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Abstract 
 

We present a real-time hybrid tracking system that 
integrates gyroscopes and line-based vision tracking.  
Gyroscope measurements are used to predict pose 
orientation and image line feature correspondences.  
Gyroscope drift is corrected by vision tracking.  System 
robustness is achieved by using a heuristic control system 
to evaluate measurement quality and select measurements 
accordingly.  Experiments show that the system achieves 
robust, accurate, and real-time performance for outdoor 
augmented reality. 
 
1. Introduction 
 

An augmented reality (AR) application can enhance a 
user’s perception by fusing computer-generated virtual 
information into their view of the real world.  AR has 
many potential applications in military, manufacturing, 
entertainment, and medical domains.  Ideally, the virtual 
information should maintain a correct spatial relationship 
with the real world.  A key capability for accomplishing 
correct fusion is a tracking system that accurately 
estimates the user’s 6DOF pose (or camera pose, if the 
user views the world through a camera).   

A wide variety of tracking technologies have been 
developed for AR [1,14].  Among all the tracking 
approaches, model-based vision is often used to achieve 
high accuracy [14].  A critical process in these systems 
matches (or corresponds) image features with features of a 
3D scene model.  This feature correspondence process is 
often computationally intensive and prone to failure.  
Some systems address correspondences by using specially 
designed markers.  However, this is not practical in 
outdoors environments.  Temporal coherence is often 
relied upon to obtain real-time feature correspondences for 
natural features [4,5,22].  Feature search is thereby limited 
to small displacements around predicted positions.  Large 
feature displacements, arising from rapid motions or long 
intervals, often exceed the search space and result in 
failures to compute correspondences.  

Other sensors [2,3,18] have been integrated with vision 
to help in predicting image feature movements, and these 

hybrid systems can perform more robustly with large 
image feature displacements.    

This paper presents a real-time tracking system for 
outdoor augmented reality in urban settings where 
building models are available.  The system uses 
gyroscopes (gyros) and vision tracking of line-features 
visible in the scene.  Gyro and vision measurements are 
fused by a heuristic assessment process and an extended 
Kalman filter.  Gyroscope measurements are used to 
predict pose orientation and line feature correspondences.  
Gyro drift is stabilized by vision tracking.  Real-time 
robust performance is obtained as evident from the results 
we present.  The system successfully tracks over long 
periods of time, with high camera motion rates, with 
temporary loss of visible features, and with dynamic 
occlusions. 

Section 2 reviews related work; section 3 details the 
tracking system; and section 4 presents the experiments 
and analyses their results. 

  
2. Related Work 
 

Global Positioning Satellites (GPS), electronic 
compasses, and inertial sensors are widely used in outdoor 
tracking systems.  For example, differential GPS and 
gyros are used in [15].  GPS and a compass are used in 
[16].  Compared to model-based vision, these tracking 
technologies are often more robust but less accurate [14].   

Due to the high accuracy of model-based vision 
methods, many standalone and hybrid vision systems have 
evolved.  Indoor systems [8,9] often use artificial markers 
to simplify correspondence computations.  In [6,11,13], 
magnetic sensors, accelerometers, and gyroscopes are 
combined with marker-based vision methods.  The added 
sensors predict feature positions to speed up feature 
detection and correspondence calculations.  Our system 
uses gyro sensors for similar purposes, however, it detects 
and corresponds line features on buildings that occur in 
outdoor environments and it selectively processes vision 
data to increase robustness under non-ideal imaging 
conditions. 

Vision systems can track natural features [4,5,22] by 
using temporal coherence to aid in real-time feature 
correspondence.  However, these systems often fail when 



Figure 1 - Temporal relationships of capturing, tracking, 
and rendering.  Low-rate rendering only renders the 
images processed by vision tracking.  High-rate 
rendering augments each image based on the latest 
pose estimate and the orientation changes measured by 
gyros.  Low rate rendering is used for the experiments 
shown in this paper. 

presented with momentary occlusions or large image 
displacements from rapid motion.  In [19], inter-frame 
affine transformations are recovered by tracking planar 
regions. Planar regions can be corresponded with large 
image displacements.  In the absence of a 3D model, only 
2D texture can be augmented in the real world.  

