Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - ?
 - ?
 - ?
 - ?

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: ?
 - contingency: ?
 - exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: ?
 - contingency: ?
 - exploration: ?
Last time: Problem-Solving

- **Problem solving:**
 - Goal formulation
 - Problem formulation (states, operators)
 - Search for solution

- **Problem formulation:**
 - Initial state
 - Operators
 - Goal test
 - Path cost

- **Problem types:**
 - single state: accessible and deterministic environment
 - multiple state: inaccessible and deterministic environment
 - contingency: inaccessible and nondeterministic environment
 - exploration: unknown state-space
Last time: Finding a solution

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

```plaintext
Function General-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state problem

loop do
    if there are no candidates for expansion then return failure
    choose a leaf node for expansion according to strategy
    if the node contains a goal state then return the corresponding solution
    else expand the node and add resulting nodes to the search tree
end
```
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state.

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding).

Function General-Search(*problem, strategy*) returns a *solution*, or failure

initialize the search tree using the initial state problem

loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add resulting nodes to the search tree
end

Strategy: The search strategy is determined by ???
Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the goal state

Basic idea: offline, systematic exploration of simulated state-space by generating successors of explored states (expanding)

Function General-Search(*problem, strategy*) returns a *solution*, or failure

- initialize the search tree using the initial state `problem`
- **loop do**
 - **if** there are no candidates for expansion **then return** failure
 - choose a leaf node for expansion according to strategy
 - **if** the node contains a goal state **then return** the corresponding solution
 - **else** expand the node and add resulting nodes to the search tree
- **end**

Strategy: The search strategy is determined by the order in which the nodes are expanded.
A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) **returns** a solution, or failure

```plaintext
open ← make-queue(make-node(initial-state[problem]))
closed ← [empty]
loop do
    if open is empty then return failure
    currnode ← Remove-Front(open)
    if Goal-Test[problem] applied to State(currnode) then return currnode
    children ← Expand(currnode, Operators[problem])
    while children not empty
        [... see next slide ...]
    end
    closed ← Insert(closed, currnode)
    open ← Sort-By-PathCost(open)
end
```
A Clean Robust Algorithm

[... see previous slide ...]

children \leftarrow Expand(currnode, Operators[problem])

while children not empty

child \leftarrow Remove-Front(children)

if no node in open or closed has child’s state

open \leftarrow Queuing-Fn(open, child)

else if there exists node in open that has child’s state

if PathCost(child) < PathCost(node)

open \leftarrow Delete-Node(open, node)

open \leftarrow Queuing-Fn(open, child)

else if there exists node in closed that has child’s state

if PathCost(child) < PathCost(node)

closed \leftarrow Delete-Node(closed, node)

open \leftarrow Queuing-Fn(open, child)

end

[... see previous slide ...]
Last time: search strategies

Uninformed: Use only information available in the problem formulation
- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening

Informed: Use heuristics to guide the search
- Best first
- A*
Evaluation of search strategies

- Search algorithms are commonly evaluated according to the following four criteria:
 - **Completeness**: does it always find a solution if one exists?
 - **Time complexity**: how long does it take as a function of number of nodes?
 - **Space complexity**: how much memory does it require?
 - **Optimality**: does it guarantee the least-cost solution?

- Time and space complexity are measured in terms of:
 - b – max branching factor of the search tree
 - d – depth of the least-cost solution
 - m – max depth of the search tree (may be infinity)
Last time: uninformed search strategies

Uninformed search:
Use only information available in the problem formulation
- Breadth-first
- Uniform-cost
- Depth-first
- Depth-limited
- Iterative deepening
This time: informed search

Informed search:
Use heuristics to guide the search

- Best first
- A*
- Heuristics
- Hill-climbing
- Simulated annealing
Best-first search

- **Idea:**
 use an evaluation function for each node; estimate of "desirability"
 ⇒ expand most desirable unexpanded node.

- **Implementation:**
 QueueingFn = insert successors in decreasing order of desirability

- **Special cases:**
 greedy search
 A* search
Romania with step costs in km

Straight-line distance to Bucharest
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobreta: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Greedy search

- **Estimation function:**
 \[h(n) = \text{estimate of cost from } n \text{ to goal (heuristic)} \]

- **For example:**
 \[h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest} \]

- Greedy search expands first the node that appears to be closest to the goal, according to \(h(n) \).
Greedy search example

Arad 366
Properties of Greedy Search

- Complete?
- Time?
- Space?
- Optimal?
Properties of Greedy Search

- Complete? No – can get stuck in loops
e.g., Iasi > Neamt > Iasi > Neamt > ...
Complete in finite space with repeated-state checking.

- Time? $O(b^m)$ but a good heuristic can give
dramatic improvement

- Space? $O(b^m)$ – keeps all nodes in memory

- Optimal? No.
A* search

• **Idea**: avoid expanding paths that are already expensive

 evaluation function: \(f(n) = g(n) + h(n) \)

 \(g(n) \) – cost so far to reach \(n \)

 \(h(n) \) – estimated cost to goal from \(n \)

 \(f(n) \) – estimated total cost of path through \(n \) to goal

• **A* search uses an admissible heuristic**, that is,

 \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the **true** cost from \(n \).

 For example: \(h_{SLD}(n) \) never overestimates actual road distance.

• **Theorem**: A* search is optimal
A* search example
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

\[
\begin{align*}
 f(G_2) &= g(G_2) \quad \text{since } h(G_2) = 0 \\
 > & g(G_1) \quad \text{since } G_2 \text{ is suboptimal} \\
 \geq & f(n) \quad \text{since } h \text{ is admissible}
\end{align*}
\]

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion
Optimality of A* (more useful proof)

Lemma: A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
f-contours

How do the contours look like when $h(n) = 0$?
Properties of A*

- Complete?
- Time?
- Space?
- Optimal?
Properties of A*

- Complete? Yes, unless infinitely many nodes with $f \leq f(G)$
- Time? Exponential in $[(\text{relative error in } h) \times \text{(length of solution)}]$
- Space? Keeps all nodes in memory
- Optimal? Yes – cannot expand f_{i+1} until f_i is finished
Proof of lemma: pathmax

For some admissible heuristics, f may decrease along a path

E.g., suppose n' is a successor of n

But this throws away information!
$f(n) = 9 \Rightarrow$ true cost of a path through n is ≥ 9
Hence true cost of a path through n' is ≥ 9 also

Pathmax modification to A*:
Instead of $f(n') = g(n') + h(n')$, use $f(n') = \max(g(n') + h(n'), f(n))$

With pathmax, f is always nondecreasing along any path
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
5 & 4 & \text{gray} \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & \text{gray} & 4 \\
7 & 6 & 5 \\
\end{array}
\]

\[
\frac{h_1(S) = ??}{h_2(S) = ??}
\]
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Start State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Goal State

\[h_1(S) = ?? \]
\[h_2(S) = ?? \]

\[2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18 \]
Relaxed Problem

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Next time

• Iterative improvement
• Hill climbing
• Simulated annealing