Inference in First-Order Logic

e Proofs

e Unification

e Generalized modus ponens

e Forward and backward chaining
o Completeness

e Resolution

e Logic programming

CS 460, Session 16-18

Inference in First-Order Logic

e Proofs — extend propositional logic inference to deal with quantifiers

e Unification

e Generalized modus ponens

e Forward and backward chaining — inference rules and reasoning
program

o Completeness — Godel’s theorem: for FOL, any sentence entailed by
another set of sentences can be proved from that set

e Resolution — inference procedure that is complete for any set of
sentences

e Logic programming

CS 460, Session 16-18 2

Logic as a representation of the World

_ entails
Representation: Sentences » Sentence
Refers to
(Semantics)

World Facts follows | Fact

CS 460, Session 16-18

Desirable Properties of Inference Procedures

derivation
/]
Sentences eriaﬂ
\ 4 Follows — from!
Facts

» Sentence

v
» Fact

CS 460, Session 16-18

Remember:
propositional
logic

¢{> Modus Ponens or Implication-Elimination: (From an implication and the
premise of the implication, you can infer the conclusion.)

a = 3, (8%
jj
¢ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)
AN & AN AN

Xy

¢ And-Introduction: (From a list of sentences, you can infer their conjunction.)
Ny, o, ..., (¥
SN S AN AN ¢ O
¢ Or-Introduction: (From a sentence, you can infer its disjunction with anything
else at all.)

o
apVar V... Vo,
¢ Double-Negation Elimination: (From a doubly negated sentence, you can infer
a positive sentence.)

v

¢ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
can infer the other one is true.)

a Vv ,3, -3

/

¥
¢ Resolution: (This is the most difficult. Because /7 cannot be both true and false,
one of the other disjuncts must be true in one of the premises. Or equivalently,
implication is transitive.)
aV 3, =3V - = [, 7 =~

or equivalentl
a V7 4 Y o = Y

Reminder

e Ground term: A term that does not contain a variable.
e A constant symbol
e A function applies to some ground term

e {Xx/a}: substitution/binding list

CS 460, Session 16-18

Proofs

Sound inference: find a such that K'B |= a.
Proof process is a search, operators are inference rules.

E.g., Modus Ponens (MP)

a, a = [At(Joe,UCB) At(Joe,UCB) = OK(Joe)
I&; OK (Joe)

E.g., And-Introduction (Al)

a [OK(Joe) CSMajor(Joe)
a3 OK(Joe) NCSMajor(Joe)

E.g.. Universal Elimination (UE)

Vo « Ve At(z,UCB) = OK(x)
odx/T} At(Pat,UCB) = OK(Pat)

7 must be a ground term (i.e., no variables)

CS 460, Session 16-18

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

e Universal Elimination (UE):
for any sentence o, variable x and ground term t,
VX o

o{X/T}

o Existential Elimination (EE):
for any sentence o, variable x and constant symbol k not in KB,
X o

o{x/K}

o Existential Introduction (EI):
for any sentence o, variable x not in o and ground term g in o,
(04

Ix o{g/x}

CS 460, Session 16-18

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

e Universal Elimination (UE):
for any sentence o, variable x and ground term t,
VX O e.g., from Vx Likes(x, Candy) and {x/Joe}
o{X/t} we can infer Likes(Joe, Candy)

o Existential Elimination (EE):
for any sentence o, variable x and constant symbol k not in KB,
X o e.g., from 3Ix Kill(x, Victim) we can infer
o{X/k} Kill(Murderer, Victim), if Murderer new symbol

o Existential Introduction (EI):
for any sentence o, variable x not in o and ground term g in o,
o e.g., from Likes(Joe, Candy) we can infer
Ix o{g/x} 3x Likes(x, Candy)

CS 460, Session 16-18 o]

Example Proof

Bob is a buffalo 1. Buffalo(Bob)
Pat is a pig 2. Pig(Pat)
Buffaloes outrun pigs |3. Va,y Buffalo(x) A Pig(y) = Faster(z,y)

Bob outruns Pat

CS 460, Session 16-18 10

Example Proof

Al'l & 2

4. Buf falo(Bob) A Pig(Pat)

CS 460, Session 16-18

11

Example Proof

UE 3, {z/Bob,y/Pat}|5. Buffalo(Bob) N Pig(Pat) = Faster(Bob, Pat)

CS 460, Session 16-18 12

Example Proof

MP 6 & 7

6. Faster(Bob, Pat)

CS 460, Session 16-18

13

Search with primitive example rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

