating a 3D visual-
hull of the human body. The visual-hull of an object is the 
closest approximation of the 3D object which can be 
obtained from the detected 2D silhouettes [13]. Assume 
that the person is viewed from a set of cameras. Each 
silhouette defines a cone characterized by all the rays 
from the camera origin to the points on the silhouette. The 
intersection of the cones generated by the multiple 
cameras defines the visual hull of the object.  
 

 
Figure 4: The body silhouette detection. The blue 
regions correspond to the detected and removed 
shadow, green line corresponds to the detected edges 
and the pink region represents the final human 
silhouette 
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Human silhouettes are extracted by calculating a 
Gaussian-based model of the static scene and then 
comparing each new observation to the background 
model distribution. Such approach detects pixels where a 
motion was observed, as well as the shadows and 
reflections.  However, in indoor environments the 
shadows cast by a diffuse light do not have strong 
boundaries. Therefore, combining edge properties to color 
variations allows us to remove the pixels belonging to 
cast shadows and segment accurately the foreground 
pixels. In Figure 4 we show an example of such detection 
approach. 

The integration of the detected silhouettes 
provides a 3D representation of the human body. A 
polyhedral representation of the detected silhouettes and 
their integration will provide a polyhedral approximation 
of the visual hull. The visual hull is computed using a 
polyhedral representation for the visual hull directly from 
the detected silhouettes [20]. If the number of silhouettes 
considered is large the visual-hull provides a good 
approximation of the 3D shape. This polygonal 
approximation of the shape can be computed in real time 
and also converted into a triangular description usable by 
a triangular processing framework. In Figure 5 we show 
an example of a 3D visual hull computed from three 
views. 

 

 

 

 

Figure 5: 3D visual-hull reconstructed from the 3 
silhouettes shown on the left 

2.2.2. 3D Shape Description 
The generalization of the 2D shape descriptor to 3D is 
performed by defining a reference shape containing the 
visual hull surface and measuring the contribution of each 
triangle of the visual hull to the shape description inferred 
from a set of points lying on the surface of reference. The 
selection of the surface of reference allows choosing the 
properties of the descriptor according to the desired 
application.  The use of a cylinder as reference shape will 
guarantee rotation invariance only along its main axis and 
will enforce an axial symmetry while a sphere will 

provide 3D rotation invariance and point symmetry.  
These properties are particularly interesting as they allow 
deriving an application dependent 3D shape description. 
For human body posture recognition, the use of a cylinder 
as reference shape enforces body axial symmetry while 
for a generic 3D object description, a sphere will be more 
appropriate.  

The computation of the 3D shape description is 
similar to the 2D case. The main difference between the 
2D and 3D is the representation of the human body. In 
2D, it is represented by all the points on the silhouette. 
But in 3D, the representation is based on the 3D triangular 
visual hull surface constructed from a set of silhouettes. In 
order to use the shape description method we proposed 
for the 2D case, we need to sample the visual hull surface 
into a set of points, which are dense enough to contain all 
the information of the visual hull. Because the size of the 
triangular visual hull surface is not uniform and depends 
on the polygonal approximation of the silhouettes, we 
need more sample points on the surface other than the 
triangle vertices. One could refine the triangular 
description by subdividing the 3D visual hull. This will 
increase dramatically the algorithmic complexity of the 
algorithm and create redundant mesh description. Instead, 
we have chosen to sample uniformly the triangles of the 
visual hull and encode the relationships between the 
sampled points and the reference surface considered.  

Given a set of points { }mjQ j ..0, =  
corresponding to a sampling of the visual hull and a set of 
control points { }niPi ..0, =  sampled uniformly on the 

surface of the reference shape . We compute, for each 
control point , the distribution of 3D spherical 
projections of the set of points . The spherical encoding 
of , defined by

RS
iP

jQ

ji QP ),,( ϕθrPQ ij =− . For each point 

we then infer a binned spherical distribution where in 
each bin

iP
( )ϕθ ,,r  we store the number of 3D points  

projected onto that bin. The 3D shape description is 
obtained by adding and normalizing the set of 
descriptions derived from each control point .  

jQ

iP
In Figure 6 we show the spherical shape distribution 
obtained by encoding a 3D visual hull with regard to a 
cylinder and a sphere. The shape distribution varies 
considerably as different shape properties are captured by 
the two reference surfaces.  

