
 1

Proteus: A System for Dynamically Composing and
Intelligently Executing Web Services1

Shahram Ghandeharizadeh, Craig A. Knoblock, Christos Papadopoulos, Cyrus Shahabi,
Esam Alwagait, José Luis Ambite, Min Cai, Ching-Chien Chen, Parikshit Pol, Rolfe

Schmidt, Saihong Song, Snehal Thakkar, and Runfang Zhou

University of Southern California

 Los Angeles, California 90089-0781
Abstract

Many organizations envision web services as an enabling
component of Internet-scale computing. A final vision of web
services is to realize a dynamic environment that identifies,
composes and executes web services in response to a query. This
vision shapes the design and implementation of Proteus. In
addition to describing Proteus’ novel components, this paper
outlines its initial system design.

A. Introduction

A web service is either a computation or an information service with a published interface. Its essence
is a remote procedure call (RPC) that consumes and processes some input data in order to produce output data.
It is a concept that renders web applications extensible: By identifying each component of a web application as
a web service, an organization may combine these web services with others to rapidly develop a new web
application. The new web application may consist of web services that span the boundaries of several (if not
many) organizations. Proteus2 is a system to: a) dynamically compose plans that integrate web services, b)
execute a plan as efficiently as possible in the presence of failures and web service migrations, and c) monitor
and show the status of different components at runtime.

As a motivating example, consider the problem of identifying a building in an image. This can be done
by combining web services for imagery (i.e.,TerraService) with services for the property tax sites and online
phone books (see the description of our previous work, Section B). One could write a program to integrate
information from the appropriate web services to solve this query for a given area, but the challenge is that there
are approximately a thousand property tax sites and hundreds of telephone books for the US and each of them
has different levels of coverage. For example, in New York State there is one tax service, but in California there
are dozens. A better alternative is for a system such as Proteus to dynamically identify, compose, and execute
the appropriate web services to process a query. First, Proteus would identify the relevant web services. In our
example, relevant web services would include Microsoft’s TerraService for imagery, the property tax and
telephone book services for the given area, and a geocoding service to convert street addresses into lat/long
coordinates. Second, it identifies the most efficient plan and executes it to produce a timely response. Third, it
monitors and controls the execution of a plan in support of physical-location-independence, which means the
plan will execute as long as a copy of the referenced web services is available. This criterion is important
because it frees the end user (and programmers) by requiring the system to resolve the location of a web service
in the presence of both a) web service migrations to balance load, and b) node failures that render a copy of a
web service unavailable. In order to monitor the execution of a plan, Proteus will provide visualization tools
that query the run-time components for their status.

We have investigated several key components of Proteus including converting semi-structured sources into
web services, combining web services [Thakkar et al., 2002], and techniques to efficiently execute those
services using compression [Cai et al. 2002, Ghandeharizadeh et al. 2002b], streaming, and a Dependable Web

1 This research is supported in part by an unrestricted cash gift from Microsoft Research.
2 Proteus is a Greek sea god with the ability to change shape at will and predict the future.

 2

service (DeW) framework [Ghandeharizadeh et al. 2002c]. This paper provides an overview of these techniques
and outlines our immediate future research directions.

B. Dynamic Composition of Web Services
This section describes: 1) techniques to convert online sources into web services using our previous work on
wrapper building tools, 2) automatic techniques for composing XML web services from existing web sources.
Wrapper building tools facilitate building a wrapper around a web source with minimal user assistance. A
wrapper provides a uniform access method to extract and query information from a web source [Knoblock et al.
2000]. We have built a tool using the Microsoft.Net framework to convert existing wrappers to XML web
services. We utilized the above-mentioned tools to compose several web services from existing web sources
such as property tax web sites, white pages, Yahoo weather, etc.

We also investigated a media tor-based approach to dynamically compose new web services from existing
web services. Initial work on our approach concentrated on manually modeling web services as data sources in
the mediator’s domain model and on generating integration plans to answer user queries by integrating
information from different web services [Thakkar et al. 2002]. We demonstrated the usefulness of these
techniques by building a geocoder web service to find very accurate geographic coordinates for a given address
(http://apollo.isi.edu/Geocoder/Service1.asmx). Our geocoder utilizes information from the Tigerline files and
various property tax web services to find more accurate geographic coordinates compared to the other geocoders
available on the web.