123

Al, UE, MP is a common inference pattern
Al18&2

1234 .
Problem: branching factor huge, esp. for UE
1[UE 3 {x/Bob, ylPat}

12345

g

|dea: find a substitution that makes the rule
| MP5&6 premise match some known facts
12345(6) = a single, more powerful inference rule

CS 460, Session 16-18 14

Unification

A substitution o unifies atomic sentences p and ¢ if po = qo

p q g

Knows(John,z) | Knows(John, Jane)
Knows(John,x)| Knows(y, OJ)
Knows(John,x)| Knows(y, Mother(y)

Goal of unification: finding o

CS 460, Session 16-18

Unification

{x/Jane}
{x/John,y/OJ}
{y/John,x/Mother(John)}

E.g., if we know ¢ and Knows(John,z) = Likes(John,x)
then we conclude Likes(John, Jane)
Likes(John,O.])
Likes(John, Mother(John))

Idea: Unify rule premises with known facts, apply unifier to conclusion

CS 460, Session 16-18 16

Extra example for unification

P

Q

0)

Student(x)

Student(Bob)

{x/Bob}

Sells(Bob, x)

Sells(x, coke)

{x/coke, x/Bob}
Is it correct?

CS 460, Session 16-18

17

Extra example for unification

P Q 0]
Student(x) Student(Bob) {X/Bob}
Sells(Bob, x) Sells(y, coke) {x/coke, y/Bob}

CS 460, Session 16-18

18

More Unification Examples

VARIABLE term

\/

1 — unify(P(a,X), P(a,b)) O = {X/b}

2 — unify(P(a,X), P(Y,b)) O = {Y/a, X/b}

3 — unify(P(a,X), P(Y,f(a)) O = {Y/a, X/f(a)}
4 — unify(P(a,X), P(X,b)) O = failure

Note: If P(a,X) and P(X,b) are independent, then we can
replace X with Y and get the unification to work.

CS 460, Session 16-18

19

Generalized Modus Ponens (GMP)

plra p?"a R p-'tf'.l (pl ApE ZANRIN /'\-p“ - Q)
o

E.g. p/= Faster(Bob,Pat)
po' = Faster(Pat,Steve)
prAps = q = Faster(x,y) A Faster(y, z) = Faster(x, 2)
o= {x/Bob,y/Pat, z/Steve}
go = Faster(Bob, Steve)

where p;'o = p;o for all

GMP used with KB of definite clauses (ezactly one positive literal):

either a single atomic sentence or
(conjunction of atomic sentences) = (atomic sentence)

All variables assumed universally quantified

CS 460, Session 16-18 20

Soundness of GMP

Need to show that

!

pls o iy (A ADL=q) Eqo
provided that p,//o =p,o for all 7
Lemma: For any definite clause p, we have p = po by UE
L (piA-cApp=q¢ EmiA...Ap,=qo=(picN...Ap,0 = q0)
2.0y oo BN AR =oAL AD) o

3. From 1 and 2, go follows by simple MP

CS 460, Session 16-18 21

Properties of GMP

Why is GMP and efficient inference rule?
- It takes bigger steps, combining several small inferences into one

- It takes sensible steps: uses eliminations that are guaranteed
to help (rather than random UES)

- It uses a precompilation step which converts the KB to canonical
form (Horn sentences)

Remember: sentence in Horn from is a conjunction of Horn clauses

(clauses with at most one positive literal), e.g.,
(Av —B) A (Bv —C v —D), thatis (B = A) A ((C A D) = B)

CS 460, Session 16-18 22

Horn form

e We convert sentences to Horn form as they are entered into the KB
e Using Existential Elimination and And Elimination

e e.g., 3x Owns(Nono, x) A Missile(x) becomes

Owns(Nono, M)
Missile(M)

(with M a new symbol that was not already in the KB)

CS 460, Session 16-18 23

Forward chaining

When a new fact p is added to the KB
for each rule such that p unifies with a premise
If the other premises are known
then add the conclusion to the KB and continue chaining

Forward chaining is data-driven
e.g., inferring properties and categories from percepts

CS 460, Session 16-18 24

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [| = unification literal; ,/ indicates rule firing

. Buf falo(x) N Pig(y) = Faster(z,y)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A Faster(y, z) = Faster(x, z)
. Buf falo(Bob) [1a,x]
. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a,x], [3b,x]
[2a, %]
7. Slug(Steve) [2b, /]
—8. Faster(Pat, Steve) [3a,x], [3b, /]
—9. Faster(Bob, Steve) [3a,x], [3b, X]

