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1)

2)

3 guestions

Discuss how the main components of
human vision may cooperate to yield
scene understanding

Discuss why the representation and
memorization of scenes Is a complex
Issue

Discuss mechanisms by which task
and behavioral demands may
Influence early vision
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Eye movements
and Character Animation







“Where” and “What” Visual Pathways

Dorsal stream (to posterior parietal): object localization
Ventral stream (to infero-temporal): object identification

'8_._ “where”
}. ) el T i ﬁ /ﬁ /
— \_/ i

\ y | T what?

Sulillar

Rybak et al, 1998 Colliculus




72 color outdoors
Images

Use attention model
to select most
salient locations

Crop image around each
selected location

Feed cropped sections
to recognition
model




Combined Where/What

Base vs Focus of Attention
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Model Performance

Patterns
Front-end Processed

o
()

—— static

@+ foatop 5
-#=: foa top 6
-w= foatop 7

1072

False Positive Rate

- 3X speed gain

Base 100.00%
FOA (top 7)  38.97T%
FOA (top6)  35.14%
FOA (top &)  29.22%

- Overall recognition rate drops <5% (from about 80%)
- No difference between using top 5, 6, or 7 attended locations




The next step...

Develop scene understanding/navigation/orienting mechanisms

that can exploit the (very noisy) “rich scanpaths” (i.e., with
location and sometimes identification) generated by the model.

Retinal Image

S

Colors
P Cortical Representation
Intensities

Orientations

(/-

Saliency
T

Focus of Attention
S

T et

View-tuned cells

Complex composite cells (C2)

Composite feature cells (52}
Complex cells {C1)

***  Simple cells {(51)

= weighted sum
=== MAX

Riesenhuber & Poggio,
Nat Neurosci, 1999




Extract “minimal subscene” (i.e., small number of objects and
actions) that is relevant to present behavior.

Achieve representation for it that is robust and stable against
noise, world motion, and egomotion.




How plausible Is that?

3—5 eye movements/sec, that's 150,000—250,000/day

Only central 2deg of retinas (our foveas) carry high-
resolution information

Attention helps us bring our foveas onto relevant objects.







Extended Scene Perception

e Attention-based analysis: Scan scene with

attention, accumulate evidence from detailed local
analysis at each attended location.

e Main issues:
- what is the internal representation?
- how detailed is memory?

- do we really have a detailed internal
representation at all?
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Algorithm

At each fixation, extract central edge orientation, as well as a
number of “context” edges;

Transform those low-level features into more invariant “second
order” features, represented in a referential attached to the central
edge;
Selection of the Next Point of Fixation
- Learning: manually select
fixation points; store seqguence
of second-order features
found at each fixation into
“what” memory; also store
vector for next fixation, based
on context points and in the
second-order referential;

Figure 4. The next fixaton point is selected from the set
of context points in the current refinal image.
The current and nezt fization points are marke
Shiff to the next fization point is shown by the &iar




Algorithm

Scanpath

Figure 5. The scanpath of image viewing is shown on background of the initial i Image i
and on background of the se quence of retinal images along the scanpath (77 h




(A) Active viewing and perception of the image:

The scanpaths of viewing are shown black

Algorithm

- Search mode: look
for an image patch that
matches one of the
patches stored in the
“what” memory;

(B) Behavioral (active) process of image recognition:

The scanpaths of recognition are shown black
- Recognition mode: H

reproduce scanpath
stored in memory and
determine whether we
have a match.




R O b u St to Va' r I atl O n S I n (B) Behavioral (active) process of image recognition:
Scal e . rotati O n . The scanpaths of recognition are shown black
Illumination, but not

3D pose.




Schill et al, JEI, 2001
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How much can we
remember?

eIncompleteness of memory:

how many windows In the Taj Mahal?

edespite conscious experience of
picture-perfect, iconic memorization.







But...

*\We can recognize complex scenes
which we have seen before.

S0, we do have some form of iconic
memory.




Extended Scene Perception

eAttention-based analysis: Scan scene with
attention, accumulate evidence from detailed local
analysis at each attended location.

eMain issues:
-what is the internal representation?
-how detailed is memory?
-do we really have a detailed internal representation at all!!?

*Gist: Can very quickly (120ms) classify entire scenes
or do simple recognition tasks; can only shift
attention twice in that much time!