Inertial sensors have been fused with vision tracking 
system to achieve robustness for rapid motion.  Several 
hybrid systems use point-features and inertial sensors for 
pose recovery.  In [2], gyros are used to predict the 
positions of 2D image points, and the orientation 
recovered by points is used to correct the drift of gyros.  In 
[3], the accelerometer and gyros are used to predict 6DOF 
pose for the vision system.  Our system tracks lines rather 
than points to recover pose.  Lines are prominent in 
outdoor urban settings since most buildings provide 
numerous line features.  Lines often remain in the view 
much longer than points, since lines can extend over an 
entire structure; lines are useful, even when partially 
occluded; and lines can be localized accurately since there 
are often many supporting pixels along a line.  

A theoretical proof is provided in [17] that 2D line 
motion tracking can correct the drift of gyroscopes, 
however, there is no experimental implementation 
provided.  Klein et al [18] integrate line features and 
gyroscopes for an indoor tracking system.  Our system is 
designed for building line features, and validated in 
outdoor environments. 

Another vision approach uses similarity to key frames 
to recover camera pose [20, 21].  In an offline process, key 
frames are captured and their camera pose estimated.  In 
an online process, the current camera pose is recovered by 
registering the current image to stored key frames.  Scene 
changes, occlusions, and varying imaging conditions limit 
the robustness of these approaches. 
 
3. Hybrid Tracking Method 
 

Our tracking system requires an initialization stage 
where the user needs to manually correspond some line 
features of the 3D model with detected 2D lines.  The pose 
for the captured image is estimated from these manually 
matched pairs.  While it is possible that this initialization 
process could be simplified or automated by using GPS 
and compass data, our current approach is manual since 
we only use gyro and vision sensors. 

Once an initial pose is computed, the system switches 
to tracking mode.  The initial image and corresponded 
lines are stored as reference information for later line 
detection.   

As shown in Figure 1, the raw gyro measurements are 
captured at 1KHz and video images are captured around 
30Hz in the tracking stage.  After capturing an image, the 
absolute orientation and current rotation rate are computed 
from the gyro measurements and the prior (or initial) pose 
estimate.  The orientation and rotation rate are used with 
the captured image to estimate a new pose.  There are two 

methods for rendering augmented images.  A low-rate 
rendering method only renders the processed images at 
whatever frame rate is computationally feasible (3-8 Hz 
typical in our system).  Low rate rendering ensures 
accurate registration but is only available at the vision 
processing rate.  We use the low rate rendering method in 
all of the tracking experiments to visualize the tracking 
system performance. 

A high rate rendering method could use the latest pose 
estimate and changes in orientation measured by the gyro 
to render each captured image.  Figure 1 shows how 
virtual objects are augmented on image v4, for example, 
using the latest pose estimate (p1) and the rotations 
measured by the gyro between g1 and g4.  High rate 
rendering decouples the rendering rate from the vision 
tracking process rate to achieve higher update rates.  
Although registration errors can accumulate between 
vision pose updates, these are typically small as the gyros 
are very accurate over short periods of time.  Similar ideas 
of asynchronous measurements and pose updates are 
described in [8].   

An Extended Kalman filter (EKF) is used to integrate 
measurements from gyroscope and visual sensors.  As in 
[9], the EKF state vector is defined as 

),,,,,,,,,,,( ϕφθϕφθ ∆∆∆= zyxzyxe
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are 
Euler angles representing the incremental rotation.  The 
global rotation is stored in an external quaternion 

.  
 

3.1. Robust Hybrid Tracking  
 

The components of the tracking system are illustrated 
in Figure 2.  The white blocks are operations related to 



pose estimation, while the yellow blocks relate to the 
heuristic control system. The heuristic control system only 
chooses the high quality visual measurement for vision 
tracking.  

When gyro and vision measurements are available, the 
current pose is predicted by time update.  Orientation 
prediction is then updated by gyro measurement update.  
More details about time update can be found in [9].  

Hybrid tracking systems [2,3,18] require 
synchronization among different sensors, which is difficult 
to achieve in practice.  Good performance can be obtained 
with approximate synchronization if the vision processes 
are skipped during high motion rates.  Unless the 
gyroscope and visual sensor are accurately synchronized, 
rapid camera rotations will cause large errors in the image 
feature positions predicted by the gyros.  Large prediction 
errors cause 2D line detection and correspondence 
calculations to fail.  In our system, when the rotation rate 
measured by the gyro exceeds a threshold W                    
(~20degree/sec), further vision operations are skipped and 
the algorithm starts a new time update.   

