From attention to goal-oriented
scene understanding

Laurent Itti — University of Southern California
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Figure 4. Triadic Architecture. It is suggested that the visual perception of scenes may be carried out via the
interaction of three different systems. System I: Early-level processes produce volatile proto-objects rapidly and in
parallel across the visual field. System II: Focused attention acts as a hand to "grab" these structures: as long as
these structures are held, they form an individuated object with both temporal and spatial coherence. System III:
Setting information—obtained via a nonattentional stream— guides the allocation of focused attention to various
parts of the scene. and allows priorities to be given to the various possible objects.



Goal-oriented scene understanding?

= Question: describe what is happening in the
video clip shown in the following slide.
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Goal for our algorithms

= Extract the “minimal subscene®”, that is,
the smallest set of actors, objects and
actions that describe the scene under given
task definition.

= E.9.,
« If “who Is doing what and to whom?” task
= And boy-on-scooter video clip

= Then minimal subscene is “a boy with a red
shirt rides a scooter around”



Challenge

= The minimal subscene In our example has
10 words, but...

= The video clip has over 74 million different
pixel values (about 1.8 billion bits once
uncompressed and displayed — though with
high spatial and temporal correlation)

= Note: The concept of minimal subscene has further linkages
to the evolution of language in humans, investigated by Itti
and Arbib at USC but not explored here.



Starting point

= Can attend to salient locations (next slide)
= Can identify those locations?

= Can evaluate the task-relevance of those
locations, based on some general symbolic
knowledge about how various entities relate
to each other?



Visual attention
Model, Itti & Koch







Task Iinfluences eye movements
= Yarbus, 1967:

= Glven one image,
= An eye tracker,

= And seven sets of instructions given to seven
observers, ...

= ... Yarbus observed widely different eye
movement scanpaths depending on task.



Yarbus, 1967: Task influences human eye movements
1) Free examination

2) estimate material circumstances
of family

3) give ages of the people
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4) surmise what family has been A s
doing before arrival of “unexpected
visitor”

5) remember clothes worn by
the people

6) remember position of people
and objects

7) estimate how long the “unexpected
visitor” has been away from family
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[1]: A.Yarbus, Plenum Press, New York, 1967.



How does task influence attention?

Visual scene

Low level features:

Oriented edges, Color opponencies, o“ T . (o)
Intensity contrast, motion energy,

Stereo disparity etc. g g

Bottom-up salience
of locations

Gist:
Outdoor
beach scene

Layout:
1. Grass
2. Sand

3. Sea

Top down task-relevance
of locations

J
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How may task and salience interface?

Top-down Task-Relevance
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Towards modeling the influence of task
on relevance

Visual scene

Task specificati ‘
“look for humans’

? all

Long Term
Memory

. Knowledge of
Gist: i
task-relevant entities \
Outdoor I | {
and their spatial relations
beach scene

Layout: Working Memory
1. Grass (Frontal cortex)
2. Sand

3. Sea
4. Sky

Top down task—relevanc
of locations HH
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Components of scene understanding model

= Question/task, e.g., “who is doing what to whom?”
= Lexical parser to extract key concepts from question

= Ontology of world concepts and their inter-relationships, to
expand concepts explicitly looked for to related ones

= Attention/recognition/gist+layout visual subsystems to locate
candidate relevant objects/actors/actions

= Working memory of concepts relevant to current task

= Spatial map of locations relevant to current task



Towards a computational model

= Consider the following scene (next slide)

= Let’s walk through a schematic (partly
hypothetical, partly implemented) diagram
of the sequence of steps that may be
triggered during its analysis.






Two streams

= Not where/what...

s But attentional/non-attentional

= Attentional: local analysis of details of various objects

= Non-attentional: rapid global analysis yields coarse
identification of the setting (rough semantic category
for the scene, e.qg., indoors vs. outdoors, rough layout,

etc)



L Lowe-level features:
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Step 1: eyes closed

Given a task, determine objects that may be relevant to it,
using symbolic LTM (long-term memory), and store
collection of relevant objects in symbolic WM (working
memory).