We utilized our tools to develop the BuildingFinder application, see
http://apollo.isi.edu/BuildingFinder/WebForm1.as

px, which identifies buildings in a satellite image
and finds information about the buildings such as,
name of the person living in the building, the
address of the building, etc. The Building Finder
application superimposes the buildings and road
network on the satellite imagery obtained from
Microsoft TerraService web service. As shown in
Figure 1, the Building Finder application
identifies buildings in the satellite image with a
high accuracy by combining data from various
property tax web services, white page web
services, and a geocoder.

C. Efficient Execution of Plans

One may improve the execution of a plan in a
variety of ways ranging from minimizing the

number of web services invoked by an integrated plan to identifying the fastest replica of a web service to
process the plan. With XML emerging as the standard of choice for data interoperability among web services,
we started our investigation by focusing on efficient transmission of XML messages. Compression techniques
such as Zip and XMill reduce message size. In [Cai et al. 2002], we showed that with a message M1, XMill
compressed XML-formatted M1 is at times smaller than the Zip compressed binary-formatted M1. Next, we
showed the tradeoff between the overhead and benefit of using compression [Ghandeharizadeh et al. 2002b].
The overhead is the time required to a) compress a message prior to its transmission, and b) uncompress the
message upon its arrival at the client. Its granularity is units of time and dependent on the processor speed of the
participating machines, i.e., the machines hosting a producer and a consumer, respectively. Compression’s
benefit is the reduced message size that results in a shorter transmission time. This benefit can also be measured
in units of time and its value depends on network characteristics such as latency, loss-rate, and bandwidth. We
have developed a middleware, termed Network Adaptable Middleware (NAM), that decides when to compress a
message with the objective to minimize the time required to deliver a message from a producer to a consumer.
In other words, NAM strives to ensure the overhead of compression does not outweigh its benefits. It is
designed to be general purpose and adaptable to any application. For example, it employs a Cubic regression

Figure 1 The Building Finder Application

 3

technique to use the previously observed compressed message sizes and compression times to estimate elapsed
times.

In [Ghandeharizadeh et al. 2003], we reported on the performance of NAM with a variety of message
sizes and processor speeds when compared with environments that employ either 1) uncompress transmission
always, representative of today’s common practice, 2) Zip compressed transmission always, 3) XMill
compressed transmission always. The results demonstrate the superiority of NAM. As a sample of these
results, Figure 2 shows the percentage improvement obtained by NAM when compared with these alternatives
for different network configurations. These configurations are representative of Internet connections that
provide either a) a low, moderate, or high latency, b) a low, moderate, or high bandwidth, or c) a combination of
these. For a low latency (7 msec), moderate bandwidth connection (90 Mbps), we used an environment
consisting of a client at the University of San Diego invoking a Web Service at USC. This is termed the

Southern California configuration, SC. For a
moderate latency connection (90 msec), our
experimental environment consisted of
clients located on the east-coast invoking
the web service at USC. We analyzed both a
moderate bandwidth connection with the
client located at the University of
Massachussets-Amherst, and a low
bandwidth connection (1 to 1.2 Mbps) with
the client located at ISI-East. For a high
latency (178 msec), moderate bandwidth
connection we employed a client located at
the University of Saarlandes in Germany.
This configuration is termed Trans-Atlantic.
We were pleasantly surprised to observe
comparable bandwidths (~ 90 Mbps) for
both Trans-Atlantic and intra-continent US
connections. Finally, we analyzed an
intranet configuration using the gigabit

Ethernet switch. This is a low latency (0.3 msec), high bandwidth (~300 to 500 Mbps) connection. The results
demonstrate that NAM employs uncompressed transmission when latency is negligible, i.e., 1Gbps and SC, to
provide substantial savings when compared with a compress-always environment. With a high latency
connection, NAM is flexible enough to switch to a compressed transmission to provide substantial savings when
compared with an uncompressed transmission always which is representative of today’s common practice.

D. Physical Location Independence

With a collection of nodes hosting many different web services, the overall performance is maximized when
the system load is evenly distributed across the nodes. In a dynamic environment, this is accomplished by
migrating web services from a busy server to an idle one [Sommers et al. 2001]. A challenge is how to ensure
remote applications are not impacted by this change in the physical location of migrating web services
[Ghandeharizadeh et al. 2002a]. (This issue also arises with node failures.) To address this challenge, we have
developed a Dependable Web (DeW) framework that advocates the following straightforward concept: separate
the functionality provided by a web service from the infrastructure that provides it with additional information to
recover from an anticipated change such as web service migrations and node failures [Ghandeharizadeh et al.
2002c]. The infrastructure is realized using a cloud of DeW registries that listen on a known address. We
represent a dynamic change as an exception. The handlers for these exceptions are stored in the DeW registries.
Upon encountering an anticipated change, a client (or a participating web service) component raises a DeW
exception, contacts a DeW registry for its handler, downloads the handler and executes it in order to recover. At
the time of this writing, we are focused on an implementation of the DeW registries using a peer-to-peer
network such as Pastry developed at Microsoft Research.

