Last Time: Acting Humanly: The Full Turing Test

- Alan Turing's 1950 article *Computing Machinery and Intelligence* discussed conditions for considering a machine to be intelligent
 - “Can machines think?” \leftrightarrow “Can machines behave intelligently?”
 - The Turing test (The Imitation Game): Operational definition of intelligence

- Computer needs to possess: Natural language processing, Knowledge representation, Automated reasoning, and Machine learning

Problem:
1. Turing test is not reproducible, constructive, and amenable to mathematic analysis.
2. What about physical interaction with interrogator and environment?

- Total Turing Test: Requires physical interaction and needs perception and actuation.
Last time: The Turing Test

CS 561, Lecture 2
Last time: The Turing Test

Last time: The Turing Test

Last time: The Turing Test

CS 561, Lecture 2
Last time: The Turing Test

Chatbot: Hello, my name is Chatbot. What's your name?

You: Laurent

Chatbot: Nice to meet you Laurent.

You: Can you pass the Turing test?

Chatbot: You be the judge of that.

You: Tell me about yourself.

Chatbot: I am an artificial linguistic entity. I was activated at Bethlehem.

You: Sorry, you just FAILED the Turing test!

Chatbot: Hello, my name is Chatbot. What's your name?

You:

This time: Outline

- Intelligent Agents (IA)
- Environment types
- IA Behavior
- IA Structure
- IA Types
What is an (Intelligent) Agent?

• An over-used, over-loaded, and misused term.

• Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through its effectors to maximize progress towards its goals.
What is an (Intelligent) Agent?

- **PAGE** (Percepts, Actions, Goals, Environment)

- Task-specific & specialized: well-defined goals and environment

- The notion of an agent is meant to be a tool for analyzing systems,
 - It is not a different hardware or new programming languages
Intelligent Agents and Artificial Intelligence

Example: Human mind as network of thousands or millions of agents working in parallel. To produce real artificial intelligence, this school holds, we should build computer systems that also contain many agents and systems for arbitrating among the agents' competing results.

- Distributed decision-making and control

- Challenges:
 - Action selection: What next action to choose
 - Conflict resolution
Agent Types

We can split agent research into two main strands:

• Distributed Artificial Intelligence (DAI) – Multi-Agent Systems (MAS) (1980 – 1990)

• Much broader notion of "agent" (1990’s – present)
 • interface, reactive, mobile, information
Rational Agents

How to design this?

Sensors

Agent

Effectors

Environment

percepts

actions
Remember: the Beobot example
A Windshield Wiper Agent

How do we design a agent that can wipe the windshields when needed?

• Goals?
• Percepts?
• Sensors?
• Effectors?
• Actions?
• Environment?
A Windshield Wiper Agent (Cont’d)

- Goals: Keep windshields clean & maintain visibility
- Percepts: Raining, Dirty
- Sensors: Camera (moist sensor)
- Effectors: Wipers (left, right, back)
- Actions: Off, Slow, Medium, Fast
- Environment: Inner city, freeways, highways, weather …
Towards Autonomous Vehicles

APR 13 2001

http://iLab.usc.edu
http://beobots.org

CS 561, Lecture 2
Interacting Agents

<table>
<thead>
<tr>
<th>Collision Avoidance Agent (CAA)</th>
<th>Lane Keeping Agent (LKA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Goals: Avoid running into obstacles</td>
<td>• Goals: Stay in current lane</td>
</tr>
<tr>
<td>• Percepts ?</td>
<td>• Percepts ?</td>
</tr>
<tr>
<td>• Sensors?</td>
<td>• Sensors?</td>
</tr>
<tr>
<td>• Effectors ?</td>
<td>• Effectors ?</td>
</tr>
<tr>
<td>• Actions ?</td>
<td>• Actions ?</td>
</tr>
<tr>
<td>• Environment: Freeway</td>
<td>• Environment: Freeway</td>
</tr>
</tbody>
</table>

CS 561, Lecture 2
Interacting Agents

Collision Avoidance Agent (CAA)
- **Goals:** Avoid running into obstacles
- **Percepts:** Obstacle distance, velocity, trajectory
- **Sensors:** Vision, proximity sensing
- **Effectors:** Steering Wheel, Accelerator, Brakes, Horn, Headlights
- **Actions:** Steer, speed up, brake, blow horn, signal (headlights)
- **Environment:** Freeway

Lane Keeping Agent (LKA)
- **Goals:** Stay in current lane
- **Percepts:** Lane center, lane boundaries
- **Sensors:** Vision
- **Effectors:** Steering Wheel, Accelerator, Brakes
- **Actions:** Steer, speed up, brake
- **Environment:** Freeway
Conflict Resolution by Action Selection Agents