For rotation rates below the threshold, vision 
processing starts with 2D line detection.  The detection 
algorithm searches for line segments in the neighborhood 
predicted by gyro measurements from the time of the 
reference image.  (The reference image is the last image in 
which lines were detected and corresponded and pose was 
computed by vision tracking operations.)  The quality for 
the detected lines is evaluated by computing a similarity 
between the predicted and detected lines (as described in 
Section 3.3).  If the evaluation score exceeds a threshold S, 
the detected and corresponded line pairs are used to update 
pose, which in turn is used to correct gyro drift and detect 
new lines.  A successfully processed image is saved as the 
new reference image.  If the evaluation score is lower than 

the threshold and the elapsed time from last reference 
image update is shorter than a time threshold T (~1.5 
seconds), the remaining vision operations are suspended 
and the current image, feature data and state for the 
tracking system are saved.  The algorithm starts the next 
time update and a new image is examined.   

 
Figure 2 - The structure of the hybrid tracking system. The white blocks represent 
pose estimation operations, and the yellow blocks represent the heuristic control 
operations. 

If conditions are such that no images pass the threshold 
tests of evaluation S for a period exceeding T, the system 
uses the stored image and feature data with the best 
evaluation score.  If more than one image have the same 
score, the latest is selected. The tracking system is restored 
to the state corresponding the selected image. The pose for 
the selected image is estimated by vision operations. If the 
selected image is captured earlier, the pose for current 
image is predicted from this selected image and updated 
by gyro measurement. 

 
3.2. Gyro Update and Drift Correction 
 

The absolute orientation measured by the gyros in the 
gyro-body coordinate frame is represented by the rotation 
matrix .  The rotation matrix for the camera in 

world coordinate frame can be inferred as 
gR wcR

gcgwgwc RRRR = , 

where is the rotation between the world and gyro-

body coordinate frames and  is the rotation between 

gyros and camera local coordinate frames.  Both  and 

are constants calibrated before tracking.  Then the 

measurement vector for gyroscope is computed as 

where is the rotation matrix computed from the 

wgR

,g∆θ

qR

gcR

EulerAngle

wgR

d RR

gcR

gz = )(),( 1
wcqgg RFrom ∆=∆∆ −ϕφ



Figure 3 2D Line detection. Line correspondences are 
searched around the lines predicted by gyro 
measurements. 

quaternion representing the current global orientation 
estimate.   is the drift correction matrix and is 
initialized to identity matrix in initialization stage.  And 
the predicted pose estimate  and variance P  for the 

pose  are updated as follows: 
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where , and e  are the 

updated pose and variance estimate.  is a 3x3 diagonal 
noise matrix for gyro measurements. 

[ 0 3333 xxg IH ] g P̂,ˆ

Ξ

If the pose is updated by vision tracking, the correction 
matrix is updated as 

1ˆ −∆ wcRR ,  

where is the orientation estimate from vision 

measurement update. 

R̂

 
3.3. 2D Line Detection and Evaluation 
 

The reference image contains lines that were detected 
and corresponded with line features in a 3D scene model.  
If the motion between the current and reference images is 
purely rotation R∆ , the point on the 
reference image matches the point  on 
the current image as follows: 
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 is the 

intrinsic matrix for the camera.  When the inter-frame 
translation is non-zero but small compared with the 
viewing distance, is still a good prediction for the 

correspondent to .  In outdoor environments where the 
model is relatively far from the user, the image feature 
displacements caused by slow speed (walking) translation 
over a short time can be ignored compared to the 
displacements caused by rotations.  

0
ip

ip

As shown in Figure 3, any point (cyan points) on a 2D 
line on the reference image is predicted on the current 
image.  The two predicted end points (red points) form a 
predicted line .  For each point  on the reference 

image, search its correspondent in a 1D interval 

{ } centered at the predicted point  in 

the direction normal to the predicted line as follows:  
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jG′  is the gradient in the direction normal to the 

predicted line for point on the current image.  is the 

gradient for  in the direction normal the line on the 
reference image.  The directional gradient is computed by 
the convolution masks defined in [7].  

jq′ iG

ip

α is a constant 
smaller than 1 while β  is a constant greater than 1.  α  
and β  are used to ensure the similarity  between the two 
gradients.  In our implementation, α = 0.5 and β  = 5.  η  
is the gradient threshold used to choose the pixels with a 
significant intensity discontinuity.  The search distance 
J is chosen as 3 pixels in our implementation.  The 
detected points are fit into a straight line  by a Hough 
transform.  