Gist of a Scene

eBiederman, 1981:

from very brief exposure to a scene (120ms or less),
we can already extract a lot of information about
Its global structure, its category (indoors, outdoors,
etc) and some of its components.

*“riding the first spike:” 120ms is the time It takes
the first spike to travel from the retina to IT!

*Thorpe, van Rullen:

every fast classification (down to 27ms exposure, no
mask), e.g., for tasks such as “was there an animal in
the scene?”




























The World as an Outside Memory

Kevin O'Regan, early 90s:

why build a detailed internal representation of the
world?

e too complex...
e not enough memory...

... and useless?

The world /s the memory. Attention and the eyes
are a look-up tool.




The “Attention Hypothesis”

Rensink, 2000
No “integrative buffer”

Early processing extracts information up to “proto-object”
complexity in massively parallel manner

Attention is necessary to bind the different proto-objects
Into complete objects, as well as to bind object and
location

Once attention leaves an object, the binding “dissolves.”
Not a problem, it can be formed again whenever needed,
by shifting attention back to the object.

Only a rather sketchy “virtual representation” is kept in
memory, and attention/eye movements are used to gather
details as needed




Only structures aboye primary ling
are "¥isible™ to focused attention

"QuUick and dirnty’ l Secondary_procescing_stage
intempretation _ N - proto-objects {rapid vision)
Ly A} C 2 ‘f-_.x-_.g'_ - local interpretation

Primary ling — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

+ * Primary processing _stage
! - edges (linear filtering)

I
ﬁ\l"-‘hr_ , - / - local inhibitionfexcitation

"Quick and clean' L
measuremant y

Transduction stage
- pixels {photoreception)
- minimal interactions

Figure 1

Figure 1. Schematic of Low-Level Vision. Three main stages are distinguished here: (1) the transduction stage,
where photoreception occurs, (i1) the primary processing stage, where linear or quasi-linear filters measure image
properties, and (iii) the secondary processing stage of rapid non-linear interpretation. Operations at all three stages
are carried out in parallel across the visual field. The transduction and primary stages obtain their speed at the
expense of complexity; in essence. they perform "quick and clean” measurements. The limits to these kinds of
operations are given by the primary line. The secondary stage obtains its speed at the expense of reliability, opting
for "quick and dirty" interpretations that may not always be correct. The outputs of this stage are proto-objects that
become the operands for attentional processes.



Monvolatile
Structure

(mid-level)

Volatile Proto- ;
Structure objects

(low-level) e

- SGas

Figure 2

Figure 2. Schematic of a Coherence Field. This structure is composed of three kinds of components: (i) a nexus,
corresponding to a single object, (ii) a set of 4-6 proto-objects, corresponding to object parts, and (iii) bidirectional
links between the nexus and the proto-objects. Coherence is established when a recurrent flow of information exists
between the nexus and its proto-objects, as well as within the nexus itself. Selected information is transmitted up the
links to enter into the description of the object. Information from the nexus is also transmitted back down the links
to provide stability (and perhaps refinement) to the proto-objects.




Workstation user "sees”:

1) cvs_rochester.edu |" world Wide Web )
2) vision.arc.nasa.goy |
3) ctipsych.york.ac uk Millions of web sites,
4) . each with lots of data
+ -
[ ]
[ Virtual station: Millions of sites J E
P N mpik-tueb. mpg.de
bcs.mit.edu
. yision arc.nasa.govy
Real station: =}
cys. rochester edu

1-2 gites at a time

ctipsych york. ac uk

psy.jhu.edu
hyperion.com
= If data already present, use it.

= Else locate appropriate machine,
and load in the data.

IRRERRRARESI

(a) Virtual representation;: computer network

Figure 3{a)

Figure 3. Virtual Representation. (a) Computer Network. If a limited-capacity workstation can access information
from the computer network whenever requested. it will appear to contain all the information from all sites on the
network. (b) Human Vision. If a limited-capacity attentional system can access information from the visible scene

whenever requested, it will appear to contain all the information from all objects in the visible scene.




Yisual system “sees”:

unknown person

= If object already attended, use it.

— Else locate appropriate proto-
objects, and make them coherent.