RN

CS 460, Session 16-18 25

Example: Forward Chaining

Current available rules

e AAC=>E
e DAC=>F
e BAE=>F
e B=>C
e F=>G

CS 460, Session 16-18

26

Example: Forward Chaining

Current available rules

e ANC=>E (1)
e DAC=>F (2)
e BANE=>F (3)
e B=>C (4)
e F=>G (5)

Percept 1. A (is true)
Percept 2. B (is true)

then, from (4), C is true, then the premises of (1) will be satisfied,
resulting to make E true, then the premises of (3) are going to be
satisfied, thus F is true, and finally from (5) G is true.

CS 460, Session 16-18 27

Example of Deduction: What can we prove?

s(Y,Z) N r(Z) — r(Y)

r(a).
s(b,c)
s(c,a).

—|r(c)

CS 460, Session 16-18

28

Example of Deduction: What can we prove?

(Y Z)VrZ)VrY) (C;SS(Y’Z)Q/ ﬂ{:f/i) ;;}(Y)
r(a). / ’
s(b,c)

s(c,a). -r(a) Vi

7r(c) /

ar(c
>/

CS 460, Session 16-18 29

Example of Deduction: What can we prove?

(Y2 @) VY S(bf;w/z) NV
oo

~r(c)

deadend.

CS 460, Session 16-18 30

Example of Deduction: What can we prove?

ﬂ(s()Y,Z) Var@Vr) 70(0): o
rea).

s(b,c) \[]

s(c,a).

7r(X)

CS 460, Session 16-18

31

Inference example

quaker(X) => pacifist(X).
republican(X) => =pacifist(X).

republican(george).
quaker(richard).

republican(richard)?
Can we use forward chaining to achieve this?

CS 460, Session 16-18

32

Backward chaining

When a query q is asked
if a matching fact ¢’ is known, return the unifier
for each rule whose consequent ¢’ matches ¢
attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming, e.g., Prolog

CS 460, Session 16-18 33

Backward chaining example

1. Pig(y) A Slug(z) = Faster(y, z)
2. Slimy(z) A Creeps(z) = Slug(z)
3. Pig(Pat) 4. Slimy(Steve) 5. Creeps(Steve)
Faster(Pat,Steve)
/éQ {y/Pat, z/Steve}
Pig(Pat) Slug(Steve)

@ v /N} {z/Steve}

Slimy(Steve) Creeps(Steve)

O ®u y

A simple example

e BAC=>G
o ANG=>1
o DNAG=>]

o E=> C(C

e DAC=>K
e F=>C

e Q:1I?

CS 460, Session 16-18

35

A simple example

e BAC=>G
o ANG=>1
o DNAG=>]

o E=> C(C

e DAC=>K
e F=>C

e Q:1I?

1. AN
2. A?
1.

1.

CS 460, Session 16-18

G

USER

BAC
1. USER
2. EVF

36

Another Example (from Konelsky)

o Nintendo example.

e Nintendo says it is Criminal for a programmer to provide
emulators to people. My friends don’t have a Nintendo 64, but
they use software that runs N64 games on their PC, which is

written by Reality Man, who is a programmer.

CS 460, Session 16-18

37

Forward Chaining

e The knowledge base initially contains:

e Programmer(x) A Emulator(y) A People(z) A
Provide(x,z,y) = Criminal(x)

e Use(friends, x) A Runs(x, N64 games) =
Provide(Reality Man, friends, x)

o Software(x) A Runs(x, N64 games) = Emulator(x)

CS 460, Session 16-18

38

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y) =

Criminal(x) (1)
Use(friends, x) A Runs(x, N64 games)

— Provide(Reality Man, friends, x) (2)
Software(x) A Runs(x, N64 games)

— Emulator(x) (3)

 Now we add atomic sentences to the KB sequentially, and call on the
forward-chaining procedure:

o FORWARD-CHAIN(KB, Programmer(Reality Man))

CS 460, Session 16-18 39

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)

= Criminal(x) (1)
Use(friends, x) A Runs(x, N64 games)

— Provide(Reality Man, friends, x) (2)
Software(x) A Runs(x, N64 games)

= Emulator(x) (3)
Programmer(Reality Man) (4)

e This new premise unifies with (1) with
subst({x/Reality Man}, Programmer(x))

but not all the premises of (1) are yet known, so
nothing further happens.

