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A Resource for Brain Operating Principles
� Grounding Models of Neurons and 

Networks
� Brain, Behavior and Cognition
� Psychology, Linguistics and Artificial 

Intelligence
� Biological Neurons and Networks
� Dynamics and Learning in Artificial 

Networks
� Sensory Systems
� Motor Systems
� Applications, Implementations and Analysis

The Handbook is available as one of the 
reference works on-line at the Cognet 
website of The MIT Press. This can be 
reached from USC machines by going to 
USC's  electronic resources site at 
<http://www.usc.edu/isd/elecresources>http:/
/www.usc.edu/isd/elecresources or directly at 
<http://cognet.mit.edu/> 
http://cognet.mit.edu/library/erefs/arbib

The MIT Press, 2003
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The "basic" biological neuron

The soma and dendrites act as the input surface; the axon carries the outputs.  

The tips of the branches of the axon form synapses upon other neurons or upon 
effectors (though synapses may occur along the branches of an axon as well 
as the ends).  The arrows indicate the direction of "typical" information flow 
from inputs to outputs.

Dendrites                   Soma            Axon with branches and
synaptic terminals
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From Mind to Neural Networks

Warren McCulloch
“What is a man that he may know a 
number, and a number that a man may 
know it?”

A philosophy-driven approach:
Inspired by Kant and Leibnitz, seeking to 
map logic onto neural function

Mathematics: Mathematical logic 
(propositional logic; Turing’s theory of 
computability)
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A McCulloch-Pitts neuron operates on a discrete 
time-scale, t = 0,1,2,3, ...    with time tick equal to 
one refractory period

At each time step, an input or output is 

on or off — 1 or 0, respectively.  

Each connection or synapse from the output of one neuron to the input 
of another, has an attached weight.  

Warren McCulloch and Walter Pitts (1943)
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Excitatory and Inhibitory Synapses

We call a synapse

excitatory if wi > 0, and

inhibitory if wi < 0.   

We also associate a threshold θ with each neuron

A neuron fires (i.e., has value 1 on its output line) at time t+1 if the 
weighted sum of inputs at t reaches or passes θ:

y(t+1) = 1   if and only if   Σ wixi(t) ≥ θ.
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From Logical Neurons to Finite Automata
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Philosophically  and  Technologically Important

A major attack on dualism
� The “brain”  of a Turing machine

A good  global view of the input-output computational capacity of neural 
networks

Not a neuron-by-neuron account of the brain’s functions:
� Logic is a culturally late activity of large neural 

populations, not a direct expression of neural function.

But:

An important basis for the technology of artificial neural networks
� with the addition of learning rules … and this is today’s theme.



9Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Samuel's 1959 Checkers Player

Programming a computer to play checkers.  
Look several moves ahead: Max-min  strategy
Prune the search tree
Give the computer a way to determine the value of various 
board positions.  

Not knowing how we evaluate a board, we can at least be sure that its value 
depends on such things as 
� the number of pieces each player has
� the number of kings
� balance
� mobility
� control of the center.  

To these we can assign precise numbers.  
Pick 16 such parameters which contribute to evaluation of the board.
Evaluation = f (x1,x2,...,x16)                     What is f?
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Approximating an Evaluation Surface by a (Hyper)plane
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Approximating an Evaluation Surface by a (Hyper)plane

Samuel’s 1959 strategy was
in addition to cutting down the “lookahead”

to guess that 
� the evaluation function was approximately linear.

… using a hyperplane approximation to the actual evaluation to play a 
good game:                 

z = w1x1 + ... +w16x16 - θ (a linear approximation ) 
for some choices of the 16 weights  w1, ..., w16, and θ.  

In deciding which is better of two boards

the constant θ is irrelevant —
so there are only 16 numbers to find in getting the best linear 
approximation. 
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The Learning Rule

Orient an evaluation hyperplane in the 
17-dimensional space:

On the basis of the current weight-setting, the computer 
chooses a move which appears to lead to boards of high 
value to the computer.   