1) speaker i Scene ]
2) left screen | |
3) right screen Hillions of ohjects,
4) .. each with lots of data
$ S :
( Virtual representation: Millions of objects ] - *
P N -—— speaker
-§—— left screen
Real representation: - right screen
1-2 objects at a time -g—— podium
-— stage
- ceiling
-
-—
-

(b) Virtual representation: visual system

Figure 3(b)
Figure 3. Virtual Representation. (a) Computer Network. If a limited-capacity workstation can access information
from the computer network whenever requested. it will appear to contain all the information from all sites on the
network. (b) Human Vision. If a limited-capacity attentional system can access information from the visible scene
whenever requested, it will appear to contain all the information from all objects in the visible scene.




[System [l - Setting [nﬂnattentinnaljj [ System |l - Object (attentional) J

Scene schema
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- E_ _E Coherent objects
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Figure 4

Figure 4. Triadic Architecture. It is suggested that the visual perception of scenes may be carried out via the
interaction of three different systems. System I: Early-level processes produce volatile proto-objects rapidly and in
parallel across the visual field. System II: Focused attention acts as a hand to "grab" these structures: as long as
these structures are held, they form an individuated object with both temporal and spatial coherence. System III:
Setting information—obtained via a nonattentional stream— guides the allocation of focused attention to various
parts of the scene. and allows priorities to be given to the various possible objects.




Outlook on human vision

Unlikely that we perceive scenes by building a progressive buffer and
accumulating detailed evidence into it.

- too much resources
- too complex to use.

Rather, we may only have an illusion of detailed representation.
- use eyes/attention to get the details as needed
- the world as an outside memory.

In addition to attention-based scene analysis, we are able to very rapidly
extract the gist & layout of a scene — much faster than we can shift
attention around.

This gist/layout must be constructed by fairly simple processes that
operate in parallel. 1t can then be used to prime memory and
attention.




Eye Movements

1) Free examination

2) estimate material
circumstances of family

3) give ages of the people

4) surmise what family has
been doing before arrival
of “unexpected visitor”

5) remember clothes worn by
the people

6) remember position of people
and objects

7) estimate how long the .
“unexpected visitor” has been .‘,'
away from family '

Yarbus, 1967 &



Goal-directed scene understanding

e Goal: develop vision/language-enabled Al system.
Architecture it after the primate brain

e Test: ask a question to system about a video clip that it
IS watching

e.g., “Who is doing what to whom?”

e Test: implement system on mobile robot and give it some
Instructions

e.g., “Go to the library”




Example

 Question: “who Is doing what to whom?”

35325PM

e

e Answer: “Eric passes, turns around and passes again”
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Example of operation

e Question: “What is John catching?”
e Video clip: John catching a ball

1) Initially: empty task map and task list

2) Question mapped onto a sentence frame
allows agent to fill some entries in the task list:
- concepts specifically mentioned in the question
- related concepts inferred from KB (ontology)

e.g., task list contains:
“John [AS INSTANCE OF] human(face, arm, hand,
leg, foot, torso)” (all derived from “John”)
“catching, grasping, holding”  (derived from “catching”)
“object(small, holdable)” (derived from “what”).




More formally: how do we do i1t?

Use ontology to describe categories, objects and relationships:
Either with unary predicates, e.g., Human(John),
Or with reified categories, e.g., John [0 Humans,
And with rules that express relationships or properties,
e.g., [Ix Human(x) = SinglePiece(x) LI Mobile(x) [0 Deformable(x)

Use ontology to expand concepts to related concepts:
E.g., parsing question yields “LookFor(catching)”
Assume a category HandActions and a taxonomy defined by
catching O HandActions, grasping [0 HandActions, etc.

We can expand “LookFor(catching)” to looking for other actions in the
category where catching belongs through a simple expansion rule:

[la,b,c alc b 0 c LookFor(a) = LookFor(b)



More formally: how do we do i1t?