CS 460, Session 16-18 40

Forward Chaining

Programmer(x) A Emulator§) A People(z) A
Provide(x,z,y) = Criminal(x) (1)

Use(friends, x) A Runs(x, N64 games)

— Provide(Reality Man, friends, x) (2)
Software(x) A Runs(x, N64 games)

— Emulator(x) (3)
Programmer(Reality Man) (4)

e Continue adding atomic sentences:
e FORWARD-CHAIN(KB, People(friends))

CS 460, Session 16-18

41

Forward Chaining

Programmer(x) A Emulatorﬁy) A People(z) A

Provide(x,z,y) = Criminal(x)

(1)

Use(friends, x) A Runs(x, N64 games)
— Provide(Reality Man, friends, x)

Software(x) A Runs(x, N64 games)
— Emulator(x)

Programmer(Reality Man)
People(friends)

e This also unifies with (1) with subst

(2)

(3)

(4)
(3)

{z/friends},

People(z)) but other premises are StI$| missing.

CS 460, Session 16-18

42

Forward Chaining

Programmer(x) A Emulatorﬁy) A People(z) A
Provide(x,z,y) = Criminal(x)

Use(friends, x) A Runs(x, N64 games)
— Provide(Reality Man, friends, x)
Software(x) A Runs(x, N64 games)
— Emulator(x)
Programmer(Reality Man)
People(friends)

e Add:
e FORWARD-CHAIN(KB, Software(U64))

CS 460, Session 16-18

(1)
(2)
(3)

(4)
(3)

43

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)

= Criminal(x) (1)
Use(friends, x) A Runs(x, N64 games)

— Provide(Reality Man, friends, x) (2)
Software(x) A Runs(x, N64 games)

= Emulator(x) (3)
Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)

e This new premise unifies with (3) but the other premise
IS not yet known.

CS 460, Session 16-18 44

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)

= Criminal(x) (1)
Use(friends, x) A Runs(x, N64 games)

= Provide(Reality Man, friends, x) (2)
Software(x) A Runs(x, N64 games)

— Emulator(x) (3)
Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)

o Add:

e FORWARD-CHAIN(KB, Use(friends, U64))

CS 460, Session 16-18 45

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)= Criminal(x)
Use(friends, x) A Runs(x, N64 games) = Provide(Reality Man, friends, x)

Software(x) A Runs(x, N64 games) = Emulator(x)

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)

(4)
(3)
(6)
(7)

e This premise unifies with (2) but one still lacks.

CS 460, Session 16-18

(1)
(2)
(3)

46

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)= Criminal(x)
Use(friends, x) A Runs(x, N64 games) = Provide(Reality Man, friends, x)

Software(x) A Runs(x, N64 games) = Emulator(x)

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)

e Add:
e FORWARD-CHAIN(Runs(U64, N64 games))

CS 460, Session 16-18

(4)
(3)
(6)
(7)

(1)
(2)
(3)

47

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)= Criminal(x)
Use(friends, x) A Runs(x, N64 games) = Provide(Reality Man, friends, x)

Software(x) A Runs(x, N64 games) = Emulator(x)

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)
Runs(U64, N64 games)

e This new premise unifies with (2) and (3).

CS 460, Session 16-18

(4)
(3)
(6)
(7)
(8)

(1)
(2)
(3)

48

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(X,z,y)= Criminal(x) (1)
Use(friends, x) A Runs(x, N64 games) = Provide(Reality Man, friends, x) (2)

Software(x) A Runs(x, N64 games) = Emulator(x) (3)
Programmer(Reality Man) (4)
People(friends) (5)
Software(U64) (6)
Use(friends, U64) (7)
Runs(U64, N64 games) (8)

e Premises (6), (7) and (8) satisfy the implications fully.

CS 460, Session 16-18

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)= Criminal(x)
Use(friends, x) A Runs(x, N64 games) = Provide(Reality Man, friends, x)
Software(x) A Runs(x, N64 games) = Emulator(x)

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)
Runs(U64, N64 games)

So we can infer the consequents, which are now added to the
knowledge base (this is done in two separate steps).