- **Override:** CAA overrides LKA

- **Arbitrate:** if Obstacle is Close then CAA else LKA

- **Compromise:** Choose action that satisfies both agents

- Any combination of the above

- **Challenges:** Doing the right thing
The Right Thing = The Rational Action

- **Rational Action**: The action that maximizes the expected value of the performance measure *given the percept sequence to date*

- Rational = Best?
- Rational = Optimal?
- Rational = Omniscience?
- Rational = Clairvoyant?
- Rational = Successful?
The Right Thing = The Rational Action

- **Rational Action**: The action that maximizes the expected value of the performance measure given the percept sequence to date

- Rational = Best Yes, to the best of its knowledge
- Rational = Optimal Yes, to the best of its abilities (incl.
- Rational ≠ Omniscience its constraints)
- Rational ≠ Clairvoyant
- Rational ≠ Successful
Behavior and performance of IAs

• **Perception** (sequence) to **Action Mapping**: $f: \mathbb{P}^* \rightarrow \mathbb{A}$
 - **Ideal mapping**: specifies which actions an agent ought to take at any point in time
 - **Description**: Look-Up-Table, Closed Form, etc.

• **Performance measure**: a *subjective* measure to characterize how successful an agent is (e.g., speed, power usage, accuracy, money, etc.)

• (degree of) **Autonomy**: to what extent is the agent able to make decisions and take actions on its own?
Look up table

<table>
<thead>
<tr>
<th>Distance</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No action</td>
</tr>
<tr>
<td>5</td>
<td>Turn left 30 degrees</td>
</tr>
<tr>
<td>2</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Diagram:
- **Agent**
- **Obstacle**
- **Sensor**

CS 561, Lecture 2
Closed form

• Output (degree of rotation) = F(distance)

• E.g., $F(d) = \frac{10}{d}$ (distance cannot be less than $1/10$)
How is an Agent different from other software?

• Agents are **autonomous**, that is, they act on behalf of the user

• Agents contain some level of **intelligence**, from fixed rules to learning engines that allow them to adapt to changes in the environment

• Agents don't only act **reactively**, but sometimes also **proactively**
How is an Agent different from other software?

• Agents have **social ability**, that is, they communicate with the user, the system, and other agents as required.

• Agents may also **cooperate** with other agents to carry out more complex tasks than they themselves can handle.

• Agents may **migrate** from one system to another to access remote resources or even to meet other agents.
Environment Types

• Characteristics
 • Accessible vs. inaccessible
 • Deterministic vs. nondeterministic
 • Episodic vs. nonepisodic
 • Hostile vs. friendly
 • Static vs. dynamic
 • Discrete vs. continuous
Environment Types

• Characteristics
 • Accessible vs. inaccessible
 • Sensors give access to complete state of the environment.
 • Deterministic vs. nondeterministic
 • The next state can be determined based on the current state and the action.
 • Episodic vs. nonepisodic (Sequential)
 • Episode: each perceive and action pairs
 • The quality of action does not depend on the previous episode.
Environment Types

• Characteristics
 • Hostile vs. friendly

• Static vs. dynamic
 • Dynamic if the environment changes during deliberation

• Discrete vs. continuous
 • Chess vs. driving
<table>
<thead>
<tr>
<th>Environment</th>
<th>Accessible</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Reality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th>Environment</th>
<th>Accessible</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Reality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th>Environment</th>
<th>Accessible</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Reality</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes/no</td>
<td>No</td>
<td>Yes/no</td>
</tr>
<tr>
<td>Office Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th>Environment</th>
<th>Accessible</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Reality</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes/no</td>
<td>No</td>
<td>Yes/no</td>
</tr>
<tr>
<td>Office Environment</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment types

<table>
<thead>
<tr>
<th>Environment</th>
<th>Accessible</th>
<th>Deterministic</th>
<th>Episodic</th>
<th>Static</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Reality</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes/no</td>
<td>No</td>
<td>Yes/no</td>
</tr>
<tr>
<td>Office Environment</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Mars</td>
<td>No</td>
<td>Semi</td>
<td>No</td>
<td>Semi</td>
<td>No</td>
</tr>
</tbody>
</table>

The environment types largely determine the agent design.
Structure of Intelligent Agents

- Agent = architecture + program

- **Agent program:** the implementation of \(f: \mathbb{P}^* \rightarrow \mathbb{A} \), the agent’s perception-action mapping

```plaintext
function Skeleton-Agent(Percept) returns Action
memory ← UpdateMemory(memory, Percept)
Action ← ChooseBestAction(memory)
memory ← UpdateMemory(memory, Action)
return Action
```