= E.g., if task is to find a stapler, symbolic LTM may inform us that a
desk is relevant.

Then, prime visual system for the features of the most-
relevant entity, as stored in visual LTM.

= E.g., if most relevant entity is a red object, boost red-selective
neurons.

= C.f. guided search, top-down attentional modulation of early vision.



Volatile processing

1. Eyes closed

Non-volatile processing

Task
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Step 2: attend

The biased visual system yields a saliency map (biased for
features of most relevant entity)

= See Itti & Koch, 1998-2003, Navalpakkam & Itti, 2003

The setting yields a spatial prior of where this entity may
be, based on very rapid and very coarse global scene
analysis; here we use this prior as an initializer for our
“task-relevance map®”, a spatial pointwise filter that will
be applied to the saliency map

= E.g., if scene is a beach and looking for humans, look around
where the sand is, not in the sky!

= See Torralba, 2003 for computer implementation.



2. Attend

Volatile processing
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3. Recognize

= Once the most (salient * relevant) location has been
selected, it is fed (through Rensink’s “nexus” or Olshausen
et al.’s “shifter circuit”) to object recognition.

= If the recognized entity was not in WM, it is added
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4. Update

= As an entity is recognized, its relationships to other entities
In the WM are evaluated, and the relevance of all WM
entities Is updated.

= The task-relevance map (TRM) is also updated with the
computed relevant of the currently-fixated entity. That will
ensure that we will later come back regularly to that
location, if relevant, or largely ignore it, if irrelevant.



4. Update

Volatile processing

Non-volatile processing
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processing
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[terate

= The system keeps looping through steps 2-4

s The current WM and TRM are a first

approximation to what may constitute the
“Minimal subscene’:

= A set of relevant spatial locations with attached object
labels (see “object files”), and

= A set of relevant symbolic entities with attached
relevance values



Prototype Implementation



Model operation

= Receive and parse task specification; extract concepts being
looked for

= Expand to wider collection of relevant concepts using
ontology

s Bias attention towards the visual features of most relevant
concept

= Attend to and recognize an object
= [f relevant, increase local activity in task map
= Update working memory based on understanding so far

After a while: task map contains only relevant regions, and
attention primarily cycles through relevant objects
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saliency map  task map pointwise product




Task Specification

= Currently, we accept tasks such as “who Is
doing what to whom?”

Task specification
“what is man catching?” ”‘

Subject Action
Keywords Keywords
“man” “catch”



Subject ontology

Real entity

Abstract entity

Hand related
Hand Leg Action
i i Related
Contains | Part of !
: : v Similar

Grasp 4 Hold

————————— > Part of — == Is a

> Contains > Includes



What to store In the

Human RA

M
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Leg RA

Hand RA

Hand RA

Leg RA Leg RA
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Real entity

Abstract entity
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— > Includes



What to store in the edges?

Man

Part V

Hand

-/'

Contains/,/'/
pos

Finger

Task: “find hand”

Suppose we find Finger and Man,
what is more relevant?

Granularity g(u,Vv) A

g((Hand, Finger)) > g((Hand, Man))

In general, g(contains) > g(part of)

g(includes) = g(is a)

k g(similar) = g(related) /




Edge information

Hand

Related

Hand related
object

IncludAes/ \Ancludes

Pen

Leaf

-

and v

N

Co-occurrence(u,Vv)

Probability of joint occurrence of u

Task: “find hand”

Suppose we find Pen and Leaf,
what is more relevant?

P(Pen is relevant | Hand is relevant)
VS.
P(Leaf is relevant | Hand is relevant)

|

P(Hand occurs | Pen occurs)
VS.
P(Hand occurs | Leaf occurs)

P(Hand, Pen | Pen)
VS.
P(Hand, Leaf | Leaf)



Working Memory and Task Graph

= Working memory creates and maintains the task
graph

= Initial task graph is created using the task keywords
and is expanded using “is a” and “related” relations.