CS 460, Session 16-18

(1)
(2)
(3)

(4)
(3)
(6)
(7)
(8)

50

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(X,z,y)= Criminal(x)
Use(friends, x) A Runs(x, N64 games) = Provide(Reality Man, friends, x)
Software(x) A Runs(x, N64 games) = Emulator(x)

Programmer(Reality Man)
People(friends)
Software(U64)
Use(friends, U64)

Runs(U64, N64 games)
Provide(Reality Man, friends, U64)
Emulator(U64)

e Addition of these new facts triggers further forward chaining.
CS 460, Session 16-18

(1)
(2)
(3)

(4)
(3)
(6)
(/)
(8)

(9)
(10)

91

Forward Chaining

Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)= Criminal(x)
Use(friends, x) A Runs(x, N64 games) = Provide(Reality Man, friends, x)
Software(x) A Runs(x, N64 games) = Emulator(x)
Programmer(Reality Man)

People(friends)

Software(U64)

Use(friends, U64)

Runs(U64, N64 games)
Provide(Reality Man, friends, U64)
Emulator(U64)

Criminal(Reality Man)

e Which results in the final conclusion: Criminal(Reality Man)
CS 460, Session 16-18

(1)
2)
(3)
(4)
(3)
(6)
(7)
(8)
(9)
(10)
(11)

52

Forward Chaining

e Forward Chaining acts like a breadth-first search at the
top level, with depth-first sub-searches.

e Since the search space spans the entire KB, a large KB
must be organized in an intelligent manner in order to
enable efficient searches in reasonable time.

CS 460, Session 16-18

93

Backward Chaining

Current knowledge:
e hurts(x, head)

What implications can lead to this fact?
e Kkicked(x, head)
o fell_on(x, head)
e brain_tumor(x)
e hangover(x)

What facts do we need in order to prove these?

CS 460, Session 16-18

54

Backward Chaining

e The algorithm (available in detail in Fig. 9.2 on page 275 of the text):

e a knowledge base KB
e a desired conclusion c or question g

e finds all sentences that are answers to g in KB or proves c

e if q is directly provable by premises in KB, infer g and remember how
q was inferred (building a list of answers).

e find all implications that have g as a consequent.

o for each of these implications, find out whether all of its premises are
now in the KB, in which case infer the consequent and add it to the
KB, remembering how it was inferred. If necessary, attempt to prove
the implication also via backward chaining

e premises that are conjuncts are processed one conjunct at a time

CS 460, Session 16-18 55

Backward Chaining

e Question: Has Reality Man done anything criminal?
« Criminal(Reality Man)

e Possible answers:
e Steal(x, y) = Criminal(x)
e Kill(x, y) = Criminal(x)
o Grow(x, y) A Illegal(y) = Criminal(x)
e HaveSillyName(x) = Criminal(x)

e Programmer(x) A Emulator(y) A People(z) A Provide(x,z,y)
—Criminal(x)

CS 460, Session 16-18

Backward Chaining

Question: Has Reality Man done anything criminal?

Criminal(x)

CS 460, Session 16-18

o7

Backward Chaining

e Question: Has Reality Man done anything criminal?

Criminal(x)

Steal(x,y)

CS 460, Session 16-18

Backward Chaining

e Question: Has Reality Man done anything criminal?

Criminal(x)

Steal(x,y)

FAIL

CS 460, Session 16-18

Backward Chaining

e Question: Has Reality Man done anything criminal?

Criminal(x)

Steal(x,y) Kill(x,y)

FAIL

CS 460, Session 16-18

Backward Chaining

e Question: Has Reality Man done anything criminal?

Criminal(x)

Steal(x,y) Kill(x,y)

FAIL FAIL

CS 460, Session 16-18

Backward Chaining

e Question: Has Reality Man done anything criminal?

Steal(x,y)

Criminal(x)

FAIL

Kill(x,y)

grows(X,y)

Illegal(y)

FAIL

CS 460, Session 16-18

62

Backward Chaining

e Question: Has Reality Man done anything criminal?

Steal(x,y)

FAIL

Criminal(x)
Kill(x,y) orows(x,y) |Illegal(y)
FAIL FAIL FAIL

CS 460, Session 16-18

63

Backward Chaining

e Question: Has Reality Man done anything criminal?

Criminal(x)

Steal(x,y) Kill(x,y) orows(x,y) |Illegal(y)
FAIL FAIL FAIL FAIL

e Backward Chaining is a depth-first search: in any
knowledge base of realistic size, many search paths will
result in failure.

CS 460, Session 16-18 64

Backward Chaining

Question: Has Reality Man done anything criminal?

Criminal(x)

CS 460, Session 16-18

65

Backward Chaining

e Question: Has Reality Man done anything criminal?