2.3. Similarity Properties 
The purpose of defining a shape description is the ability 
to characterize surfaces’ local and global similarities, as 
well as comparing various 3D surfaces.  The shape 
descriptor of a surface is defined by a distribution in the 
spherical coordinate space. Comparing shapes is therefore 
reduced to comparing the corresponding distributions. 
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(a) (b) 

Figure 6: 3D visual hull and the shape distribution of 
the surface using a cylinder (a) and a sphere (b) as 
reference surface.  

Measuring the similarity among distribution can be 
performed by various methods defining distance 
functions. We chose to characterize similarity between 
shape distributions by measuring the relative entropy of 
the distributions. Given two distributions  andf g , the 
relative entropy, also called the Kullback-Leibler 
distance, is defined by: 

g
ffgfd log),( ∫=  

Even though this distance does not satisfy the triangle 
inequality (it is not a true metric) it has many properties 
of distance functions and is equals to zero only if gf = . 
In order to guarantee symmetry of the similarity measure 
between two distributions we have derived the following 
distance: 

( ) ( )
g
fgffgdgfdgfD log

2
1),(),(

2
1),( ∫ −=+=

 

This new distance function illustrated in Figure 7 is used 
in the remaining of the paper for measuring the similarity 
between two surfaces.  

  
(a) (b) 

Figure 7: Graphs of the distance functions considered. 
(a) Kullback-Leibler distance and (b) its symmetric 
counterpart. 

We have used the above distance function to show that 
the global descriptor is invariant to scale, translation, and 
rotation. Also small variations of the shape of the human 
body create small localized variations of the shape 
description (continuity). The robustness of the description 
with regard to noise in the computed visual hull is 
illustrated in Figure 8. We have added a Gaussian noise to 
the vertices of the triangles of the visual hull depicted in 
Figure 6.a and measured the similarity of the shapes. The 
noisy visual hull and the corresponding shape distribution 
are illustrated in Figure 8. A comparison of the similarity 
between the original visual hull and its noisy counterpart 
yielded a distance value less than for the 12 body 
postures considered.   

210−

 

 

(a) (b) 

(c) (d) 

Figure 8: Stability of the shape descriptor with regard 
to noisy information.  (a) noisy visual hull ( 2=σ ) 
and its shape descriptor (b). (c) and (d) display the 
polar spherical distributions for a selected radius 
(r=0.1) of the noisy visual hull depicted in (a) and the 
original one illustrated in Figure 6.a.   

In Figture.9, we show the 3D descriptor for another body 
posture. It depicts the variability of the shape signature 
according to the selected reference shape and its ability to 
capture body shape properties. In the remaining of the 
paper, we have considered the cylinder as a reference 
shape for deriving the shape descriptors of the computed 
visual hull. This permits to enforce the axial symmetry of 
the body shape.  
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(a) Original images 

 
 

(b) 

 
 

(c) 

Figure 9: Example of shape descriptors derived using 
a cylinder and a sphere as reference shape. In (b) and 
(c) we display the visual hull and the spherical shape 
descriptor viewed from above and the side. 

3. Human Body Posture Inference 
Deriving the human posture from its silhouettes in 2D or 
from the reconstructed shape in 3D is a challenging task 
as it requires taking into account posture variability across 
people. A method commonly used relies on the articulated 
body model in order to infer the human posture. The 
recovery of an articulated body model still requires the 
interpretation of the 45plus-degree of freedom in order to 
infer the human posture. This interpretation has to take 
into account posture variability and errors in the 
estimation of the articulated model in order to perform an 
efficient analysis of the 45plus-D parameter space. In the 
following sections we show that the global 3D shape 
descriptor introduced in this paper can be used for human 
body posture inference. We use a Support Vector 
Machine formalism [18] to train and classify the set of 
heterogeneous information provided by the 3D shape-
based descriptor. The main advantage of using a SVM is 
its ability to compress the information contained in the 
training set, since only support vectors are required for the 
classification. This allows us to reach near real-time 
performances. 

3.1. SVM-based Classification 
The main issues in using a machine learning approach are 
the selection of the features used as training data set and 
the choice of the data set for training the model. While an 
articulated body model provides a natural set of features 
(joints and limbs) to consider for training purposes, it is 
time consuming and it is difficult to acquire the 45plus 
degrees of freedom of the selected model. Conversely, 3D 
shape based descriptors are very easy to collect but a 
correct representation of the shape has to be selected in 
order to be significant for learning.  

