
CS 561, Session 30 1

Overview and summary

We have discussed…

- What AI and intelligent agents are
- How to develop AI systems
- How to solve problems using search
- How to play games as an application/extension of search
- How to build basic agents that reason logically,

using propositional logic
- How to write more powerful logic statements with first-order logic
- How to properly engineer a knowledge base
- How to reason logically using first-order logic inference
- Examples of logical reasoning systems, such as theorem provers
- How to plan
- Expert systems
- Reasoning under uncertainty, and also under fuzzyness
- What challenges remain

CS 561, Session 30 2

Acting Humanly: The Turing Test

• Alan Turing's 1950 article Computing Machinery and
Intelligence discussed conditions for considering a
machine to be intelligent
• “Can machines think?” ←→ “Can machines behave intelligently?”
• The Turing test (The Imitation Game): Operational definition of

intelligence.

• Computer needs to posses: Natural language processing,
Knowledge representation, Automated reasoning, and Machine
learning

CS 561, Session 30 3

What would a computer need to pass the Turing test?

• Natural language processing: to communicate with examiner.
• Knowledge representation: to store and retrieve information

provided before or during interrogation.
• Automated reasoning: to use the stored information to answer

questions and to draw new conclusions.
• Machine learning: to adapt to new circumstances and to detect and

extrapolate patterns.
• Vision (for Total Turing test): to recognize the examiner’s actions

and various objects presented by the examiner.
• Motor control (total test): to act upon objects as requested.
• Other senses (total test): such as audition, smell, touch, etc.

CS 561, Session 30 4

What would a computer need to pass the Turing test?

• Natural language processing: to communicate with examiner.
• Knowledge representation: to store and retrieve information

provided before or during interrogation.
• Automated reasoning: to use the stored information to answer

questions and to draw new conclusions.
• Machine learning: to adapt to new circumstances and to detect and

extrapolate patterns.
• Vision (for Total Turing test): to recognize the examiner’s actions

and various objects presented by the examiner.
• Motor control (total test): to act upon objects as requested.
• Other senses (total test): such as audition, smell, touch, etc.

Core of the problem,

Main focus of 561

CS 561, Session 30 5

What is an (Intelligent) Agent?

• Anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through its
effectors to maximize progress towards its goals.

• PAGE (Percepts, Actions, Goals, Environment)

• Task-specific & specialized: well-defined goals and environment

CS 561, Session 30 6

Environment types

Mars

Office
Environment

Virtual Reality

Operating
System

DiscreteStaticEpisodicDeterministicAccessibleEnvironment

CS 561, Session 30 7

Environment types

NoSemiNoSemiNoMars

NoNoNoNoNoOffice
Environment

Yes/NoNoYes/NoYesYesVirtual Reality

YesNoNoYesYesOperating
System

DiscreteStaticEpisodicDeterministicAccessibleEnvironment

The environment types largely determine the agent design.

CS 561, Session 30 8

Agent types

• Reflex agents
• Reflex agents with internal states
• Goal-based agents
• Utility-based agents

CS 561, Session 30 9

Reflex agents

CS 561, Session 30 10

Reflex agents w/ state

CS 561, Session 30 11

Goal-based agents

CS 561, Session 30 12

Utility-based agents

CS 561, Session 30 13

How can we design & implement agents?

• Need to study knowledge representation and reasoning algorithms

• Getting started with simple cases: search, game playing

CS 561, Session 30 14

Problem-Solving Agent

Note: This is offline problem-solving. Online problem-solving involves
acting w/o complete knowledge of the problem and environment

tion

CS 561, Session 30 15

Problem types

• Single-state problem: deterministic, accessible
Agent knows everything about world, thus can
calculate optimal action sequence to reach goal state.

• Multiple-state problem: deterministic, inaccessible
Agent must reason about sequences of actions and
states assumed while working towards goal state.

• Contingency problem: nondeterministic, inaccessible
• Must use sensors during execution
• Solution is a tree or policy
• Often interleave search and execution

• Exploration problem: unknown state space
Discover and learn about environment while taking actions.