Figure 2: NAM with 1 GHz processor

 4

E. Future Research
We are investigating the design and implementation of Proteus using a variety of frameworks: Global XML
Web Service Architecture (GXA) from Microsoft [Box 2002], XL [Florescu et al. 2003], the Business Process
Execution Language (BPEL4WS) [Curbera et al., 2002], etc. It will automatically integrate existing web
services to construct new services, such as the Building Finder service. Here, we describe Proteus on various
specifications of GXA and our previous research on both composing web services from web sources and on
efficiently and reliably executing web services.

In order to support the dynamic composition and execution of web services, we plan to investigate the
following key research challenges using Proteus: (1) utilize the WS-Inspection specification to provide
information that models the web services as data sources, (2) find existing web services using the WS-
Inspection specification of the GXA and UDDI at run-time, (3) generate an integration plan for a new web
service using a mediator and encode the integration plan using the WS-Routing specification of the GXA, and
(4) execute the plan efficiently using NAM (and streaming) in a physical-location-independent manner by using
DeW in combination with WS-Referral and other extensions to WSDL.

Figure 3 shows a possible
architecture for implementation of Proteus.
In this illustration, wrappers are used to
convert various web sources into web
services. WS-Inspection will be used to
discover existing services and model them
as data sources. When a client submits a
query to Proteus, the system invokes
different web services to generate
a response for the query. Proteus employs
the Web Service Composition to identify
the relevant web services. Next, it generates
a plan to query relevant data from various
web services. The “Web Service
Execution” engine executes this plan in a
physical-location-independent manner. If it
is required to establish intermediate web
services that integrate data from multiple
sources, it will employ NAM to facilitate
efficient transmission of data.

We plan to develop a
representation scheme to model the

information and/or capabilities provided by a web service. For information services, the representation scheme
will cover information such as the type of information, the attributes provided, the binding patterns required, and
the coverage of the information by the web service. For services that support transactions, such as a book
buying service, the representation scheme must also describe the capabilities of the service. We plan to use
ontology of services for this purpose. For both information and transaction services, the representation will be
stored within the WS-Inspection specification for the web service.

Using this representation scheme, we will then develop a framework that can automatically locate different
web services using UDDI’s Inquiry method and WS-Inspection document for the web service. This will allow a
user to publish a new service that has been appropriately described and have this service immediately available
to Proteus to integrate into composed services.

Finally, we will develop a mediator framework for Proteus that can utilize the WS-Inspection document of
the web service to dynamically build a plan that composes the available web services to handle requests that
could not be answered by an individual service. The mediator framework will utilize the data source models to
generate an integration plan to answer the user query. We plan to investigate how the WS-Routing and WS-
Referral specifications can be used to implement such integration plans. For example, if a user queries Proteus
to retrieve geographic coordinates, address, city, and state where ‘John Smith’ lives, its mediator will convert
that query into a WS-Routing header that visits two different web services. First, a white page web service to
retrieve locations for ‘John Smith’. Next, the WS-Routing header specifies that the output of this web service

Figure 3: Overview of Proteus

 5

(locations for ‘John Smith’) should be forwarded to a geocoder web service that consumes the locations to
produce a coordinate for each location. The ultimate receiver in this case is the client, which consumes the
coordinates and retrieves the appropriate aerial maps from TerraService for display.

During the execution of a plan, one or more data sources may not comply with WS-Routing specification.
One possible solution is for Proteus to setup WS-Routing intermediaries, SOAP routers, that consume the output
of one web service (say the white page) and covert the resulting SOAP messages into a WS-Routing compliant
one, ready for routing to the next web service. This execution employs both our compression middleware and
the DeW registries. Both are a natural fit with GXA's WS-Routing and WS-Referral available from Microsoft,
i.e., Web Services Development Kit (WSDK).

To evaluate the functionality of Proteus, we will start with hand-generated query plans and then later use the
automatically generated plans. We will simulate run-time errors, e.g., 811 Service Unavailable, 811 Service
Too Busy, etc., to analyze interactions with DeW. In particular, we will investigate how DeW may generate
WS-Referral statements to populate a SOAP router once it is informed of a dynamic change, e.g., migration,
failure, etc. (Note that the environment may either use a global DeW registry or DeW registries provided by a
service provider; currently, we envision the use of WS-Routing to support this flexibility.). We will analyze
streaming to further enhance response time.

