
1Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Michael Arbib

Learning in Neural Networks

CS561: March 31, 2005

2Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

A Resource for Brain Operating Principles
� Grounding Models of Neurons and

Networks
� Brain, Behavior and Cognition
� Psychology, Linguistics and Artificial

Intelligence
� Biological Neurons and Networks
� Dynamics and Learning in Artificial

Networks
� Sensory Systems
� Motor Systems
� Applications, Implementations and Analysis

The Handbook is available as one of the
reference works on-line at the Cognet
website of The MIT Press. This can be
reached from USC machines by going to
USC's electronic resources site at
<http://www.usc.edu/isd/elecresources>http:/
/www.usc.edu/isd/elecresources or directly at
<http://cognet.mit.edu/>
http://cognet.mit.edu/library/erefs/arbib

The MIT Press, 2003

3Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

The "basic" biological neuron

The soma and dendrites act as the input surface; the axon carries the outputs.

The tips of the branches of the axon form synapses upon other neurons or upon
effectors (though synapses may occur along the branches of an axon as well
as the ends). The arrows indicate the direction of "typical" information flow
from inputs to outputs.

Dendrites Soma Axon with branches and
synaptic terminals

4Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

From Mind to Neural Networks

Warren McCulloch
“What is a man that he may know a
number, and a number that a man may
know it?”

A philosophy-driven approach:
Inspired by Kant and Leibnitz, seeking to
map logic onto neural function

Mathematics: Mathematical logic
(propositional logic; Turing’s theory of
computability)

5Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

A McCulloch-Pitts neuron operates on a discrete
time-scale, t = 0,1,2,3, ... with time tick equal to
one refractory period

At each time step, an input or output is

on or off — 1 or 0, respectively.

Each connection or synapse from the output of one neuron to the input
of another, has an attached weight.

Warren McCulloch and Walter Pitts (1943)

x (t)1

x (t)n

x (t)2

y(t+1)

w1

2

n

w

w

axonθθθθ

6Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Excitatory and Inhibitory Synapses

We call a synapse

excitatory if wi > 0, and

inhibitory if wi < 0.

We also associate a threshold θ with each neuron

A neuron fires (i.e., has value 1 on its output line) at time t+1 if the
weighted sum of inputs at t reaches or passes θ:

y(t+1) = 1 if and only if Σ wixi(t) ≥ θ.

7Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

From Logical Neurons to Finite Automata

AND

1

1

1.5

NOT

-1
0

OR

1

1

0.5

Brains, Machines, and
Mathematics, 2nd Edition,
1987

X Y→

Boolean Net

X

Y Q

Finite
Automaton

8Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Philosophically and Technologically Important

A major attack on dualism
� The “brain” of a Turing machine

A good global view of the input-output computational capacity of neural
networks

Not a neuron-by-neuron account of the brain’s functions:
� Logic is a culturally late activity of large neural

populations, not a direct expression of neural function.

But:

An important basis for the technology of artificial neural networks
� with the addition of learning rules … and this is today’s theme.

9Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Samuel's 1959 Checkers Player

Programming a computer to play checkers.
Look several moves ahead: Max-min strategy
Prune the search tree
Give the computer a way to determine the value of various
board positions.

Not knowing how we evaluate a board, we can at least be sure that its value
depends on such things as
� the number of pieces each player has
� the number of kings
� balance
� mobility
� control of the center.

To these we can assign precise numbers.
Pick 16 such parameters which contribute to evaluation of the board.
Evaluation = f (x1,x2,...,x16) What is f?

10Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Approximating an Evaluation Surface by a (Hyper)plane

11Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Approximating an Evaluation Surface by a (Hyper)plane

Samuel’s 1959 strategy was
in addition to cutting down the “lookahead”

to guess that
� the evaluation function was approximately linear.

… using a hyperplane approximation to the actual evaluation to play a
good game:

z = w1x1 + ... +w16x16 - θ (a linear approximation)
for some choices of the 16 weights w1, ..., w16, and θ.