If after a while it finds that the game seems to be going badly, in that it 
overvalued the board it chose, then it will increase those parameters which 
yielded a positive contribution while reducing those that did not. 

The General Theory (Lecture NN4):
Barto on Adaptive Critics in his HBTNN article: Reinforcement Learning
� replacing reinforcement by “expected reinforcement”
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Classic Models for Adaptive Networks

The two classic learning schemes for McCulloch-Pitts 

formal neurons                      Σi  wixi ≥ θ

• Hebbian Learning - Amplifying Predispositions
Hebb's scheme in The Organization of Behaviour   (1949)
�— strengthen a synapse whose activity coincides with the firing of the 
postsynaptic neuron
� [cf. Hebbian Synaptic Plasticity, HBTNN2e]

• The Perceptron - Learning with a Teacher (Rosenblatt 1962)
�— strengthen an active synapse if the efferent neuron fails to fire when it 
should have fired;  
�— weaken an active synapse if the efferent neuron fires when it should not 
have fired.   
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Hebb's scheme

Hebb (p.62, 1949):
� When an axon of cell A is near enough to excite a cell B 
and repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place in 
one or both cells, such that A's efficiency as one of the cells 
firing B, is increased.  

Hebb (1949) developed a multi-level model of 
perception and learning, in which the units of thought
were encoded by cell assemblies, each defined by activity reverberating in 
a set of closed neural pathways.

The essence of the Hebb synapse is to increase coupling between coactive 
cells so that they could be linked in growing assemblies.

Hebb developed similar hypotheses at a higher hierarchical level of 
organization, linking cognitive events and their recall into phase 
sequences, temporally organized series of activations of cell assemblies.
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Hebb’s Rule

where synapse wij connects a presynaptic neuron with firing 
rate xj to a postsynaptic neuron with firing rate yi.

Peter Milner noted the saturation problem
von der Malsburg 1973 (modeling the development of oriented edge 
detectors in cat visual cortex [Hubel-Wiesel: V1 simple cells]) 
augmented Hebb-type synapses with 

¯ a normalization rule to stop all synapses "saturating"

Σ wi =  Constant
¯ lateral inhibition to stop the first "experience" from "taking over" all "learning 
circuits”: it prevents nearby cells from acquiring the same pattern thus enabling 
the set of neurons to "span the feature space"

xj yi

The simplest formalization of Hebb’s rule is 
to increase wij by:    ∆wij = k yi xj (1)
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Lateral Inhibition Between Neurons

The idea is to use competition between neurons so that if 
one neuron becomes adept at responding to a pattern, it 
inhibits other neurons from doing so.

[See Competitive Learning in HBTNN]

If cell A fires better than cell B for a given orientation θ, 
then it fires more than B and reduces B's response further 
by lateral inhibition

so that A will adapt more toward θ and
B will adapt less, and the tendency will continue with each 
presentation of θ.

The final set of input weights to the neuron depends both
� on the initial setting of the weights, and 
� on the pattern of clustering of the set of stimuli to which it is 
exposed.    

capturing the statistics of the pattern set

A BB
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Unsupervised Hebbian Learning

tends to sharpen up a neuron's predisposition 
"without a teacher,"
the neuron’s firing becomes better and better correlated 
with a cluster of stimulus patterns.
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But Hebbian Learning can be Supervised

Supervised Hebbian Learning
is based on having an activation line separate from 
the pattern lines with trainable synapses and using 
the activation line to command a neuron to fire - thus 
associating the firing of the neuron with those input patterns 
used on the occasions when it was activated.

[This relates to the idea of associative memory.]

activation line/teacher

pattern lines .
.
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Supervised Hebbian learning is closely related to 
Pavlovian conditioning

The response of the cell being trained corresponds to the 
conditioned and unconditioned response (R), 

the training input corresponds to the unconditioned stimulus (US), and 
the trainable input corresponds to the conditioned stimulus (CS).  
[Richard Thompson: US = air puff to eye; R = blink; CS = tone]
Since the US alone can fire R, while the CS alone may initially be unable 
to fire R, 

the conjoint activity of US and CS creates the conditions for Hebb's rule to 
strengthen the US→R synapse, 

so that eventually the CS alone is enough to elicit a response.