CS 561, Session 30 16

Search algorithms

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Basic idea:

offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

CS 561, Session 30 17

Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes � make-queue(make-node(initial-state[problem]))
loop do

if node is empty then return failure
node � Remove-Front(nodes)
if Goal-Test[problem] applied to State(node) succeeds then return node
nodes � Queuing-Fn(nodes, Expand(node, Operators[problem]))

end

Queuing-Fn(queue, elements) is a queuing function that inserts a set
of elements into the queue and determines the order of node expansion.
Varieties of the queuing function produce varieties of the search algorithm.

Solution: is a sequence of operators that bring you from current state to
the goal state.

CS 561, Session 30 18

Encapsulating state information in nodes

CS 561, Session 30 19

Complexity

• Why worry about complexity of algorithms?

� because a problem may be solvable in principle but may take too
long to solve in practice

• How can we evaluate the complexity of algorithms?

� through asymptotic analysis, i.e., estimate time (or number of
operations) necessary to solve an instance of size n of a problem
when n tends towards infinity

CS 561, Session 30 20

Why is exponential complexity “hard”?

It means that the number of operations necessary to compute the exact
solution of the problem grows exponentially with the size of the problem
(here, the number of cities).

• exp(1) = 2.72

• exp(10) = 2.20 104 (daily salesman trip)

• exp(100) = 2.69 1043 (monthly salesman planning)

• exp(500) = 1.40 10217 (music band worldwide tour)

• exp(250,000) = 10108,573 (fedex, postal services)

• Fastest computer = 1012 operations/second

In general, exponential-complexity problems cannot be solved for any
but the smallest instances!

CS 561, Session 30 21

Landau symbols

0
)(
)()()(,)(→≤

∞→∞→
⇔∀⇔∈

nn ng
nfnkgnfkgof

g
fnkgnfkgOf

n
⇔∃⇔∈ ≤

∞→
)()(,)(is bounded

f is dominated by g:

f is negligible compared to g:

CS 561, Session 30 22

Polynomial-time hierarchy

• From Handbook of Brain
Theory & Neural Networks
(Arbib, ed.;
MIT Press 1995).

AC0 NC1 NC P complete NP complete

P
NP

PH

AC0: can be solved using gates of constant depth
NC1: can be solved in logarithmic depth using 2-input gates
NC: can be solved by small, fast parallel computer
P: can be solved in polynomial time
P-complete: hardest problems in P; if one of them can be proven to be

NC, then P = NC
NP: non-polynomial algorithms
NP-complete: hardest NP problems; if one of them can be proven to be

P, then NP = P
PH: polynomial-time hierarchy

CS 561, Session 30 23

Search strategies

Uninformed: Use only information available in the problem formulation
• Breadth-first – expand shallowest node first; successors at end of queue
• Uniform-cost – expand least-cost node; order queue by path cost
• Depth-first – expand deepest node first; successors at front of queue
• Depth-limited – depth-first with limit on node depth
• Iterative deepening – iteratively increase depth limit in depth-limited search

Informed: Use heuristics to guide the search
• Greedy search – queue first nodes that maximize heuristic “desirability”

based on estimated path cost from current node to goal
• A* search – queue first nodes that minimize sum of path cost so far and

estimated path cost to goal

Iterative Improvement: Progressively improve single current state
• Hill climbing
• Simulated annealing

CS 561, Session 30 24

Search strategies

Uninformed: Use only information available in the problem formulation
• Breadth-first – expand shallowest node first; successors at end of queue
• Uniform-cost – expand least-cost node; order queue by path cost
• Depth-first – expand deepest node first; successors at front of queue
• Depth-limited – depth-first with limit on node depth
• Iterative deepening – iteratively increase depth limit in depth-limited search

Informed: Use heuristics to guide the search
• Greedy search – queue first nodes that maximize heuristic “desirability”

based on estimated path cost from current node to goal
• A* search – queue first nodes that minimize sum of path cost so far and

estimated path cost to goal

Iterative Improvement: Progressively improve single current state
• Hill climbing – select successor with highest “value”
• Simulated annealing – may accept successors with lower value, to escape

local optima

CS 561, Session 30 25

Example: Traveling from Arad To Bucharest

CS 561, Session 30 26

Breadth-first search

CS 561, Session 30 27

Breadth-first search

CS 561, Session 30 28

Breadth-first search

CS 561, Session 30 29

Uniform-cost search

CS 561, Session 30 30

Uniform-cost search

CS 561, Session 30 31

Uniform-cost search

CS 561, Session 30 32

Depth-first search

CS 561, Session 30 33

Depth-first search

CS 561, Session 30 34

Depth-first search

CS 561, Session 30 35

CS 561, Session 30 36

CS 561, Session 30 37

CS 561, Session 30 38

CS 561, Session 30 39

CS 561, Session 30 40

CS 561, Session 30 41

CS 561, Session 30 42

CS 561, Session 30 43

Informed search: Best-first search

• Idea:
use an evaluation function for each node; estimate of “desirability”

� expand most desirable unexpanded node.