- Use composite objects to describe structure and parts:

[Oh Human(h) = 0Of, la, ra, Ih, rh, Il, rl, If, rf, t

Face(f) O Arm(la) U Arm(ra) O Hand(lh) O Hand(rh) [
Leg(ll) O Leg(r) O Foot(If) O Foot(rf) U Torso(t) [

PartOf(f, h) O PartOf(la, h) O PartOf(ra, h) O PartOf(lh, h) O
PartOf(rh, h) O PartOf(ll, h) O PartOf(rl, h) O PartOf(If, h) [
PartOf(rf, h) O PartOf(t, h) O

Attached(f, t) I Attached(la, b) [ Attached(ra, b) O Attached(ll, b) [
Attached(rl, t) U Attached(lh, la) O Attached(rh, ra) [
Attached(lf, Il) O Attached(rf, rl) O Attached(rh, ra) [

laZzraUOlhzrn O0Zrl O £ rf [

[Ix Leg(x) O PartOf(x,a) = (x=1Ox=rl) O [etc..]




Task Spacification

" What is John calchingT "

| kn

oy

Owledge

Baso

Task List

John [A% INSTANCE
OF] human(face,
am, hand, leg,
ool kbrao)

catehlng

yragplng
holding
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3) Task list creates top-down biasing signals onto vision, by associating
concepts in task list to low-level image features in “what memory”

e.g., “human” => look for strong vertically-oriented features
“catching” => look for some type of motion

low—lavael propatdes
{demlnant calor,
pHnelpal cHents-
Han, ete.]

Image Emplake

assoclated concepts

In more complex scenarios, not only low-level visual features, but also
feature interactions, spatial location, and spatial scale and
resolution may thus be biased top-down.




More formally: how do we do i1t?

- Use measures to quantify low-level visual features and weights:
e.g., describing the color of a face:
[If Face(f) =
Red(f) = Fweight(0.8) U Green(f) = Fweight(0.5) O Blue(f) = Fweight(0.5)
[or use predicates similar to those for intervals to express ranges of feature weights]

e.g., recognizing a face by measuring how well it matches a template:
[If RMSdistance(f, FaceTemplate) < Score(0.1) = Face(f)

e.g., biasing the visual system to look for face color:
[If Face(f) U LookFor(f) = RedWeight = Red(f) I GreenWeight = Green(f) [
BlueWeight = Blue(f)

[may eliminate Face(f) if Red(), Green() and Blue() defined for all objects we
might look for]




Example of operation

4) Suppose that the visual system first attends to a bright-red chair
In the scene.

Going through current task list, agent determines that this object is
most probably irrelevant (not really “holdable”)

Discard it from further consideration as a Task List
component of the minimal subscene.

John [A5 INSTAMCE

OF ] human(face,

Task map and task list remain unaltered. arm, hand, lag,
fook beao)

catechlng

grazping
helding

ab fecifamall,
haldable)




More formally: how do we do it?

- What is the task list, given our formalism?
It's a question to the KB: ASK(KB, [X LookFor(x))

- Is the currently attended and recognized object, o, of interest?
ASK(KB, LookFor(0))

- How could we express that if the currently attended & recognized object
IS being looked for, we should add it to the minimal subscene?

[Ix Attended(x) [J Recognized(x) [ LookFor(x) [
X 0 MinimalSubscene = x [ MinimalSubscene
with:
[Ix [* RMSdistance(x, t) < Score(0.1) = Recognized(x)
and similar for Attended() [Note: should be temporally tagged; see next]




Example of operation

5) Suppose next attended and identified object is John’s rapidly
tapping foot.

This would match the “foot” concept in the task list.

Because of relationship between foot and human (in KB), agent
can now prime visual system to look for a human that overlap
with foot found:

- feature bias derived from what memory for human
- spatial bias for location and scale

Task map marks this spatial region as part of the current minimal
subscene.




Example of operation

6) Assume human is next detected and recognized

System should then look for its face
how? from KB we should be able to infer that resolving

“? [AS INSTANCE OF] human”
can be done by looking at the face of the human.
Once John has been localized and identified, entry

“John [AS INSTANCE OF] human(face, arm, hand, leg, foot, torso)”
simplifies into simpler entry

“John [AT] (%, vy, scale)”

Thus, further visual biasing will not attempt to further localize John.




More formally: how do we do 1t?

- How do we introduce the idea of successive attentional shifts and
progressive scene understanding to our formalism?

Using situation calculus!