CS: sound 
of bell R: salivation

Training Input (US): 
e.g., sight of food
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Pattern Classification by Neurons

Rosenblatt (1958) explicitly considered the problem of 
pattern recognition where a teacher is essential -

� for example placing b, B, b and B in the same category.

He introduced Perceptrons - neural nets that change with 
“experience” using an error-correction rule designed to
change the weights of each response unit when it makes erroneous
responses to stimuli presented to the network.

A simple Perceptron has no loops in the net, and only the weights to the output 
units can change:
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Simple vs. General Perceptrons

The associator units are not interconnected, and so 
the simple perceptron has no short-term memory.

If the units are cross-coupled - the net may then have multiple 
layers, and loops back from an “earlier” to a “later” layer.

Lecture NN4 will discuss back-propagation: extending perceptron techniques to 
loop-free multi-layer feedforward networks by “credit assignment” for “hidden 
Layers” between input and output.
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Linear Separability

A linear function of the form

f(x) = w1x1+ w2x2+ ... wdxd+wd+1     (wd+1 = - θ)
is a two-category pattern classifier.  

f(x) = 0   ≈≈≈≈ w1x1+ w2x2+ ... wdxd+wd+1 = θ
gives a hyperplane as the decision surface

Training involves adjusting the coefficients (w1,w2,...,wd,wd+1) so that the decision 
surface produces an acceptable separation of the two classes.  
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General Training Strategy

Pick a “representative set of patterns”
Use a Training Set to adjust synaptic weights using a 
learning rule.

With weights fixed after training, evaluate the weights 
by scoring success rates on a Test Set different from 
the training set.

Rosenblatt (1958) provided a learning scheme with the property that 
if the patterns of the training set (i.e., a set of feature vectors, each one 
classified with a 0 or 1) can be separated by some choice of weights and 
threshold, 

then the scheme will eventually yield a satisfactory setting of the weights.  
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Perceptron Learning Rule

The best known perceptron learning rule 
á strengthens an active synapse if the efferent neuron fails to fire 
when it should have fired, and 

â weakens an active synapse if the neuron fires when it should not have:
∆wij = k (Yi - yi) xj (2)

As before, synapse wij connects a neuron with firing rate xj to a neuron with firing 
rate yi, but now 

�Yi is the "correct" output supplied by the "teacher."
�(This is similar to the Widrow-Hoff [1960] least mean squares model of adaptive 
control.)

The rule changes the response to xj in the right direction:
• If the output is correct, Yi = yi and there is no change, ∆wij = 0.  
• If the output is too small, then Yi - yi > 0, and the change in wij will add ∆wij
xj = k (Yi - yi) xj xj > 0 to the output unit's response to (x1, . . ., xd).  

• If the output is too large, ∆wij will decrease the output unit's response. 
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The Perceptron Convergence Theorem 

Thus, w + ∆w classifies the input pattern x 
"more nearly correctly" than w does.  

Unfortunately, in classifying x "more correctly" we run 
the risk of classifying another pattern "less correctly."  

However, the perceptron convergence theorem shows that Rosenblatt's 
procedure does not yield an endless seesaw, but will eventually converge 
to a correct set of weights if one exists, albeit perhaps after many 
iterations through the set of trial patterns.

[See Brains, Machines, and Mathematics, 2nd Edition, pp. 66-69 for a proof.]
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The Robot, Four Landmarks (N, E, W, S)
and the Goal (the Tree “at the top of the Hill”)

The “payoff function” z is a scalar quantity that increases as the robot 
gets closer to the goal:
Think of z as “height on a hill” so goal-seeking becomes 
“hill-climbing”

N

S

W E
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Hill-Climbing and Landmark Learning

“Hill-Climbing in the Fog”:
At time t the robot takes a single step in direction i(t), 
moving from a position with payoff z(t) 

to one with payoff z(t+1).   
If z(t+1)- z(t) > 0, then the robot's next step is in the same direction, 
i(t+1) = i(t), with high probability.    