Criminal(x)

Programmer(x)

Yes, {x/Reality Man}

CS 460, Session 16-18

Backward Chaining

e Question: Has Reality Man done anything criminal?

Criminal(x)

Programmer(X) People(Z)

Yes, {x/Reality Man} Yes, {z/friends}

CS 460, Session 16-18

Backward Chaining

e Question: Has Reality Man done anything criminal?

Programmer(x)

Yes, {x/Reality Man}

Criminal(x)

Emulator(y)

People(Z)

CS 460, Session

Yes, {z/friends}

16-18

68

Backward Chaining

e (Question: Has Reality Man done anything criminal?

Criminal(x)

Programmer(x) Emulator(y)| | People(Z)
Yes, {x/Reality Man Yes, {z/friends}

Software(ultraHLE)

Yes, {y/UltraHLE}

CS 460, Session 16-18

Backward Chaining

e (Question: Has Reality Man done anything criminal?

Programmer(x)

Yes, {x/Reality Man}

Software(ultraHLE)

Yes, {y/UltraHLE}

Criminal(x)

Emulator(y)| | People(Z)

Yes, {z/friends}

Runs(UltraHLE, N64 games)

yes, {}

CS 460, Session 16-18

Backward Chaining

e (Question: Has Reality Man done anything criminal?

Programmer(x)

Criminal(x)

e

Yes, {x/Reality Man}

Emulator(y)

People(Z)

Software(ultraHLE)

Yes, {y/UltraHLE}

Yes, {z/friends}

Provide
(reality man,
ultraHLE,
friends)

Runs(UltraHLE, N64 games)

yes, {}

CS 460, Session 16-18

71

Backward Chaining

e (Question: Has Reality Man done anything criminal?

Criminal(x)
Programmer(x) Emulator(y)| | People(Z) Provide

(reality man,

es, {z/friends} | ultraHLE,
friends)

Yes, {x/Reality Man

Software(ultraHLE)

ves, {y/UltraHLE} Runs(UltraHLE, N64 games)

Use(friends, UltraHLE) yes, {}

CS 460, Session 16-18 72

Backward Chaining

e Backward Chaining benefits from the fact that it is
directed toward proving one statement or answering
one question.

e In a focused, specific knowledge base, this greatly

decreases the amount of superfluous work that needs to

be done in searches.

e However, in broad knowledge bases with extensive
information and numerous implications, many search
paths may be irrelevant to the desired conclusion.

e Unlike forward chaining, where all possible inferences
are made, a strictly backward chaining system makes
inferences only when called upon to answer a query.

CS 460, Session 16-18

73

Completeness

e As explained earlier, Generalized Modus Ponens
requires sentences to be in Horn form:

e gtomic, or

e an implication with a conjunction of atomic sentences as
the antecedent and an atom as the consequent.

e However, some sentences cannot be expressed in
Horn form.

e e.g.: VX — bored_of_this_lecture (x)

e Cannot be expressed in Horn form due to presence of
negation.

CS 460, Session 16-18 74

Completeness

e A significant problem since Modus Ponens
cannot operate on such a sentence, and thus
cannot use it in inference.

e Knowledge exists but cannot be used.

e Thus inference using Modus Ponens is
incomplete.

CS 460, Session 16-18

75

Completeness

e However, Kurt Godel in 1930-31 developed the
completeness theorem, which shows that it is
possible to find complete inference rules.

e The theorem states:

e any sentence entailed by a set of sentences can be proven from
that set.

=> Resolution Algorithm which is a complete
inference method.

CS 460, Session 16-18 76

Completeness

e The completeness theorem says that a sentence can be
proved /fit is entailed by another set of sentences.

e This is a big deal, since arbitrarily deeply nested
functions combined with universal quantification make a
potentially infinite search space.

e But entailment in first-order logic is only semi-
decidable, meaning that if a sentence is not entailed

by another set of sentences, it cannot necessarily be
proven.

CS 460, Session 16-18 77

Completeness in FOL

Procedure ¢ i1s complete if and only if
KBF;, o« whenever KB =«

Forward and backward chaining are complete for Horn KBs

but incomplete for general first-order logic

E.g., from

PhD(x) = HighlyQuali fied(x)
-PhD(x) = FarlyEarnings(x)
HighlyQuali fied(x) = Rich(x)
EarlyEarnings(x) = Rich(x)

should be able to infer Rich(Me), but FC/BC won't do it

Does a complete algorithm exist?