- **Architecture:** a device that can execute the agent program (e.g., general-purpose computer, specialized device, beobot, etc.)
Using a look-up-table to encode $f : P^* \rightarrow A$

- **Example:** Collision Avoidance
 - Sensors: 3 proximity sensors
 - Effectors: Steering Wheel, Brakes
- How to generate?
- How large?
- How to select action?
Using a look-up-table to encode $f : P^* \rightarrow A$

- **Example:** Collision Avoidance
 - Sensors: 3 proximity sensors
 - Effectors: Steering Wheel, Brakes

- **How to generate:** for each $p \in P_l \times P_m \times P_r$, generate an appropriate action, $a \in S \times B$

- **How large:** size of table = #possible percepts times # possible actions = $|P_l| \times |P_m| \times |P_r| \times |S| \times |B|$

 E.g., $P = \{\text{close, medium, far}\}^3$

 $A = \{\text{left, straight, right}\} \times \{\text{on, off}\}$

 then size of table = $27 \times 3 \times 2 = 162$

- **How to select action?** Search.
Agent types

- Reflex agents
- Reflex agents with internal states
- Goal-based agents
- Utility-based agents
Agent types

• Reflex agents
 • Reactive: No memory

• Reflex agents with internal states
 • W/o previous state, may not be able to make decision
 • E.g. brake lights at night.

• Goal-based agents
 • Goal information needed to make decision
Agent types

- Utility-based agents
 - How well can the goal be achieved (degree of happiness)

- What to do if there are conflicting goals?
 - Speed and safety

- Which goal should be selected if several can be achieved?
Reflex agents

agent

Sensors

What the world is like now

Condition-action rules

What action I should do now

Effectors

Environment
Reactive agents

- Reactive agents do not have internal symbolic models.
- Act by stimulus-response to the current state of the environment.
- Each reactive agent is simple and interacts with others in a basic way.
- Complex patterns of behavior emerge from their interaction.

Benefits: robustness, fast response time

Challenges: scalability, how intelligent? and how do you debug them?
Reflex agents w/ state

Agent

- State
- How the world evolves
- What my actions do

Environment

- Sensors
- What the world is like now
- Condition-action rules
- What action I should do now

Effectors
Goal-based agents

Agent

- State
- How the world evolves
- What my actions do

Sensors

What the world is like now

What it will be like if I do action A

Goals

What action I should do now

Effectors

Environment
Utility-based agents

Agent

Environment

Sensors

State

What the world is like now

How the world evolves

What my actions do

What it will be like if I do action A

Utility

How happy I will be in such a state

What action I should do now

Effectors
Mobile agents

- Programs that can migrate from one machine to another.
- Execute in a platform-independent execution environment.
- Require agent execution environment (places).
- Mobility not necessary or sufficient condition for agenthood.
- Practical but non-functional advantages:
 - Reduced communication cost (e.g., from PDA)
 - Asynchronous computing (when you are not connected)
- Two types:
 - One-hop mobile agents (migrate to one other place)
 - Multi-hop mobile agents (roam the network from place to place)
- Applications:
 - Distributed information retrieval.
 - Telecommunication network routing.
Mobile agents

- Programs that can migrate from one machine to another.
- Execute in a platform-independent execution environment.
- Require agent execution environment (places).
- Mobility not necessary or sufficient condition for agenthood.

A mail agent
Mobile agents

- Practical but non-functional advantages:
 - Reduced communication cost (e.g. from PDA)
 - Asynchronous computing (when you are not connected)

- Two types:
 - One-hop mobile agents (migrate to one other place)
 - Multi-hop mobile agents (roam the network from place to place)
Mobile agents

- Applications:
 - Distributed information retrieval.
 - Telecommunication network routing.
Information agents

- Manage the explosive growth of information.
- Manipulate or collate information from many distributed sources.
- Information agents can be mobile or static.

Examples:
- **BargainFinder** comparison shops among Internet stores for CDs
- **FIDO** the Shopping Doggie (out of service)
- **Internet Softbot** infers which internet facilities (finger, ftp, gopher) to use and when from high-level search requests.

- **Challenge**: ontologies for annotating Web pages (eg, SHOE).
Summary

• Intelligent Agents:
 • Anything that can be viewed as perceiving its environment through sensors and acting upon that environment through its effectors to maximize progress towards its goals.
 • PAGE (Percepts, Actions, Goals, Environment)
 • Described as a Perception (sequence) to Action Mapping: \(f: P^* \rightarrow A \)
 • Using look-up-table, closed form, etc.

• Agent Types: Reflex, state-based, goal-based, utility-based

• Rational Action: The action that maximizes the expected value of the performance measure given the percept sequence to date