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Recall: breadth-first search, step by step
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Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes � make-queue(make-node(initial-state[problem]))
loop do

if nodes is empty then return failure
node � Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes � Queuing-Fn(nodes, Expand(node, Operators[problem]))

end

Queuing-Fn(queue, elements) is a queuing function that inserts a set 
of elements into the queue and determines the order of node expansion.  
Varieties of the queuing function produce varieties of the search algorithm.
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Recall: breath-first search, step by step
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Breadth-first search

Node queue: initialization

# state depth path cost parent #

1 Arad 0 0 --
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Breadth-first search

Node queue: add successors to queue end; empty queue from top

# state depth path cost parent #

1 Arad 0 0 --
2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1
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Breadth-first search

Node queue: add successors to queue end; empty queue from top

# state depth path cost parent #

1 Arad 0 0 --
2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1
5 Arad 2 2 2
6 Oradea 2 2 2

(get smart: e.g., avoid repeated states like node #5)
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Depth-first search
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Depth-first search

Node queue: initialization

# state depth path cost parent #

1 Arad 0 0 --
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Depth-first search

Node queue: add successors to queue front; empty queue from top

# state depth path cost parent #

2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1
1 Arad 0 0 --
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Depth-first search

Node queue: add successors to queue front; empty queue from top

# state depth path cost parent #

5 Arad 2 2 2
6 Oradea 2 2 2
2 Zerind 1 1 1
3 Sibiu 1 1 1
4 Timisoara 1 1 1
1 Arad 0 0 --
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Last time: search strategies

Uninformed: Use only information available in the problem formulation
• Breadth-first
• Uniform-cost
• Depth-first
• Depth-limited
• Iterative deepening

Informed: Use heuristics to guide the search
• Best first:
• Greedy search

• A* search
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Last time: search strategies

Uninformed: Use only information available in the problem formulation
• Breadth-first
• Uniform-cost
• Depth-first
• Depth-limited
• Iterative deepening

Informed: Use heuristics to guide the search
• Best first:
• Greedy search  -- queue first nodes that maximize heuristic “desirability” 

based on estimated path cost from current node to goal;
• A* search – queue first nodes that minimize sum of path cost so far and 

estimated path cost to goal.
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This time

• Iterative improvement
• Hill climbing
• Simulated annealing
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Iterative improvement

• In many optimization problems, path is irrelevant;
the goal state itself is the solution.

• Then, state space = space of “complete” configurations.
Algorithm goal:

- find optimal configuration (e.g., TSP), or,
- find configuration satisfying constraints

(e.g., n-queens)

• In such cases, can use iterative improvement 
algorithms: keep a single “current” state, and try to 
improve it.
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Iterative improvement example: vacuum world

Simplified world: 2 locations, each may or not contain dirt,
each may or not contain vacuuming agent.

Goal of agent: clean up the dirt.

If path does not matter, do not need to keep track of it.
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Iterative improvement example: n-queens

• Goal: Put n chess-game queens on an n x n board, with 
no two queens on the same row, column, or diagonal.

• Here, goal state is initially unknown but is specified by 
constraints that it must satisfy.
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Hill climbing (or gradient ascent/descent)

• Iteratively maximize “value” of current state, by 
replacing it by successor state that has highest value, as 
long as possible.
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Question: 
What is the 
difference 

between this 
problem and 
our problem 

(finding global 
minima)?
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Hill climbing

• Note: minimizing a “value” function v(n) is equivalent to 
maximizing –v(n),

thus both notions are used interchangeably.

• Notion of “extremization”: find extrema (minima or 
maxima) of a value function.
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Hill climbing

• Problem: depending on initial state, may get stuck in 
local extremum.
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Minimizing energy

• Let’s now change the formulation of the problem a bit, so 
that we can employ new formalism:
- let’s compare our state space to that of a physical 

system that is subject to natural interactions,
- and let’s compare our value function to the overall 

potential energy E of the system.

• On every updating,
we have ∆E ≤ 0
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Minimizing energy

• Hence the dynamics of the system tend to move E 
toward a minimum.   

• We stress that there may be different such states — they 
are local minima.  Global minimization is not guaranteed.  
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Local Minima Problem

• Question: How do you avoid this local minima?

starting
point

descend
direction

local minima

global minima

barrier to local search
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Consequences of the Occasional Ascents

Help escaping the 
local optima.

desired effect

Might pass global optima
after reaching it 

adverse effect
(easy to avoid by
keeping track of
best-ever state)
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Boltzmann machines

B

C

A
Attraction for C

D

E

h

The Boltzmann Machine of 
Hinton, Sejnowski, and Ackley (1984)
uses simulated annealing to escape local minima.

To motivate their solution, consider how one might get a ball-bearing 
traveling along the curve to "probably end up" in the deepest 
minimum.  The idea is to shake the box "about h hard"  — then the ball 
is more likely to go from D  to C than from  C to D.  So, on average, 
the ball should end up in  C's  valley.
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Simulated annealing: basic idea

• From current state, pick a random successor state;

• If it has better value than current state, then “accept 
the transition,” that is, use successor state as current 
state;

• Otherwise, do not give up, but instead flip a coin and 
accept the transition with a given probability (that is 
lower as the successor is worse).