78

Historical note

450B.C. Stoics
322B.C. Aristotle

1505
1847
1879
1922
1930
1930
1931
1900
1905

Cardano
Boole

Frege
Wittgenstein
Godel
Herbrand
Godel

propositional logic, inference (maybe)

“syllogisms" (inference rules), quantifiers

probability theory (propositional logic + uncertainty)
propositional logic (again)

first-order logic

proof by truth tables

1 complete algorithm for FOL

complete algorithm for FOL (reduce to propositional)
-3 complete algorithm for arithmetic

Davis/Putnam “practical” algorithm for propositional logic

Robinson

“practical” algorithm for FOL—resolution

CS 460, Session 16-18 79

Kinship Example

KB:

(1) father (art, jon)
(2) father (bob, kim)
(3) father (X, Y) = parent (X, Y)

Goal: parent (art, jon)?

CS 460, Session 16-18

80

Refutation Proof/Graph

—parent(art,jon) —father(X, Y) V parent(X, Y)
\ /
- father (art, jon) father (art, jon)
\

[]

CS 460, Session 16-18

81

Resolution

Entailment in first-order logic is only semidecidable:

can find a proof of a if KB = o

cannot always prove that KB [~ «a
Cf. Halting Problem: proof procedure may be about to terminate with
success or failure, or may go on for ever

Resolution is a refutation procedure:
to prove KB = «, show that K B A =« is unsatisfiable

Resolution uses KB, =« in CNF (conjunction of clauses)

Resolution inference rule combines two clauses to make a new one:

C C,
~

Inference continues until an empty clause is derived (contradiction)

CS 460, Session 16-18

82

Resolution inference rule

Basic propositional version:

aV [, —BVy : a = [, =9
or equivalently
aVy o =

!

Full first-order version:

V... pj .oV D

V... qx ...V,

(P1V .. pisiVDis1l oDV @1V Qer -V @)0
where pjo = —qj.o
For example,

aRich(x) V Unhappy(x)
Rich(Me)
Unhappy(Me)

with 0 = {z/Me}

CS 460, Session 16-18

83

Remember: normal forms

Other approaches to inference use syntactic operations on sentences,
often expressed in standardized forms

Conjunctive Normal Form (CNF—universal) ~ Product of sums of

conjunction of disjunctions of literals simple Var_lables or)
‘ " negated simple variables

clauses
E.g., (AV-B)A(BV-CV-D)

“sum of products of
simple variables or
negated simple variables”

Disjunctive Normal Form (DNF—universal)
disjunction of conjunctions of literals
terms
Eg, (AAB)V(AA-C)YV(AA-D)V(-BA-C)V (-BA-D)

Horn Form (restricted)
conjunction of Horn clauses (clauses with < 1 positive literal)
Eg, (AV-B)A(BV-CV-D)
Often written as set of implications:
B=> Aand{(CAD) = B

Conjunctive normal form

Literal = (possibly negated) atomic sentence, e.g., “Rich(Me)
Clause = disjunction of literals, e.g., ~Rich(Me) V Unhappy(Me)
The KB is a conjunction of clauses

Any FOL KB can be converted to CNF as follows:

Replace P = @ by -PV(Q

Move — inwards, e.g., -Va P becomes dx —P

Standardize variables apart, e.g., Vo PV dx () becomes Vax PV dy ()
Move quantifiers left in order, e.g., Vo PV dx () becomes Vady PV Q)
Eliminate 3 by Skolemization (next slide)

Drop universal quantifiers

Distribute A over V, e.g., (PAQ)V R becomes (PV Q) A (PV R)

NogkwnNH=

CS 460, Session 16-18 85

Skolemization

Jx Rich(xz) becomes Rich(G1) where G1 is a new “Skolem constant”

1k %(k”) = k¥ becomes %(e”) —=eY

More tricky when 3 is inside V

E.g.. "Everyone has a heart”
Vax Person(x) = dy Heart(y) N Has(x,y)

Incorrect:
Vo Person(x) = Heart(H1) AN Has(x, H1)

Correct:
Vo Person(x) = Heart(H(x)) AN Has(v, H(x))
where H is a new symbol (“Skolem function™)

Skolem function arguments: all enclosing universally quantified variables

CS 460, Session 16-18 86

Examples: Converting FOL sentences to clause form...