In deciding which is better of two boards

the constant θ is irrelevant —
so there are only 16 numbers to find in getting the best linear
approximation.

12Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

The Learning Rule

Orient an evaluation hyperplane in the
17-dimensional space:

On the basis of the current weight-setting, the computer
chooses a move which appears to lead to boards of high
value to the computer.

If after a while it finds that the game seems to be going badly, in that it
overvalued the board it chose, then it will increase those parameters which
yielded a positive contribution while reducing those that did not.

The General Theory (Lecture NN4):
Barto on Adaptive Critics in his HBTNN article: Reinforcement Learning
� replacing reinforcement by “expected reinforcement”

13Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Classic Models for Adaptive Networks

The two classic learning schemes for McCulloch-Pitts

formal neurons Σi wixi ≥ θ

• Hebbian Learning - Amplifying Predispositions
Hebb's scheme in The Organization of Behaviour (1949)
�— strengthen a synapse whose activity coincides with the firing of the
postsynaptic neuron
� [cf. Hebbian Synaptic Plasticity, HBTNN2e]

• The Perceptron - Learning with a Teacher (Rosenblatt 1962)
�— strengthen an active synapse if the efferent neuron fails to fire when it
should have fired;
�— weaken an active synapse if the efferent neuron fires when it should not
have fired.

14Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Hebb's scheme

Hebb (p.62, 1949):
� When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in
one or both cells, such that A's efficiency as one of the cells
firing B, is increased.

Hebb (1949) developed a multi-level model of
perception and learning, in which the units of thought
were encoded by cell assemblies, each defined by activity reverberating in
a set of closed neural pathways.

The essence of the Hebb synapse is to increase coupling between coactive
cells so that they could be linked in growing assemblies.

Hebb developed similar hypotheses at a higher hierarchical level of
organization, linking cognitive events and their recall into phase
sequences, temporally organized series of activations of cell assemblies.

15Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Hebb’s Rule

where synapse wij connects a presynaptic neuron with firing
rate xj to a postsynaptic neuron with firing rate yi.

Peter Milner noted the saturation problem
von der Malsburg 1973 (modeling the development of oriented edge
detectors in cat visual cortex [Hubel-Wiesel: V1 simple cells])
augmented Hebb-type synapses with

¯ a normalization rule to stop all synapses "saturating"

Σ wi = Constant
¯ lateral inhibition to stop the first "experience" from "taking over" all "learning
circuits”: it prevents nearby cells from acquiring the same pattern thus enabling
the set of neurons to "span the feature space"

xj yi

The simplest formalization of Hebb’s rule is
to increase wij by: ∆wij = k yi xj (1)

16Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Lateral Inhibition Between Neurons

The idea is to use competition between neurons so that if
one neuron becomes adept at responding to a pattern, it
inhibits other neurons from doing so.

[See Competitive Learning in HBTNN]

If cell A fires better than cell B for a given orientation θ,
then it fires more than B and reduces B's response further
by lateral inhibition

so that A will adapt more toward θ and
B will adapt less, and the tendency will continue with each
presentation of θ.

The final set of input weights to the neuron depends both
� on the initial setting of the weights, and
� on the pattern of clustering of the set of stimuli to which it is
exposed.

capturing the statistics of the pattern set

A BB

17Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Unsupervised Hebbian Learning

tends to sharpen up a neuron's predisposition
"without a teacher,"
the neuron’s firing becomes better and better correlated
with a cluster of stimulus patterns.

18Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

But Hebbian Learning can be Supervised

Supervised Hebbian Learning
is based on having an activation line separate from
the pattern lines with trainable synapses and using
the activation line to command a neuron to fire - thus
associating the firing of the neuron with those input patterns
used on the occasions when it was activated.

[This relates to the idea of associative memory.]

activation line/teacher

pattern lines .
.

19Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Supervised Hebbian learning is closely related to
Pavlovian conditioning

The response of the cell being trained corresponds to the
conditioned and unconditioned response (R),

the training input corresponds to the unconditioned stimulus (US), and
the trainable input corresponds to the conditioned stimulus (CS).
[Richard Thompson: US = air puff to eye; R = blink; CS = tone]
Since the US alone can fire R, while the CS alone may initially be unable
to fire R,

the conjoint activity of US and CS creates the conditions for Hebb's rule to
strengthen the US→R synapse,

so that eventually the CS alone is enough to elicit a response.

CS: sound
of bell R: salivation

Training Input (US):
e.g., sight of food

20Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Pattern Classification by Neurons

Rosenblatt (1958) explicitly considered the problem of
pattern recognition where a teacher is essential -

� for example placing b, B, b and B in the same category.

He introduced Perceptrons - neural nets that change with
“experience” using an error-correction rule designed to
change the weights of each response unit when it makes erroneous
responses to stimuli presented to the network.

A simple Perceptron has no loops in the net, and only the weights to the output
units can change:

21Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Simple vs. General Perceptrons

The associator units are not interconnected, and so
the simple perceptron has no short-term memory.

If the units are cross-coupled - the net may then have multiple
layers, and loops back from an “earlier” to a “later” layer.

Lecture NN4 will discuss back-propagation: extending perceptron techniques to
loop-free multi-layer feedforward networks by “credit assignment” for “hidden
Layers” between input and output.

22Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Linear Separability

A linear function of the form

f(x) = w1x1+ w2x2+ ... wdxd+wd+1 (wd+1 = - θ)
is a two-category pattern classifier.

f(x) = 0 ≈≈≈≈ w1x1+ w2x2+ ... wdxd+wd+1 = θ
gives a hyperplane as the decision surface

Training involves adjusting the coefficients (w1,w2,...,wd,wd+1) so that the decision
surface produces an acceptable separation of the two classes.

A

A

A

A

A
A

A
A

A

A
A

A

A

A

A

A

A
AA

A
A

B
B

BB

B
B

B

BB
B

B

B

B

B

B

B
B

B

B

B

B

B

BB

B
x
1

x
2

f(x) ≥≥≥≥ 0

f(x) < 0

Two categories are
linearly separable
patterns if in fact
their members can
be separated by a
line or (more
generally)
hyperplane.

23Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

General Training Strategy

Pick a “representative set of patterns”
Use a Training Set to adjust synaptic weights using a
learning rule.

With weights fixed after training, evaluate the weights
by scoring success rates on a Test Set different from
the training set.

Rosenblatt (1958) provided a learning scheme with the property that
if the patterns of the training set (i.e., a set of feature vectors, each one
classified with a 0 or 1) can be separated by some choice of weights and
threshold,

then the scheme will eventually yield a satisfactory setting of the weights.

24Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Perceptron Learning Rule

The best known perceptron learning rule
á strengthens an active synapse if the efferent neuron fails to fire
when it should have fired, and

â weakens an active synapse if the neuron fires when it should not have:
∆wij = k (Yi - yi) xj (2)

As before, synapse wij connects a neuron with firing rate xj to a neuron with firing
rate yi, but now

�Yi is the "correct" output supplied by the "teacher."
�(This is similar to the Widrow-Hoff [1960] least mean squares model of adaptive
control.)

The rule changes the response to xj in the right direction:
• If the output is correct, Yi = yi and there is no change, ∆wij = 0.
• If the output is too small, then Yi - yi > 0, and the change in wij will add ∆wij
xj = k (Yi - yi) xj xj > 0 to the output unit's response to (x1, . . ., xd).

• If the output is too large, ∆wij will decrease the output unit's response.

25Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

The Perceptron Convergence Theorem

Thus, w + ∆w classifies the input pattern x
"more nearly correctly" than w does.

Unfortunately, in classifying x "more correctly" we run
the risk of classifying another pattern "less correctly."

However, the perceptron convergence theorem shows that Rosenblatt's
procedure does not yield an endless seesaw, but will eventually converge
to a correct set of weights if one exists, albeit perhaps after many
iterations through the set of trial patterns.

[See Brains, Machines, and Mathematics, 2nd Edition, pp. 66-69 for a proof.]

26Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

The Robot, Four Landmarks (N, E, W, S)
and the Goal (the Tree “at the top of the Hill”)

The “payoff function” z is a scalar quantity that increases as the robot
gets closer to the goal:
Think of z as “height on a hill” so goal-seeking becomes
“hill-climbing”

N

S

W E

27Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Hill-Climbing and Landmark Learning

“Hill-Climbing in the Fog”:
At time t the robot takes a single step in direction i(t),
moving from a position with payoff z(t)

to one with payoff z(t+1).
If z(t+1)- z(t) > 0, then the robot's next step is in the same direction,
i(t+1) = i(t), with high probability.

If z(t+1)- z(t) < 0, then
i(t+1) is chosen randomly.

cf. bacterial chemotaxis: run-and-twiddle mechanism.

Landmark Learning
Barto and Sutton show how to equip our robot with a simple nervous
system (four neurons!) which can be trained to use "olfactory cues" from
the four landmarks to improve its direction-finding with experience.

28Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

The Four-Neuron Adaptive Controller

Payoff Signal →

Signals from
Landmark

Sensors

Commands to
Actuators

Learning Problem: Find the right synaptic weights

Note: The Payoff Signal does not provide explicit error
signals to each actuator command.

Think of z(t)-z(t-1) as (positive or negative) reinforcement.

29Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Hill-Climbing in Weight Space

The net can "learn" appropriate values for the weights.
We here raise hill-climbing to a more abstract level:
instead of hill-climbing in the physical space
— choose a direction again if it takes the robot uphill —
we now conduct

>>>hill-climbing in weight space<<<
At each step, the weights are adjusted in such a way as to improve the
performance of the network.

The z input, with no associated weights of its own, is the "teacher" used to
adjust the weights linking sensory inputs to motor outputs.

30Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Landmark Learning

Let output sj(t) = Σiwji(t)xi(t) (1)

Since current weights w may not yet be correct, we add
a noise term, setting the output of element j at time t to

yj(t) = 1 if s(t) + NOISEj(t) > 0, else 0 (2)

where each NOISEj(t) is a normally distributed random variable with zero mean
(each with the same variance).

The weights change according to:

∆wji(t) = c[z(t)-z(t-1)]yj(t-1)xi(t-1) (3)

where c is a positive "learning rate".

Think of z(t)-z(t-1) as (positive or negative) reinforcement.

31Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

∆∆∆∆wji(t) = c[z(t)-z(t-1)]yj(t-1)xi(t-1)

wji will only change if
a j-movement takes place (yj(t-1)>0) and
the “robot” is near the i-landmark (xi(t-1)>0)

It will then change in the direction of z(t)-z(t-1).

Again view z(t) as "height on a hill”:
wji increases and a j-movement becomes more likely —
if z increases (the “robot” moves uphill); while
wji decreases and a j-movement becomes less likely if the robot moves
downhill.

The w's are shifting in an abstract 16-dimensional space of weight-settings.

32Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Climbing a Metahill

The weights can be evaluated globally by the extent
to which they determine an uphill movement, associating
with a particular vector w the sum

S(w) = ΣxE{[z(x+y(x,w)) - z(x)]} (4)

z(x) is the payoff value associated with position x
z(x+y(x,w)) is the payoff associated with the position
that is reached by taking the step y(x,w)

determined by (1) and (2) using the weights w, and
the expectation E averages over all the values of the noise terms in (2).

We may think of S as defining height on a "metahill."

The rule (3) tells us how to change weights in a way which is likely to increase S
using just local information based on the robot's current step in physical space.

33Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Before and After Learning

34Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Learning a Map Implicitly

16 synaptic weights encode movement vectors at 400 locations in space

35Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Back to the Perceptron: Training Hidden Units

In the simple Perceptron (Rosenblatt 1962) ,
only the weights to the output units can change.
This architecture can only support linearly separable maps.
The problem for many years was to extend the perceptron concept to
multilayered networks

The credit assignment problem: "How does a neuron deeply embedded
within a network 'know' what aspect of the outcome of an overall action
was 'its fault'?"