kL′

To evaluate the quality of the detected lines, a 
similarity score is computed as follows: 
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where N is the number of predicted lines, is the 

length for the detected line and l  is the length for the 
corresponding predicted line.  Ideally, if the gyro 
measurements are accurate and the inter-frame translation 
is small, the predicted lines should be very close to the 
correct positions.  So the detected line should have a 
length similar to the predicted length, resulting in a value 
of  close to one.  On the other hand, a small means the 
predicted lines may be inaccurate.  Poor predictions 
increase the probability that correspondences are lost and 
the vision system is detecting and tracking the wrong 
lines.  
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3.4. Robust Line Measurement Update 

 
Line measurement update uses corresponded line pairs 

to update the current pose.  In our system, a 3D model line 



is represented by its two end points V  and V .  A 2D 
detected line is represented by its two end points 

on the image.  A 3D model line is 
projected as an infinite 2D line on the image as follows: 
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where K  is the intrinsic matrix for the camera,  
is the camera position and 

),,( zyx
R  is the rotation matrix 

computed from the incremental rotation 
),( , ϕφθ ∆∆ ∆ and global  orientation .  The projection 

error is defined as the squared distances from the detected 
end points to the projected line as follows: 
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Though line feature similarity is evaluated and images 
with low similarity score are skipped, it is still possible to 
have outliers in the matched pairs.  The outliers are first 
detected by a Least Median Square [12] method.  Groups 
of three line pairs ( are randomly drawn from the N 
matched line pairs.  The chosen lines are used to estimate 
pose by minimizing .  Then the 
projection errors for all the pairs are computed.  The group 
with the minimum median error is selected.  The robust 
standard deviation estimate is given by 
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where ,   are the projection 

errors corresponding to the selected group.  Then the pose 
is updated by minimizing the following objective function 
in EKF 
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and are the pose estimate and variance after the 
gyro measurement update. 
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The detected lines with zero weight are treated as 
outliers and deleted. 

 
3.5. Detect New Lines 
 

When the user moves around, previously detected lines 
may disappear and new lines may appear.  The newly 
appeared and lost lines need to be detected to ensure 
consistent performance.   
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gure 4 - Gyroscope and vision tracking sensor
fter pose estimation, the 3D model lines are projected 
he image based on the current pose estimate.  The 
en lines are removed as in [23].  For projected 3D 
el lines without 2D correspondents, a new line search 
rformed in their neighborhood.  Finding new lines is 
cularly critical as many factors can cause the loss of 
ntly tracked lines.  Unless new lines are constantly 
ht, the system will eventually lose the set of starting 
, causing pose loss. 
or each point on a predicted line, a 1D interval [  
ered at the point and perpendicular to the projected 
is searched.  The point with maximum gradient in the 
tion normal to the predicted line is selected as a line 
t.  All the selected points are fitting into a straight line 
ough transform.  

], JJ−

xperiments 

s shown in Figure 4, the hybrid sensor is composed of 
D video camera (Sony XC-999 with 6mm lens), and 
 orthogonal rate gyros (GyroChip II QRS14-500-103) 

e by Systron Donner.  The video images are captured 
n Osprey frame grabber, and three gyros are sampled 
6-bit A/D converter (National Instrument DAQPCI-
6XE-20).  The whole capture and tracking system is 
n a Dell Pentium-IV 1GHz PC.  
 outdoor tests, the user is walking on a parking lot 

e looking at the buildings besides the parking lot.  The 
-frame models of buildings are extracted from LiDAR 
 as described in [10].  A set of 3D lines is added to the 
el surfaces to represent the line features of the façade 
cted during tracking.  The addition of these line 
res is currently done manually based on image 
res projected on the wire-frame surfaces.  (Clearly, 

mation of this step is desirable and feasible, but our 
s is on the tracking system using the models.) 

 Off-line Experiments 

itially, we captured images and gyro measurements 
processed the tracking off-line.  The captured gyro 
surements are rotation rate and absolute orientation 
hronized to the video capture rate.  No hardware 
hronization support is used.  The program simply 
s the video and gyro data in sequence, storing them 
 time stamps.  Note that the gyro data samples are 



buffered in the A/D converter, so they are accessed in 
complete blocks. 

The user walked from left to right on the parking lot, 
and then walked backward, and finally walked to right 
again.  The camera was oriented at the buildings during 
capture.  To test the system performance for large image 
displacements, the images and gyro data were captured at 
a low rate of 2Hz over the capture period of about three 
minutes. 

