Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - ?
 - ?
 - ?

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: ?
 - contingency: ?
 - exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: ?
 - contingency: ?
 - exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: inaccessible and deterministic environment
 - contingency: inaccessible and nondeterministic environment
 - exploration: unknown state-space
Last time: Finding a solution

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

<table>
<thead>
<tr>
<th>Function</th>
<th>General-Search(problem, strategy) returns a solution, or failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>initialize the search tree using the initial state problem</td>
</tr>
<tr>
<td>loop</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>if there are no candidates for expansion then return failure</td>
</tr>
<tr>
<td></td>
<td>choose a leaf node for expansion according to strategy</td>
</tr>
<tr>
<td></td>
<td>if the node contains a goal state then return the corresponding solution</td>
</tr>
<tr>
<td></td>
<td>else expand the node and add resulting nodes to the search tree</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state.

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding).

```
Function General-Search(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add resulting nodes to the search tree
    end
```

Strategy: The search strategy is determined by ???
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

```plaintext
Function General-Search(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add resulting nodes to the search tree
    end

Strategy: The search strategy is determined by the order in which the nodes are expanded.
```
A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) **returns** a solution, or failure

- **open** ← make-queue(make-node(initial-state[problem]))
- **closed** ← [empty]

loop do

- **if** open is empty **then return** failure
 - **currnnode** ← Remove-Front(open)
- **if** Goal-Test[problem] applied to State(currnnode) **then return** currnnode
 - **children** ← Expand(currnnode, Operators[problem])
 - **while** children not empty

 [... see next slide ...]

end

- **closed** ← Insert(closed, currnnode)
- **open** ← Sort-By-PathCost(open)

end
A Clean Robust Algorithm

[... see previous slide ...]

children ← Expand(currnode, Operators[problem])

while children not empty

 child ← Remove-Front(children)

 if no node in open or closed has child’s state

 open ← Queuing-Fn(open, child)

 else if there exists node in open that has child’s state

 if PathCost(child) < PathCost(node)

 open ← Delete-Node(open, node)

 open ← Queuing-Fn(open, child)

 else if there exists node in closed that has child’s state

 if PathCost(child) < PathCost(node)

 closed ← Delete-Node(closed, node)

 open ← Queuing-Fn(open, child)

end

[... see previous slide ...]
Last time: search strategies

Uninformed: Use only information available in the problem formulation
- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

Informed: Use heuristics to guide the search
- Best first
- A*
Evaluation of search strategies

- Search algorithms are commonly evaluated according to the following four criteria:
 - **Completeness:** does it always find a solution if one exists?
 - **Time complexity:** how long does it take as a function of number of nodes?
 - **Space complexity:** how much memory does it require?
 - **Optimality:** does it guarantee the least-cost solution?

- Time and space complexity are measured in terms of:
 - b – max branching factor of the search tree
 - d – depth of the least-cost solution
 - m – max depth of the search tree (may be infinity)
Last time: uninformed search strategies

Uninformed search:
Use only information available in the problem formulation
 • Breadth-first
 • Uniform-cost
 • Depth-first
 • Depth-limited
 • Iterative deepening
This time: informed search

Informed search:
Use heuristics to guide the search
- Best first
- A*
- Heuristics
- Hill-climbing
- Simulated annealing
Best-first search

- **Idea:**
 - use an evaluation function for each node; estimate of "**desirability**"
 - expand most desirable unexpanded node.

- **Implementation:**

 - **QueueingFn** = insert successors in decreasing order of desirability

- **Special cases:**
 - greedy search
 - A* search
Romania with step costs in km
Greedy search

- **Estimation function:**
 \[h(n) = \text{estimate of cost from } n \text{ to goal (heuristic)} \]

- **For example:**
 \[h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest} \]

- Greedy search expands first the node that appears to be closest to the goal, according to \(h(n) \).
Greedy search example

Arad
366
Properties of Greedy Search

- Complete?
- Time?
- Space?
- Optimal?
Properties of Greedy Search

- **Complete?** No – can get stuck in loops
e.g., Iasi > Neamt > Iasi > Neamt > ...
Complete in finite space with repeated-state checking.

- **Time?** \(O(b^m)\) but a good heuristic can give
dramatic improvement

- **Space?** \(O(b^m)\) – keeps all nodes in memory

- **Optimal?** No.
A* search

- **Idea:** avoid expanding paths that are already expensive

 evaluation function: \(f(n) = g(n) + h(n) \) with:
 - \(g(n) \) – cost so far to reach \(n \)
 - \(h(n) \) – estimated cost to goal from \(n \)
 - \(f(n) \) – estimated total cost of path through \(n \) to goal

- A* search uses an **admissible** heuristic, that is,
 \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \).
 For example: \(h_{SLD}(n) \) never overestimates actual road distance.

- **Theorem:** A* search is optimal
A* search example

Arad

366
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

$$ f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0 $$
$$ > g(G_1) \quad \text{since } G_2 \text{ is suboptimal} $$
$$ \geq f(n) \quad \text{since } h \text{ is admissible} $$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Optimality of A* (more useful proof)

Lemma: A* expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
f-contours

How do the contours look like when $h(n) = 0$?
Properties of A*

• Complete?

• Time?

• Space?

• Optimal?
Properties of A*

- Complete? Yes, unless infinitely many nodes with $f \leq f(G)$

- Time? Exponential in $[(\text{relative error in } h) \times \text{(length of solution)}]$

- Space? Keeps all nodes in memory

- Optimal? Yes – cannot expand f_{i+1} until f_i is finished
Proof of lemma: pathmax

For some admissible heuristics, f may decrease along a path.

E.g., suppose n' is a successor of n

```
    n  g=5  h=4  f=9
     1
    n' g'=6  h'=2  f'=8
```

But this throws away information!

$f(n) = 9 \Rightarrow$ true cost of a path through n is ≥ 9

Hence true cost of a path through n' is ≥ 9 also

Pathmax modification to A*:
Instead of $f(n') = g(n') + h(n')$, use $f(n') = \max(g(n') + h(n'), f(n))$

With pathmax, f is always nondecreasing along any path.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
5 & 4 & 8 \\
6 & 1 & 7 \\
7 & 3 & 2 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 & 5 \\
7 & 6 & 5 \\
\end{array}
\]

\[h_1(S) = ?? \]
\[h_2(S) = ?? \]
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]
\[\text{(i.e., no. of squares from desired location of each tile)} \]

\[
\begin{array}{ccc}
5 & 4 & \text{gray} \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & \text{gray} & 4 \\
7 & 6 & 5 \\
\end{array}
\]

Start State \quadGoal State

\[h_1(S) = ?? = 7 \]
\[h_2(S) = ?? = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18 \]
Relaxed Problem

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Next time

- Iterative improvement
- Hill climbing
- Simulated annealing