I.e.: given an "error" which is a global measure of overall system
performance, what local changes can serve to reduce global error?

36Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Backpropagation: a method for training a loop-free network
which has three types of unit:

input units;
hidden units carrying an internal representation;
output units.

Back-Propagation

Direction of Processing

Direction of Training (Synapse Adjustment):
Backpropagation of Error Signals

37Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Neurons

Each unit has both input and output taking
continuous values in some range [a,b].

The response is a sigmoidal function of the weighted sum.

Thus if a unit has inputs xk with corresponding weights wik, the output xi is
given by

xi = fi(Σkwikxk)

where fi is the sigmoid function

fi(x) = 1/ {1+ exp [- (x – θi)]}

with θi a bias (threshold) for the unit.

tThis f is differentiable.
38Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Choose a training set �������� of pairs (p,t) each comprising an input pattern p and
the corresponding desired output vector t.

At each trial, we choose an input pattern p from �
and consider the corresponding restricted error

E = Σk(tk - ok)2

where k ranges over designated "output units"
with (t1, ...,tn) the target output vector,
and (o1, ...,on) the observed output vector

The net has many units interconnected by
weights wij. The learning rule is to change wij
so as to reduce E by gradient descent.

To descend the hill, reverse the derivative.

∆wij = - ∂E/∂wij = 2 Σk(tk - ok) ∂ok/∂wij

dE
dw

dE
dw

E

w

39Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Backpropagation

In a layered loop-free net, changing the weights wij according to the gradient
descent rule may be accomplished equivalently by back propagation, working
back from the output units. {See HBTNN I.3 for proof.}

Proposition: Consider a layered loop-free net with error measure E = Σk(tk - ok)2,
where k ranges over designated "output units," and let the weights wij be changed
according to the gradient descent rule

∆wij = - ∂E/∂wij = 2 Σk(tk - ok) ∂ok/∂wij.

Then the weights may be changed inductively, working back from the output units:
∆wij is proportional to δioj, where:

Basis Step: δi = (ti - oi)fi' for an output unit. [cf. Perceptron - but with added fi' term.]

Induction Step: If i is a hidden unit, and if δk is known for all units which receive
unit i's output then δi = (Σk δkwki) fi', where k runs over all units which receive
unit i's output. [unit i receives error propagated back from a unit k to the extent to
which i affects k.]

The "error signal" δi propagates back layer by layer.

40Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Backpropagation is Non-Biological

Heuristic:
The above theorem tells us how to compute ∆wij for gradient descent.

It does not guarantee that the above step-size is appropriate to reach the
minimum;

It does not guarantee that the minimum, if reached, is global.

The back-propagation rule defined by this proposition is thus a heuristic
rule, not one guaranteed to find a global minimum.

Since it is heuristic, it may also be applied to neural nets which are loop-
free, even if not strictly layered.

Non-Biological
See HBTNN articles on “Backpropagation” and “Hebbian Synaptic
Plasticity”. (Optional reading.)

41Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Critique

What such learning methods achieve:

In "many cases" (the bounds are not yet well defined)

� if we train a net N with repeated presentations of
the various (xk,yk) from some training set

� then it will converge to a set of connections which enable N to compute a
function f: X →Y with the property that as k runs from 1 to n, the f(xk)
"correlate fairly well" with the yk.

42Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

An end to programming? NO!!

Consider three issues:

a) complexity: Is the network complex enough to encode a solution
method?

b) practicality: Can the net achieve such a solution within a feasible period
of time?

c) efficacy: How do we guarantee that the generalization achieved by the
machine matches our conception of a useful solution?

43Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Programming will survive into the age of neural computing, but greatly
modified

Given a complex problem, programmers will still need to
� Decompose it into subproblems
� Specify an initial structure for a separate network for each subproblem
� Place suitable constraints on (the learning process for) each network; and,

finally,
� Apply debugging techniques to the resultant system.

We may expect that the initial design and constraint processes may in some
cases suffice to program a complete solution to the problem without any
use of learning at all.