The problem we are addressing here is the 

definition of a decision function that from a set of 
observations }0,{ NixXx i K==∈ and the corresponding 
labels }0,{ MiyYy i K==∈ will make accurate 
classification of unseen values of x . A very successful 
approach for solving this supervised learning problem is 
the support vector machine (SVM) [18]. In this work we 
are interested in a classification of the observed human 
postures; therefore the set of available labels is limited to 

}1,1{−=Y  representing respectively non-posture and 
posture descriptions. The decision function is defined by 
the SVM is:  
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The coefficients define a maximal margin hyper-plan 
in the high dimensional feature space where the data are 
mapped through the non linear function 

0
iα

φ such 
that ( ) ( ) ( )jiji xxKxx ,=•φφ . Various kernels K  are 
commonly used (linear, exponential, polynomial...) we 
will use a linear kernel K  using therefore a linear 
mapping between the feature space (posture we defined) 
and the representation space (shape description). 

3.2. Training and Classification 

3.2.1. Selection of Body Postures 
We have defined a set of 12 postures that need to be 
identified by the system. The selected postures are shown 
in Figure 10. The selected postures focus on hand gestures 
and were chosen in order to build a representative set of 
postures likely to be observed as people interact with a 
system using hand gestures. 
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Figure 10: The set of 12 postures we defined in our 
system.

3.2.2. Posture training and classification 
The SVM is trained using 3D shape descriptors defined in 
the previous section. The shape descriptor is inferred from 
the 3D visual hull obtained by integrating multi-view 
silhouettes acquired by 4 synchronous cameras. The shape 
descriptor is presented by a vector:  

S= {(index of the bin, density of points in the bin)}. 
The visual-hull corresponding to the detected silhouettes 
and their shape descriptors are computed at a frame rate 
of one frame per second.  The system was trained on the 
chosen 12 postures by considering approximately 2000 
samples per posture.  

4. Experimental Results 
We have used the proposed 3D shape description 
technique for identifying user’s postures while performing 
specific gestures. The experimental settings contains four 
synchronized cameras allowing to extract in real time the 
human body silhouettes and infer the 3D visual hull at one 
frame per second. In Figure 11 we show the output of the 
system. 

 In our experiments, the number of control points 
used to generate the shape descriptor is 5×16. Less control 
points cannot accommodate all rotation variation, while 
more control points do not significantly improve the 
performances but require more computing. The selection 
number of bins depends on the complexity of the 
predefined postures. In our case we have used the 
following: 10(r)×10(θ)×10(ψ). 

 
Figure 11: Illustration of the system’s output. The 

thumbnail of the recognized posture is highlighted.   

The detected silhouettes and the corresponding visual hull 
are displayed, while at the bottom, the system highlights 
the image thumbnail corresponding to the recognized 
posture. The performed postures are recognized by the 
system even though the visual hull is the detected 
silhouettes are corrupted by reflections on the wall. 
Moreover, the position and orientation of the considered 
persons are different from the one used for training the 
classifier. These results show the capability of the system 
to handle people that were not used for training and 
handle variations in body proportions and the person’s 
pose while performing a specific gesture.  

4.1. Identification Rate 
We have evaluated the performances of the system for 
several people. None of the persons tested were 
considered in the training phase. In fact the SVM was 
trained using postures from one single person. Therefore, 
we expect the recognition rates to be improved as we 
broaden the set of people considered for training the 
SVM-based classifier. In table 1 we show the recognition 
rates obtained on 20 video sequences (containing each 
about 2000 frames) of 4 different persons. For each 
posture the rates displayed correspond to averages of the 
obtained recognition rates.  
Person
 
 
 
Posture 

1 2 3 

 

4 

0 99.8 98 98.3 98.1 
1 95.4 96.5 96.0 94.4 
2 96.2 99 86 83.0 
3 93.9 98.6 95.4 92.1 
4 85.5 90.1 87.3 85.7 
5 89.6 86 88.6 97.3 
6 96.6 92.8 89.2 89.0 
7 88.6 94.2 86.0 84.5 
8 98 97.3 95.2 94.2 
9 99 91.7 96.4 91.7 
10 87.5 82 90.8 81.3 
11 96.3 94.2 80.0 92.5. 

Table 1.  Identification rates of the 12 postures for 4 
different persons. Only person 1 was used for training 
the SVM. 

5. Conclusion 
Identifying user postures as a first step towards gesture 
recognition is a challenging task. The challenge here was 
to define a 3D shape description that allows a robust 
characterization across users without requiring a specific 
training for each person. The presented experimental 
results illustrated the ability of the system to recognize a 
variety of human body posture. We have started 
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investigating the characterization of basic gestures or 
gestemes as a transition states models of some canonical 
body postures. Our first experimental characterizations of 
the temporal transitions are very encouraging and indicate 
a strong temporal structure in gesture inference.  
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