Object ontology Subject ontology Action ontology

Man

o

Contains : Part of
i
Related
Hand related Hand related
object < < Hage action

Task: What is man catching?



Is the fixation entity relevant?

= Testl: Is there a path from fixation entity to task graph?

= Test2: Are the properties of fixation entity consistent with properties
of task graph?

= If (Testl AND Test2) then fixated entity is relevant
= Add it to the task graph

= compute its relevance.
TASK GRAPH

Entity to be added OBJECT SUBJECT ACTION
10 5.0
Car  checkpath
Man Catch
/ ?_ﬂ | T R
P :
o ) g ¥ %f* E
-~ -~ HandRO Hand Hand RA
y
check property, \{I‘”’f 1.82 2,025 225
Small

— Partof

e B s 1317 |11 - S Includes



Computing Relevance

= Relevance of fixation entity depends on relevance of
Its neighbours and the connecting relations.
= Consider the influence of u on relevance of fixation v
= Depends on Relevance of u ---- R,
= Depends on granularity of edge(u,v) ---- g((u,v))
= Depends on P(u occurs/ v occurs) ---- c(u,v)/ P(v)

= mutual influence between 2 entities decreases as their
distance increases (modelled by decay factor where O
< decay_factor < 1)

4 )

Ry = MaX,. v is an edge(INflUENCE OF U ON V)

& J

4 )

R, = max (R,* g(u,v) * c(u,v) / P(v) * decay_factor)

L u: (u,v) is an edge
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Simple hierarchical
Representation of Object representation
Visual features of

Objects
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Binary target mask




The visual features
Of objects in visual
LTM are used to
Bias attention
Top-down
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Center-surround differences and normalization

Input image

Learned target
representation

1%

Weighting
coefficient

Feature ma ps

v
orientations colors

Linear combination

Inhibition of
return

Conspicuity maps
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Once a location iIs attended to, its local visual features
Are matched to those in visual LTM, to recognize the
attended object

Object Heirarchy Findthe b Eit match

in Chjects
THunwnmEall B

Representation of the fixation



Training image

biasing

<o P

Learning object features
And using them for

Naive: Looking for
Salient objects

a Coca-cola can
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Exercising the model by requesting that it finds
several objects

Figure 12! Sequential detection of multiple targets: The model initialized the working memary with the targets 1o be Bund and
their relevance (handicap sign, relevance = 1; fire hydrant, relevance = 0.5). It biased for the most relevant target (in this case, the
handicap sign), made a flse detection, recognized the fixation (fire hydreant), updated the state in ils woeking memory (recorded
that it found the fire hydrant), and proceaded (o detect the remaining target by repeating the above steps.



Example 1

= Taskl: find the faces in the scene
= Task2: find what the people are eating

Original scene  TRM after 5 fixations TRM after 20 fixations

ot ¥ L




Example 2

s Taskl: find the cars in the scene
= Task2: find the buildings in the scene

Original scene  TRM after 20 fixations Attention trajectory




Learning the TRM through sequences of attention and recognition

Figure 14: Learning the TRAM: the model learned the TRAM for a driving task by attending, estimating the relevance of attendexd
soene locabions and updating the THAM. The development of the 'THEM across 28 lixations s shown here. Note that the THEM does
ool change signibeant Iy alter a while and is keamed tooa ressonable precision within the hist 5-10 hxations.



Outlook

Open architecture — model not in any way dedicated to a specific
task, environment, knowledge base, etc. just like our brain probably has
not evolved to allow us to drive cars.

Task-dependent learning — In the TRM, the knowledge base, the
object recognition system, etc., guided by an interaction between
attention, recognition, and symbolic knowledge to evaluate the task-
relevance of attended objects

Hybrid neuro/Al architecture — Interplay between rapid/coarse
learnable global analysis (gist), symbolic knowledge-based reasoning,
and local/serial trainable attention and object recognition

Key new concepts:

= Minimal subscene — smallest task-dependent set of actors, objects and
actions that concisely summarize scene contents

= Task-relevance map — spatial map that helps focus computational
resources on task-relevant scene portions