• Implementation:

QueueingFn = insert successors in decreasing order of desirability

• Special cases:
greedy search
A* search

CS 561, Session 30 44

Greedy search

• Estimation function:
h(n) = estimate of cost from n to goal (heuristic)

• For example:
hSLD(n) = straight-line distance from n to Bucharest

• Greedy search expands first the node that appears to be closest to
the goal, according to h(n).

CS 561, Session 30 45

A* search

• Idea: avoid expanding paths that are already expensive

evaluation function: f(n) = g(n) + h(n) with:
g(n) – cost so far to reach n
h(n) – estimated cost to goal from n
f(n) – estimated total cost of path through n to goal

• A* search uses an admissible heuristic, that is,
h(n) ≤ h*(n) where h*(n) is the true cost from n.

For example: hSLD(n) never overestimates actual road distance.

• Theorem: A* search is optimal

CS 561, Session 30 46

Comparing uninformed search strategies

Criterion Breadth- Uniform Depth- Depth- Iterative Bidirectional
first cost first limited deepening (if applicable)

Time b^d b^d b^m b^l b^d b^(d/2)

Space b^d b^d bm bl bd b^(d/2)

Optimal? Yes Yes No No Yes Yes

Complete? Yes Yes No Yes if l≥d Yes Yes

• b – max branching factor of the search tree
• d – depth of the least-cost solution
• m – max depth of the state-space (may be infinity)
• l – depth cutoff

CS 561, Session 30 47

Comparing uninformed search strategies

Criterion Greedy A*

Time b^m (at worst) b^m (at worst)

Space b^m (at worst) b^m (at worst)

Optimal? No Yes

Complete? No Yes

• b – max branching factor of the search tree
• d – depth of the least-cost solution
• m – max depth of the state-space (may be infinity)
• l – depth cutoff

CS 561, Session 30 48

Iterative improvement

• In many optimization problems, path is irrelevant;
the goal state itself is the solution.

• In such cases, can use iterative improvement algorithms: keep a
single “current” state, and try to improve it.

CS 561, Session 30 49

Hill climbing (or gradient ascent/descent)

• Iteratively maximize “value” of current state, by replacing it by
successor state that has highest value, as long as possible.

CS 561, Session 30 50

Simulated Annealing

B

C

A
Attraction for C

D

E

h

Consider how one might get a ball-bearing traveling along the curve to
"probably end up" in the deepest minimum. The idea is to shake the
box "about h hard" — then the ball is more likely to go from D to C
than from C to D. So, on average, the ball should end up in C's
valley.

CS 561, Session 30 51

Simulated annealing algorithm

• Idea: Escape local extrema by allowing “bad moves,” but gradually
decrease their size and frequency.

Note: goal here is to
maximize E.-

CS 561, Session 30 52

Note on simulated annealing: limit cases

• Boltzmann distribution: accept “bad move” with ∆E<0 (goal is to
maximize E) with probability P(∆E) = exp(∆E/T)

• If T is large: ∆E < 0
∆E/T < 0 and very small
exp(∆E/T) close to 1
accept bad move with high probability

• If T is near 0: ∆E < 0
∆E/T < 0 and very large
exp(∆E/T) close to 0
accept bad move with low probability

Random walk

Deterministic
down-hill

CS 561, Session 30 53

The GA Cycle

CS 561, Session 30 54

Is search applicable to game playing?

• Abstraction: To describe a game we must capture every relevant
aspect of the game. Such as:
• Chess
• Tic-tac-toe
• …

• Accessible environments: Such games are characterized by
perfect information

• Search: game-playing then consists of a search through possible
game positions

• Unpredictable opponent: introduces uncertainty thus game-
playing must deal with contingency problems

CS 561, Session 30 55

Searching for the next move

• Complexity: many games have a huge search space
• Chess: b = 35, m=100 ���� nodes = 35 100

if each node takes about 1 ns to explore
then each move will take about 10 50 millennia
to calculate.