Effect axioms (describing change):
[Ix,s Attended(Xx, s) [l Recognized(X, s) [ILookFor(x, s) =
- LookFor(x, Result(AddToMinimalSubscene, s))

e Successor-state axioms (better than the frame axioms for non-change):
[Ix,a,s x O MinimalSubscene(Result(a, s)) <
(a = AddToMinimalSubscene) [
(x O MinimalSubscene(s) [ a # DeleteFromMinimalSubscene)




7) Suppose system then attends to the bright

green emergency exit sign in the room / o
f Low—|avel vision .-"I

)
/

I {
—
II |I

This object would be immediately discarded ]
because it is too far from the currently ___,__'T—T--f_'______
|

activated regions in the task map. |

|

]
/ i
]
f AT

Thus, once non-empty, the task map acts as ., SaliencyMap A7
a filter that makes it more difficult (but / 77/
not impossible) for new information to '
reach higher levels of processing, that is,

In our model, matching what has been
identified to entries in the task list and .fgcfmﬂ_j_:l" L
deciding what to do next. /




8) Assume that now the system attends to John’s arm motion

This action will pass through the task map (that contains John)

It will be related to the identified John (as the task map will not
only specify spatial weighting but also local identity)

Using the knowledge base, what memory, and current task list the
system would prime the expected location of John’s hand as
well as some generic object features.




9) If the system attends to the flying ball, it would be incorporated
into the minimal subscene in a manner similar to that by which
John was (i.e., update task list and task map).

10) Finally: activity recognition.

The various trajectories of the various objects that have been
recognized as being relevant, as well as the elementary actions
and motions of those objects, will feed into the activity
recognition sub-system

=> will progressively build the higher-level, symbolic
understanding of the minimal subscene.

e.g., will put together the trajectories of John’s body, hand, and of
the ball into recognizing the complex multi-threaded event
“human catching flying object.”




11) Once this level of understanding is reached, the
data needed for the system’s answer will be in the
form of the task map, task list, and these recognized
complex events, and these data will be used to fill in

an appropriate sentence frame and apply the answer.




Example

e Question: “who is doing what to whom?”

3:53:25rM

Answer: “Eric passes, turns around and passes again”




Not implemented
Implemented

Low level features
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Layout:
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Task Specification

e Currently, we accept tasks such as
“who Is doing what to whom?”

Task specificat
“what is man catc




Subject ontology

Real entity

Abstract entity

Related

Contains

- s

Contains




What to store In the nodes?

Abstract entity

Hand RA Leg RA

Properties

Probability of occurrence




What to store In the edges?

Suppose we find Finger and Man,
what is more relevant?

Granularit

g((Hand, Finger)

In general, g(co
g(in

K g(si




INformation

Suppose we find Pen and Leaf,
what is more relevant?

P(Pen is relevant/ Hand is relevant)

Hand related _ Vs _
object P(Leaf is relevant/ Hand is relevant)

P(Hand occurs/Pen occurs)
Vs
. P(Hand occurs/ Leaf occurs)

Co-occurr

P(Hand, Pen/ Pen)

Probability of join Vs
and v P(Hand, Leaf/ Leaf)

g




Working Memory and Task Graph

 Working memory creates and maintains the task
graph
e Initial task graph is created using the task

keywords and Is expanded using “Iis a” and
“related” relations.

Object ontology Subject ontology Action ontology

Contains Part

I
Man Catch

-
Isa I Includes
|

Hand related Hand related
i Hand )
object action

Task: What is man catching?




Example 1

e Taskl: find the faces in the scene
e Task2: find what the people are eating

Original scene  TRM after 5 fixations TRM after 20 fixations




Example 2

e Taskl: find the cars In the scene
e Task2: find the buildings in the scene

Original scene  TRM after 20 fixations Attention trajectory

e | __‘




Conclusion

e Our broader goal i1s to model how internal
scene representations are influenced by
current behavioral goals.

e As a first step, we estimate task-relevance
of attended locations.

e At each instant, our model guides attention
based on relevance and salience of entities
In the scene.




Outlook

Neuromorphic vision algorithms provide robust
front-end for extended scene analysis

To be useful, analysis needs to highly depend on
task and behavioral priorities

Thus the challenge is to develop algorithms that
can extract the currently relevant “minimal
subscene” from incoming rich scanpaths

Such algorithms will use a collaboration between
fast parallel computation of scene gist/layout and
slower attentional scanning of scene details