If z(t+1)- z(t) < 0, then 
i(t+1) is chosen randomly.   

cf. bacterial chemotaxis: run-and-twiddle  mechanism.

Landmark Learning
Barto and Sutton show how to equip our robot with a simple nervous 
system (four neurons!) which can be trained to use "olfactory cues" from 
the four landmarks to improve its direction-finding with experience.   
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The Four-Neuron Adaptive Controller

Payoff Signal →

Signals from
Landmark

Sensors

Commands to
Actuators

Learning Problem: Find the right synaptic weights

Note: The Payoff Signal does not provide explicit error 
signals to each actuator command. 

Think of z(t)-z(t-1) as (positive or negative) reinforcement.
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Hill-Climbing in Weight Space

The net can "learn" appropriate values for the weights.   
We here raise hill-climbing to a more abstract level:
instead of hill-climbing in the physical space 
— choose a direction again if it takes the robot uphill —
we now conduct 

>>>hill-climbing in weight space<<<
At each step, the weights are adjusted in such a way as to improve the 
performance of the network.   

The z input, with no associated weights of its own, is the "teacher" used to 
adjust the weights linking sensory inputs to motor outputs.   
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Landmark Learning

Let output sj(t) =  Σiwji(t)xi(t)           (1)

Since current weights w may not yet be correct, we add 
a noise term, setting the output of element j at time t to

yj(t) = 1  if s(t) + NOISEj(t) > 0,  else 0          (2)

where each NOISEj(t) is a normally distributed random variable with zero mean 
(each with the same variance).   

The weights change according to: 

∆wji(t) = c[z(t)-z(t-1)]yj(t-1)xi(t-1)        (3)

where c is a positive "learning rate".   

Think of z(t)-z(t-1) as (positive or negative) reinforcement.
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∆∆∆∆wji(t) = c[z(t)-z(t-1)]yj(t-1)xi(t-1)

wji will only change if 
a j-movement takes place (yj(t-1)>0) and 
the “robot” is near the i-landmark (xi(t-1)>0) 

It will then change in the direction of z(t)-z(t-1). 

Again view z(t) as "height on a hill”:
wji increases and a j-movement becomes more likely —
if z increases (the “robot” moves uphill); while 
wji decreases and a j-movement becomes less likely if the robot moves 
downhill.

The w's are shifting in an abstract 16-dimensional space of weight-settings.   

32Michael Arbib: March 31, 2005: Learning Methods for Neural Networks

Climbing a Metahill

The weights can be evaluated globally by the extent 
to which they determine an uphill movement, associating 
with a particular vector w the sum

S(w) = ΣxE{[z(x+y(x,w)) - z(x)]}                               (4)

z(x) is the payoff value associated with position x 
z(x+y(x,w)) is the payoff associated with the position
that is reached by taking the step y(x,w) 

determined by (1) and (2) using the weights w, and 
the expectation E averages over all the values of the noise terms in (2). 

We may think of S as defining height on a "metahill."    

The rule (3) tells us how to change weights in a way which is likely to increase S 
using just local information based on the robot's current step in physical space.  
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Before and After Learning
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Learning a Map Implicitly

16 synaptic weights encode movement vectors at 400 locations in space
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Back to the Perceptron: Training Hidden Units

In the simple Perceptron (Rosenblatt 1962) , 
only the weights to the output units can change.
This architecture can only support linearly separable maps. 
The problem for many years was to extend the perceptron concept to 
multilayered networks 

The credit assignment  problem: "How does a neuron deeply embedded 
within a network 'know' what aspect of the outcome of an overall action 
was 'its fault'?"