• So we accept to sometimes “un-optimize” the value 
function a little with a non-zero probability.
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Boltzmann’s statistical theory of gases

• In the statistical theory of gases, the gas is described not by a 
deterministic dynamics, but rather by the probability that it will be in 
different states.  

• The 19th century physicist Ludwig Boltzmann developed a theory 
that included a probability distribution of temperature (i.e.,  every 
small region of the gas had the same kinetic energy).  

• Hinton, Sejnowski and Ackley’s idea was that this distribution might 
also be used to describe neural interactions, where low temperature  
T  is replaced by a small noise term  T (the neural analog of random 
thermal motion of molecules). While their results primarily concern 
optimization using neural networks, the idea is more general.
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Boltzmann distribution

• At thermal equilibrium at temperature T, the 
Boltzmann distribution gives the relative 
probability that the system will occupy state A vs. 
state B as:

• where E(A) and E(B) are the energies associated with 
states A and B.
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Simulated annealing

Kirkpatrick et al. 1983:

• Simulated annealing is a general method for making 
likely the escape from local minima by allowing jumps to 
higher energy states.

• The analogy here is with the process of annealing used 
by a craftsman in forging a sword from an alloy.

• He heats the metal, then slowly cools it as he hammers 
the blade into shape.  
• If he cools the blade too quickly the metal will form patches of

different composition;
• If the metal is cooled slowly while it is shaped, the constituent 

metals will form a uniform alloy.
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Real annealing: Sword 

• He heats the metal, then 
slowly cools it as he hammers 
the blade into shape.  
• If he cools the blade too quickly 

the metal will form patches of 
different composition;

• If the metal is cooled slowly 
while it is shaped, the 
constituent metals will form a 
uniform alloy.
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Simulated annealing in practice

- set T
- optimize for given T
- lower T (see Geman & Geman, 1984)
- repeat
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Simulated annealing in practice

- set T
- optimize for given T
- lower T
- repeat

MDSA: Molecular Dynamics Simulated Annealing
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Simulated annealing in practice

- set T
- optimize for given T
- lower T (see Geman & Geman, 1984)
- repeat

• Geman & Geman (1984): if T is lowered sufficiently slowly (with 
respect to the number of iterations used to optimize at a given T), 
simulated annealing is guaranteed to find the global minimum.

• Caveat: this algorithm has no end (Geman & Geman’s T decrease 
schedule is in the 1/log of the number of iterations, so, T will never 
reach zero), so it may take an infinite amount of time for it to find 
the global minimum.
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Simulated annealing algorithm

• Idea: Escape local extrema by allowing “bad moves,” but gradually 
decrease their size and frequency.

Note: goal here is to
maximize E.-
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Simulated annealing algorithm

• Idea: Escape local extrema by allowing “bad moves,” but gradually 
decrease their size and frequency.

Algorithm when goal
is to minimize E.< -

-
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Note on simulated annealing: limit cases

• Boltzmann distribution: accept “bad move” with ∆E<0 (goal is to 
maximize E) with probability P(∆E) = exp(∆E/T)

• If T is large: ∆E < 0
∆E/T < 0 and very small
exp(∆E/T) close to 1
accept bad move with high probability

• If T is near 0: ∆E < 0
∆E/T < 0 and very large
exp(∆E/T) close to 0
accept bad move with low probability



CS 561,  Session 7 37

Note on simulated annealing: limit cases

• Boltzmann distribution: accept “bad move” with ∆E<0 (goal is to 
maximize E) with probability P(∆E) = exp(∆E/T)

• If T is large: ∆E < 0
∆E/T < 0 and very small
exp(∆E/T) close to 1
accept bad move with high probability

• If T is near 0: ∆E < 0
∆E/T < 0 and very large
exp(∆E/T) close to 0
accept bad move with low probability

Random walk

Deterministic
down-hill
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Summary

• Best-first search = general search, where the minimum-cost nodes 
(according to some measure) are expanded first.

• Greedy search = best-first with the estimated cost to reach the goal 
as a heuristic measure.

- Generally faster than uninformed search
- not optimal
- not complete.

• A* search = best-first with measure = path cost so far + estimated 
path cost to goal.

- combines advantages of uniform-cost and greedy searches
- complete, optimal and optimally efficient
- space complexity still exponential
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Summary

• Time complexity of heuristic algorithms depend on quality of 
heuristic function.  Good heuristics can sometimes be constructed 
by examining the problem definition or by generalizing from 
experience with the problem class.

• Iterative improvement algorithms keep only a single state in 
memory.

• Can get stuck in local extrema; simulated annealing provides a way 
to escape local extrema, and is complete and optimal given a slow 
enough cooling schedule.