In order to facilitate debugging of Proteus, we will develop an interface that visualizes the run-time
system and how a plan is processed. This user interface complements the GXA framework to empower a
programmer to: a) monitor the behavior of Proteus, and b) examine the correctness of the run-time environment
when processing a plan. Obviously, a run-time component must provide a mechanism (either a pull, i.e., query,
or push) that reports its status to the interface. While it is not realistic to assume the existence of this interface
for all participating components, we can provide them for our components, e.g., DeW registries, permanent and
dynamic SOAP routers established by a plan, the services we create using wrappers, etc. To maintain a modular
design, these components generate XML formatted messages that describe their input, output, and internal
status, e.g., with SOAP a router, it might output its WS-Referral statements.

An exciting, and significant contribution of Proteus is its demonstration that the dynamic and efficient
composition of web services is both feasible and useful. In our vision, end users would describe and publish
their web services. Proteus discovers and uses those descriptions to respond to user requests by automatically
generating integration plans and then efficiently and reliably executing them. The system is fully dynamic
because as soon as a new service is published, it can be used to process user requests (in the context of GXA,
this is accomplished using WS-Referral and WS-Routing).

Bibliography
[Arens et al. 1996] Y. Arens, C. Knoblock and W. Shen 1996. Query Reformulation for Dynamic Information Integration.

Intelligent Integration of Information.
[Box 2002] D. Box. Understanding GXA. Microsoft Corporation. URL: http://msdn.microsoft.com/webservices

/understanding/gxa/default.aspx. July 2002.
[Cai et al. 2002] M. Cai, S. Ghandeharizadeh, R. Schmidt, and S. Song. A Comparison of Alternative Encoding

Mechanisms for Web Services. In 13th International Conference on Database and Expert Systems Applications
(DEXA), Aix en Provence, France, September 2002.

[Curbera et al., 2002]. F. Curbera, Y. Goland, J. Klein, F. Leymann, S. Thatte, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.0, 31 July 2002.

[Ghandeharizadeh et al. 2002a] S. Ghandeharizadeh, F. Sommers, J. Kuntal, E. Alwagait. A Document as a Web Service:
Two Complementary Frameworks. In the Second International Workshop on Multimedia Data Document Engineering
(held in conjunction with EDBT) , Prague, Czech Republic, March 2002.

[Ghandeharizadeh et al. 2002b] S. Ghandeharizadeh, C. Papadopoulos, M. Cai, and K. Chintalapudi. Performance of
Networked XML-Driven Cooperative Applications. In Proceedings of the Second International Workshop on
Cooperative Internet Computing (CIC, held in conjunction with VLDB), Hong Kong, China, August 2002.

[Ghandeharizadeh et al. 2002c] S. Ghandeharizadeh, E. Alwagait, S. Song. A DeW Registry: A Component of Scalable
Web Services. Submitted for publication.

[Ghandeharizadeh et al. 2003] S. Ghandeharizadeh, C. Papadopoulos, P. Pol, and R. Zhou. NAM: A Network Adaptable
Middleware to Enhance Response Time of Web Services. Submitted for publication.

[Knoblock et al. 2000] C.A. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and Reliably Extracting
Information from the Web: A Machine Learning Approach. IEEE Data Engineering Bulletin, 23 (4), December 2000.

 6

[Knoblock et al. 2001] C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish, I. Muslea, A. Philpot and S. Tejada 2001. The
Ariadne Approach to Web-Based Information Integration. International Journal on Intelligent Cooperative
Information Systems (IJCIS) 10(1-2): 145-169.

[Sommers et al. 2001] F. Sommers, S. Ghandeharizadeh, and S. Gao. Cluster-Based Computing with Active, Persistent
Objects on the Web. In IEEE International Conference on Cluster Computing, October 2001.

[Thakkar et al. 2002] S. Thakkar, C. A. Knoblock, J. Ambite and C. Shahabi. Dynamically Composing Web Services from
on-Line Sources. In Proceeding of 2002 AAAI Workshop on Intelligent Service Integration, Edmonton, Alberta,
Canada.

[Florescu et al. 2003] D. Florescu, A. Gruenhagen, and D. Kossmann. XL: A Platform for Web Services. First Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, January 2003.