Six images from the offline experiment are shown in 
Figure 5.  In each image, the green wire-frame model is 
the 3D model overlaid on the image based on the pose 
estimate.  The number on the low-left corner is the time 
stamp (in seconds).  Red lines are the 2D lines detected 
during tracking.  At the beginning of the sequence (Figure 
5a), two building wings were in view.  When the user 
moved to the right, one building moved out of view 
(Figure 5b).  The yellow lines in Figure 5b show the lines 
detected in the last frame.  By using gyro data for feature 
prediction, lines can be corresponded correctly, even for 
the large image displacements shown in Figure 5b.  In 
Figure 5c, the operations after line detection were skipped 
due to the low evaluation score for the detected lines.  In 
Figure 5d, an outlier (cyan line) appeared due to the close 
proximity of vertical lines.  This outlier was identified in 

the robust line measurement update.  The correct line (red 
line left of the cyan line) was detected in the new line 
detection.  In Figure 4e, high rotation rate caused the 
skipping of vision processing.  From the augmented 3D 
model, it is clear that lines cannot be predicted correctly 
by gyro measurements during high rate motion due to 
synchronous errors.  The building out of view in Figure 5b 
is in view again in Figure 5f.  All the lost lines were re-
detected correctly in Figure 5f.  Note the arrival of the van 
on the scene, partially occluding lines during the sequence.  

    
(a) t = 0.0 seconds – initial condition                (b) t = 49 seconds – one building is out of view      (c) t = 59 seconds – skipped frame 

       
 (d) t = 108 seconds – outlier detected                   (e) t=180 seconds – high rotation rate                  (f)  t = 194seconds – still tracking... 

Figure 5 - Images from off-line experiments.  Green wire-frame model is 3D augmentation.  Red lines are the 2D lines detected in 
camera images.  The left-bottom number is the time stamp.  (a) Two buildings were in view at the beginning.  (b) One building 
moves out of view during tracking. The yellow lines show lines from prior frame to illustrate image displacements.  (c) Vision
processing is skipped after low evaluation score for 2D line detection.  (d) An outlier (cyan line) is culled due to the close proximity 
of vertical lines.  (e) Vision processing is skipped due to large rotation rate.  (f) Continued tracking after 194 seconds. 

To evaluate the tracking performance, the 2D lines are 
detected and manually matched with 3D model lines on 
each processed image.  The average of projection errors 
defined in equation (6) was computed.  The pose was 
estimated by a tracking system with and without the 
heuristic control system.  Without the heuristic system, the 
vision tracking is simply processed for each frame.  The 
average errors for the two tracking tests are compared in 
Figure 6.  At the 113th frame, which is the snapshot in 
Figure 5c, the tracking system without the heuristic 
control processed the low quality visual measurements, 
causing the pose calculation and future correspondences to 
diverge.  On the other hand, the tracking system with the 
heuristic control achieved robust performance by skipping 
the vision operations for low quality images.  



 
6.2. Real-time Experiments 

 
The tracking system was tested outdoor for real-time 

performance.  After an image and gyro measurements 
were captured, the tracking system estimated pose for the 
image in real-time, and the 3D model (green wire-frame) 
was rendered on the captured image with the estimated 
pose.  A DV-camera recorded the images rendered on the 
computer screen using the graphics card s-video output.  
The tracking rate is approximately 5Hz.  Selected images 
from the experiment recordings are shown in Figures 7 
and 8.   Red lines are the detected 2D lines.  The number 
on the left bottom corner is frame number and time stamp 
separated by a colon. 

The first test illustrates the system performance with 
smooth motions over a long time period.  Holding the 
camera, the user walks slowly from left to right and then 
back and left.  The camera was oriented at the buildings 
during the four-minute sequence.  After initialization, pose 
is computed automatically for the whole test (Figure 7).  
In Figure 7c, accurate tracking is maintained as the scene 
is partially occluded by a foreground pole moving across 
the image.  

The second test stresses system performance for some 
extreme motions over about 104 seconds.  In the example 

shown in Figure 8, the camera is quickly rotated away 
from the modeled buildings and then back.  Figure 8a is 
the image before the rotation.  Figure 8b shows the scene 
during rotation when the modeled buildings are off screen. 
After the camera rotates back, the pose is recovered 
accurately, as shown in Figure 8c.  
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7. Conclusions 
 

We present a gyros-vision hybrid tracking system for 
outdoor environments. The vision tracking subsystem uses 
natural lines for pose recovery. The gyro measurements 
are used to predict pose orientation and image line 
features. The novelty of the proposed system is to use a 
heuristic control system to evaluate measurement quality. 
And only high quality measurements will be chosen for 
tracking. The experiment results show that the proposed 
hybrid system can achieve robust performance in outdoor 
environments. 
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