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Robots—The Reality




Robots—What We Might Want




Robots—A New Wave:
The Humanoids Are Coming ...

Amar—FZI, Karlsruhe Centaur—KIST, Korea




Robots—A New Wave:
The Humanoids Are Coming ...

Hadaly—SuganolLab, Waseda Hermes—BWH, Munich




Robots—A New Wave:
The Humanoids Are Coming ...

Hoap—Fujitsu, Japan Asimo—Honda, Japan




Robots—A New Wave:
The Humanoids Are Coming ...

HRP-2P—Kawada, Japan Isamu—Kawada, Japan




Robots—A New Wave:
The Humanoids Are Coming ...
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Jack—ETL, Japan




Robots—A New Wave:
The Humanoids Are Coming ...

Infanoid—CRL/Kozima, Japan Robotnaut—NASA




Robots—A New Wave:
The Humanoids Are Coming ...

Morph3—Kitano, Japan JSK-H7-Tokyo University




Robots—A New Wave:
The Humanoids Are Coming ...
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Arnold—INI/Bochum, Germany, Pino—Kitano, Japan




Robots—A New Wave:
The Humanoids Are Coming ...

Robos—Kozoh, Japan Sony Robot




Robots—A New Wave:
The Humanoids Are Coming ...

www. anthrobot.com

Robotic Surrogate—RHD, USA  Wabian—Waseda/Takanishi, Japan




Robots—A New Wave:
The Humanoids Are Coming ...

Sarcos Humanoid—ATR, Japan




Robots—What We Might Want
But Can We Program Them?




Learning—A Key Element
in Future Robots

Statistical
Learning

Neuroscience
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Example 1: Statistical Learning
for Motor Control

Policy: u(?) = p(x(¢).t,a)

Internal & External State: x(t)——— Action: u(t)




Many Elements of Learning
Involve Function Approximation

e Direct Control (Model-free)
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Function Approximation
with Locally Linear Models

- / Region of Validity

\ 29kl

4 %
Receptive Field —~Linear
Activationw  1- * Model

If we can find the tangent (plane) and the region of

validity from only local data, the function approximation
problem can be solved efficiently




Example: 2D Fitting
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7= max(exp(—lez),exp(—SOy2 ),1.25 exp(—S(x2 + y2)))




Example: 2D Fitting
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RMRC Inverse
Kinematics Learning

Trick: Learn direct kinematics and additionally local inverse in each local model




Inverse Dynamics Learning
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On-line 90->30 Dim. Mapping in Computed Torque Controller




Skill Learning

(requires accurate dynamics model)




Example: Behavioral and
Computational Neuroscience

— Measure
human
movement

— Measure brain
activity

— Analyze data to
extract
principles of
learning and
control in
humans

— Also use robots
as subjects




Motor Learning
in High Dimensional Spaces

—The Curse of Dimensionality
+ The power of local learning comes from exploiting the
discriminative power of local neighborhood relations, but
the notion of a “loca xS down in high dim. spaces




D/menSIonal/ty of Full Body Motion
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About 8 dimensions in the space formed by joint positions,
velocities, and accelerations are needed to model an inverse
dynamics model




Example: Wrist Trajectories
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fMRI Summary Data

Discrete-Rest (D-R)
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A Concept of Imitation
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Dynamic Systems Primitives:
Implicit Desired Trajectories

e What is a dynamic system primitive?

— A dynamical system (differential equation) with a
particular behavior (a.k.a. pattern generator)
+ E.g.: Reaching movement can be interpreted as a point attractive
behavior:
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Speed Target
e What is the advantage of dynamlc system primitives?

— Independent of initial conditions
— Online planning

— Online modification through additional “coupling” terms. i.e.,
planning can react to sensory input

6,-al0,-0,)+p(6-06,)




Dynamic Systems Primitives:

On-line Modification of Trajectory Planning
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Dynamic Systems As Motor
Primitives




Dynamic Systems As Motor
Primitives




Dynamic Systems As Motor
Primitives
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Primitives

Imitation Learning With Dynamic




Imitation Learning With Dynamic
Primitives




Imitation Learning With Dynamic
Primitives
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