Planning

- Search vs. planning
- STRIPS operators
- Partial-order planning
What we have so far

- Can TELL KB about new percepts about the world
- KB maintains model of the current world state
- Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent,
i.e., an agent that constructs plans that can achieve its goals, and that then executes these plans?
Example: Robot Manipulators

- Example: (courtesy of Martin Rohrmeier)
 - Puma 560
 - Kr6
Remember: Problem-Solving Agent

function SIMPLE-PROBLEM-SOLVING-AgENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty
 state, some description of the current world state
 g, a goal, initially null
 problem, a problem formulation

state ← UPDATE-STATE(state, p)
if s is empty then
 g ← FORMULATE-GOAL(state)
 problem ← FORMULATE-PROBLEM(state, g)
 s ← SEARCH(problem)
 action ← RECOMMENDATION(s, state)
 s ← REMAINDER(s, state)
return action

Note: This is offline problem-solving. Online problem-solving involves acting w/o complete knowledge of the problem and environment
Simple planning agent

- Use percepts to build model of current world state

- IDEAL-PLANNER: Given a goal, algorithm generates plan of action

- STATE-DESCRIPTION: given percept, return initial state description in format required by planner

- MAKE-GOAL-QUERY: used to ask KB what next goal should be
A Simple Planning Agent

function SIMPLE-PLANNING-AGENT(percet) returns an action

static: KB, a knowledge base (includes action descriptions)
p, a plan (initially, NoPlan)
t, a time counter (initially 0)

local variables: G, a goal
current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current ← STATE-DESCRIPTION(KB, t)

if p = NoPlan then
 G ← ASK(KB, MAKE-GOAL-QUERY(t))
p ← IDEAL-PLANNER(current, G, KB)

if p = NoPlan or p is empty then
 action ← NoOp
else
 action ← FIRST(p)
 p ← REST(p)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t+1

return action

Like popping from a stack
Search vs. planning

Consider the task *get milk, bananas, and a cordless drill*

Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate
Search vs. planning

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>Lisp data structures</td>
<td>Logical sentences</td>
</tr>
<tr>
<td>Actions</td>
<td>Lisp code</td>
<td>Preconditions/outcomes</td>
</tr>
<tr>
<td>Goal</td>
<td>Lisp code</td>
<td>Logical sentence (conjunction)</td>
</tr>
<tr>
<td>Plan</td>
<td>Sequence from S_0</td>
<td>Constraints on actions</td>
</tr>
</tbody>
</table>
Planning in situation calculus

\(\text{PlanResult}(p, s) \) is the situation resulting from executing \(p \) in \(s \)

\[
\text{PlanResult}([], s) = s \\
\text{PlanResult}([a|p], s) = \text{PlanResult}(p, \text{Result}(a, s))
\]

Initial state \(At(Home, S_0) \land \neg Have(Milk, S_0) \land \ldots \)

Actions as Successor State axioms

\[
\text{Have}(Milk, Result(a, s)) \iff \\
[(a = \text{Buy}(Milk) \land At(Supermarket, s)) \lor (\text{Have}(Milk, s) \land a \neq \ldots)]
\]

Query

\[
s = \text{PlanResult}(p, S_0) \land At(Home, s) \land Have(Milk, s) \land \ldots
\]

Solution

\[
p = [\text{Go}(Supermarket), \text{Buy}(Milk), \text{Buy}(Bananas), \text{Go}(HWS), \ldots]
\]

Principal difficulty: unconstrained branching, hard to apply heuristics
Basic representation for planning

- Most widely used approach: uses STRIPS language

- **states**: conjunctions of function-free ground literals (i.e., predicates applied to constant symbols, possibly negated); e.g.,

 \[\text{At(Home)} \land \neg \text{Have(Milk)} \land \neg \text{Have(Bananas)} \land \neg \text{Have(Drill)} \ldots \]

- **goals**: also conjunctions of literals; e.g.,

 \[\text{At(Home)} \land \text{Have(Milk)} \land \text{Have(Bananas)} \land \text{Have(Drill)} \]

 but can also contain variables (implicitly universally quant.); e.g.,

 \[\text{At(x)} \land \text{Sells(x, Milk)} \]
Planner vs. theorem prover

- **Planner**: ask for sequence of actions that makes goal true if executed

- **Theorem prover**: ask whether query sentence is true given KB
STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Precondition: At(p), Sells(p, x)

Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language \Rightarrow efficient algorithm

Precondition: conjunction of positive literals
Effect: conjunction of literals

Graphical notation:

```
At(p)  Sells(p,x)

Buy(x)

Have(x)
```
Types of planners

• Situation space planner: search through possible situations

• Progression planner: start with initial state, apply operators until goal is reached
 Problem: high branching factor!