I.e.:  given an "error" which is a global measure of overall system 
performance, what local changes can serve to reduce global error?
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Backpropagation: a method for training a loop-free network 
which has three types of unit: 

input units;
hidden units carrying an internal representation;
output units.  

Back-Propagation

Direction of Processing

Direction of Training (Synapse Adjustment): 
Backpropagation of Error Signals
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Neurons

Each unit has both input and output taking 
continuous values in some range [a,b].

The response is a sigmoidal function of the weighted sum.

Thus if a unit has inputs xk with corresponding weights wik, the output xi is 
given by

xi = fi(Σkwikxk)

where fi is the sigmoid function

fi(x) = 1/ {1+ exp [- (x – θi)]}

with  θi a bias (threshold) for the unit.

tThis f is differentiable.
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Choose a training set �������� of pairs (p,t) each comprising an input pattern p and 
the corresponding desired output vector t.

At each trial, we choose an input pattern p from �
and consider the corresponding restricted error

E = Σk(tk - ok)2

where k ranges over designated "output units"  
with (t1, ...,tn) the target output vector,
and (o1, ...,on) the observed output vector

The net has many units interconnected by 
weights  wij.  The learning rule is to change wij
so as to reduce E by gradient descent.

To descend the hill, reverse the derivative.

∆wij = - ∂E/∂wij = 2 Σk(tk - ok) ∂ok/∂wij

dE 
dw

dE 
dw

E

w
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Backpropagation

In a layered loop-free net, changing the weights wij according to the gradient 
descent rule may be accomplished equivalently by back propagation, working
back from the output units. {See HBTNN I.3 for proof.}

Proposition: Consider a layered loop-free net with error measure E = Σk(tk - ok)2, 
where k ranges over designated "output units," and let the weights wij be changed 
according to the gradient descent rule

∆wij = - ∂E/∂wij = 2 Σk(tk - ok) ∂ok/∂wij.

Then the weights may be changed inductively, working back from the output units:
∆wij is proportional to δioj, where:

Basis Step: δi = (ti - oi)fi' for an output unit. [cf. Perceptron - but with added fi' term.]

Induction Step: If i is a hidden unit, and if δk is known for all units which receive 
unit i's output then δi = (Σk δkwki) fi', where k runs over all units which receive 
unit i's output. [unit i receives error propagated back from a unit k to the extent to 
which i affects k.]  

The "error signal" δi propagates back layer by layer.   
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Backpropagation is Non-Biological

Heuristic:
The above theorem tells us how to compute ∆wij for gradient descent.   

It does not guarantee that the above step-size is appropriate to reach the 
minimum; 

It does not guarantee that the minimum, if reached, is global.  

The back-propagation rule defined by this proposition is thus a heuristic
rule, not one guaranteed to find a global minimum.   

Since it is heuristic, it may also be applied to neural nets which are loop-
free, even if not strictly layered.   

Non-Biological
See HBTNN articles on “Backpropagation” and “Hebbian Synaptic 
Plasticity”. (Optional reading.)
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Critique

What such learning methods achieve:

In "many cases" (the bounds are not yet well defined)

� if we train a net N with repeated presentations of  
the various (xk,yk) from some training set

� then it will converge to a set of connections which enable N to compute a 
function f: X →Y with the property that as k runs from 1 to n, the f(xk) 
"correlate fairly well" with the yk.     
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An end to programming? NO!!

Consider three issues:  

a) complexity: Is the network complex enough to encode a solution 
method? 

b) practicality: Can the net achieve such a solution within a feasible period 
of time?   

c) efficacy: How do we guarantee that the generalization achieved by the 
machine matches our conception of a useful solution?  
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Programming  will survive into the age of neural computing, but greatly 
modified

Given a complex problem, programmers will still need to 
� Decompose it into subproblems
� Specify an initial structure for a separate network for each subproblem
� Place suitable constraints on (the learning process for) each network; and, 

finally, 
� Apply debugging techniques to the resultant system.  

We may expect that the initial design and constraint processes may in some 
cases suffice to program a complete solution to the problem without any 
use of learning at all.