Convert the sentence

1. (WVx)(P(x) => ((Vy)(P(y) => P(f(x,y))) ~(VY)(Q(x,y) => P(y))))
(like A => B © Q)

2. Eliminate => (Vx)(=P(x) v ((Vy)(=P(y) v P(f(x,y))) * =(Vy)(=Q(x,y)
v P(y))))

3. Reduce scope of negation

(VX)(=P(x) v ((Vy)(=P(y) v P(f(x,y))) ~ (Fy)(Q(x,y) ~ =P(y))))

4. Standardize variables

(VX)(=P(x) v ((Vy)(=P(y) v P(f(x,y))) * (32)(Q(x,2) * =P(2))))

CS 460, Session 16-18 87

Examples: Converting FOL sentences to clause form...

5. Eliminate existential quantification

(VX)(=P(x) V((VY)(=P(y) v P(f(x,y))) ~ (Q(x,9(x)) *
-'P(g(X);)))

6. Drop universal quantification symbols

(=P(x) v ((=P(y) v P(f(x,y))) ~ (Q(x,9(x)) ~ =P(g(x)))))

/. Convert to conjunction of disjunctions

(=P(x) v aP(y) v P(f(x,y))) ~ (=P(x) v Q(x,9(x)))
’\E-'P(X) v -'P(g(X)S)

CS 460, Session 16-18 88

Examples: Converting FOL sentences to clause form...

8. Create separate clauses
=P(x) v =P(y) v P(f(x,y))
=P(x) v Q(x,9(x))

-P(x) v =P(g(x))

9. Standardize variables
—P(x) v =P(y) v P(f(x,y))

=P(2) v Q(z,9(2))
-P(w) v =P(g(w))

CS 460, Session 16-18

89

Resolution proof

To prove n:
— negate it
— convert to CNF

— add to CNF KB
— infer contradiction

E.g., to prove Rich(me), add —Rich(me) to the CNF KB

-~ PhD(z)V HighlyQuali fied(x)
PhD(zx)V EarlyEarnings(x)
~HighlyQualified(z) V Rich(x)
-~ FarlyEarnings(x) V Rich(x)

CS 460, Session 16-18

90

Resolution proof

=1 PhD(x) v HQ(x) =VHQ(x) V Rich(x)

~u_—

=1 PhD(x) V Rich(x) PhD(x) v ES(x)

~u

Rich(x) v ES(x)

1 ES(x) Vv Rich(x)

T~

Rich(x) =1 Rich(Me)

W

CS 460, Session 16-18 91

Inference in First-Order Logic

e Canonical forms for resolution

Conjunctive Normal Form (CNF)

—P(w) v O(w)
P(x)v R(x)

—0(¥) v S(y)
—R(z)v S(z2)

CS 460,

Implicative Normal Form (INF)

P(w) = O(w)
True = P(x)Vv R(x)

O()=3S8(y)
R(z)= S(z)

Session 16-18 92

Reference in First-Order Logic

e Resolution Proofs

In a forward- or backward-chaining algorithm, just as Modus Ponens.

CS 460, Session 16-18 03

Inference in First-Order Logic

e Refutation

(KB A—=P = False) < (KB = P)

CS 460, Session 16-18

94

Example of Refutation Proof
(in conjunctive normal form)

(1) Cats like fish —cat (x) v likes (x,fish)
(2) Cats eat everything they like —cat (y) v —likes (y,z) v eats (y,z)
(3) Josephine is a cat. cat (jo)

(4) Prove: Josephine eats fish. eats (jo,fish)

CS 460, Session 16-18

95

Backward Chaining
Negation of goal wff: — eats(jo, fish)

— eats(jo, fish) — cat(y) v —likes(y, z) v eats(y, z)

0 = {y/jo, z/fish}

— cat(jo) v —likes(jo, fish) cat(jo)
0=0
— cat(x) v likes(x, fish) — likes(jo, fish)
0 = {x/jo}
— cat(jo cat(jo)

\/

1 (contradiction)

Forward chaining

cat (o) —cat (X) v likes (X,fish)
\ /
likes (jo,fish) —cat (Y) v —likes (Y,Z) v eats (Y,Z)
\
—cat (jo) Vv eats (jo,fish) cat (o)
\
eats (jo,fish) — eats (jo,fish)
\ /

[]

CS 460, Session 16-18 97

Question:

e When would you use forward chaining? What
about backward chaining?

o A:

e FC: If expert needs to gather information before any
inferencing

e BC: If expert has a hypothetical solution

CS 460, Session 16-18 98