• Regression planner: start from goal state and apply operators until start state reached
 Why desirable? usually many more operators are applicable to initial state than to goal state.
 Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner
State space vs. plan space

Standard search: node = concrete world state
Planning search: node = partial plan

Defn: **open condition** is a precondition of a step not yet fulfilled

Operators on partial plans:
- add a link from an existing action to an open condition
- add a step to fulfill an open condition
- order one step wrt another

Gradually move from incomplete/vague plans to complete, correct plans
Operations on plans

- Refinement operators: add constraints to partial plan

- Modification operator: every other operators
Types of planners

- **Partial order planner**: some steps are ordered, some are not
- **Total order planner**: all steps ordered (thus, plan is a simple list of steps)
- **Linearization**: process of deriving a totally ordered plan from a partially ordered plan.
Partially ordered plans

A plan is **complete** iff every precondition is achieved

A precondition is **achieved** iff it is the effect of an earlier step and no possibly intervening step undoes it
Plan

We formally define a plan as a data structure consisting of:

- Set of plan steps (each is an operator for the problem)

- Set of step ordering constraints

 e.g., $A \prec B$ means “A before B”

- Set of variable binding constraints

 e.g., $v = x$ where v variable and x constant or other variable

- Set of causal links

 e.g., $A \xrightarrow{c} B$ means “A achieves c for B”
POP algorithm sketch

\[
\text{function } \text{POP}(\text{initial, goal, operators}) \text{ returns } \text{plan} \\
\text{plan} \leftarrow \text{MAKE-MINIMAL-PLAN}(\text{initial, goal}) \\
\text{loop} \text{ do} \\
\quad \text{if } \text{SOLUTION?}(\text{plan}) \text{ then return plan} \\
\quad S_{\text{need}}, c \leftarrow \text{SELECT-SUBGOAL}(\text{plan}) \\
\quad \text{CHOOSE-OPERATOR}(\text{plan, operators, } S_{\text{need}}, c) \\
\quad \text{RESOLVE-THREATS}(\text{plan}) \\
\text{end}
\]

\[
\text{function } \text{SELECT-SUBGOAL}(\text{plan}) \text{ returns } S_{\text{need}}, c \\
\text{pick a plan step } S_{\text{need}} \text{ from } \text{STEPS}(\text{plan}) \\
\quad \text{with a precondition } c \text{ that has not been achieved} \\
\text{return } S_{\text{need}}, c
\]
POP algorithm (cont.)

```
procedure CHOOSE-OPERATOR(plan, operators, S_need, c)
    choose a step S_add from operators or STEPS(plan) that has c as an effect
    if there is no such step then fail
    add the causal link \( S_{add} \rightarrow c \rightarrow S_{need} \) to LINKS(plan)
    add the ordering constraint \( S_{add} < S_{need} \) to ORDERINGS(plan)
    if \( S_{add} \) is a newly added step from operators then
        add \( S_{add} \) to STEPS(plan)
        add \( \text{Start} < S_{add} < \text{Finish} \) to ORDERINGS(plan)
```

```
procedure RESOLVE-THREATS(plan)
    for each \( S_{threat} \) that threatens a link \( S_i \rightarrow c \rightarrow S_j \) in LINKS(plan) do
        choose either
        Demotion: Add \( S_{threat} < S_i \) to ORDERINGS(plan)
        Promotion: Add \( S_j < S_{threat} \) to ORDERINGS(plan)
        if not CONSISTENT(plan) then fail
    end
```

POP is sound, complete, and **systematic** (no repetition)

Extensions for disjunction, universals, negation, conditionals
Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition achieved by a causal link. E.g., $Go(Home)$ clobbers $At(HWS)$:

Demotion: put before $Go(HWS)$

Promotion: put after $Buy(Drill)$
Example: block world

"Sussman anomaly" problem

Start State

\[\text{Clear}(x) \quad \text{On}(x,z) \quad \text{Clear}(y) \]
\[\text{PutOn}(x,y) \]
\[\neg \text{On}(x,z) \quad \neg \text{Clear}(y) \]
\[\text{Clear}(z) \quad \text{On}(x,y) \]

Goal State

\[\text{Clear}(x) \quad \text{On}(x,z) \]
\[\text{PutOnTable}(x) \]
\[\neg \text{On}(x,z) \quad \text{Clear}(z) \quad \text{On}(x,\text{Table}) \]

+ several inequality constraints
Example (cont.)

On(C, A) On(A, Table) Cl(B) On(B, Table) Cl(C)

On(A, B) On(B, C)

START

FINISH
Example (cont.)

START

On(C,A) On(A, Table) Cl(B) On(B, Table) Cl(C)

Cl(B) On(B, z) Cl(C)

PutOn(B, C)

On(A, B) On(B, C)

FINISH
Example (cont.)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)

Cl(B) On(B,z) Cl(C)

PutOn(B,C)

On(A,B) On(B,C)

FINISH

PutOn(A,B) clobbers Cl(B) => order after PutOn(B,C)
Example (cont.)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

On(C,z) Cl(C)

PutOnTable(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

Cl(B) On(B,z) Cl(C)

PutOn(B,C)

On(A,B) On(B,C)

FINISH

PutOn(A,B) clobbers Cl(B) => order after PutOn(B,C)

PutOn(B,C) clobbers Cl(C) => order after PutOnTable(C)