• Resource (e.g., time, memory) limit: optimal solution not
feasible/possible, thus must approximate

1. Pruning: makes the search more efficient by discarding portions
of the search tree that cannot improve quality result.

2. Evaluation functions: heuristics to evaluate utility of a state
without exhaustive search.

CS 561, Session 30 56

The minimax algorithm

• Perfect play for deterministic environments with perfect information
• Basic idea: choose move with highest minimax value

= best achievable payoff against best play
• Algorithm:

1. Generate game tree completely
2. Determine utility of each terminal state
3. Propagate the utility values upward in the three by applying MIN and

MAX operators on the nodes in the current level
4. At the root node use minimax decision to select the move with the

max (of the min) utility value

• Steps 2 and 3 in the algorithm assume that the opponent will play
perfectly.

CS 561, Session 30 57

minimax = maximum of the minimum

1st ply

2nd ply

CS 561, Session 30 58

αααα-ββββ pruning: search cutoff

• Pruning: eliminating a branch of the search tree from
consideration without exhaustive examination of each node

• αααα-ββββ pruning: the basic idea is to prune portions of the search tree
that cannot improve the utility value of the max or min node, by
just considering the values of nodes seen so far.

• Does it work? Yes, in roughly cuts the branching factor from b to
√b resulting in double as far look-ahead than pure minimax

• Important note: pruning does NOT affect the final result!

CS 561, Session 30 59

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8

MIN

CS 561, Session 30 60

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2MIN

CS 561, Session 30 61

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2

5

≤≤≤≤ 5MIN

CS 561, Session 30 62

αααα-ββββ pruning: example

≥≥≥≥ 6

6

MAX

6 12 8 2

≤≤≤≤ 2

5

≤≤≤≤ 5MIN

Selected move

CS 561, Session 30 63

Nondeterministic games: the element of chance

3 ?

0.50.5

817

8

?

CHANCE ?

expectimax and expectimin, expected values over all possible outcomes

CS 561, Session 30 64

Nondeterministic games: the element of chance

3 5
0.50.5

817

8

5

CHANCE 4 = 0.5*3 + 0.5*5Expectimax

Expectimin

CS 561, Session 30 65

Summary on games

CS 561, Session 30 66

Knowledge-Based Agent

• Agent that uses prior or acquired
knowledge to achieve its goals
• Can make more efficient decisions
• Can make informed decisions

• Knowledge Base (KB): contains a set of
representations of facts about the
Agent’s environment

• Each representation is called a
sentence

• Use some knowledge representation
language, to TELL it what to know
e.g., (temperature 72F)

• ASK agent to query what to do
• Agent can use inference to deduce new

facts from TELLed facts

Knowledge Base

Inference engine

Domain independent algorithms

Domain specific content

TELL

ASK

CS 561, Session 30 67

Generic knowledge-based agent

1. TELL KB what was perceived
Uses a KRL to insert new sentences, representations of facts, into KB

2. ASK KB what to do.
Uses logical reasoning to examine actions and select best.

CS 561, Session 30 68

Logic in general

CS 561, Session 30 69

Types of logic

CS 561, Session 30 70

Entailment

CS 561, Session 30 71

Inference

CS 561, Session 30 72

Validity and satisfiability

Theorem

CS 561, Session 30 73

Propositional logic: semantics

CS 561, Session 30 74

Propositional inference: normal forms

“sum of products of
simple variables or
negated simple variables”

“product of sums of
simple variables or
negated simple variables”

CS 561, Session 30 75

Proof methods

CS 561, Session 30 76

Inference
rules

CS 561, Session 30 77

Limitations of Propositional Logic

1. It is too weak, i.e., has very limited expressiveness:
• Each rule has to be represented for each situation:

e.g., “don’t go forward if the wumpus is in front of you” takes 64 rules

2. It cannot keep track of changes:
• If one needs to track changes, e.g., where the agent has been before then

we need a timed-version of each rule. To track 100 steps we’ll then need
6400 rules for the previous example.

Its hard to write and maintain such a huge rule-base
Inference becomes intractable

CS 561, Session 30 78

First-order logic (FOL)

• Ontological commitments:
• Objects: wheel, door, body, engine, seat, car, passenger, driver
• Relations: Inside(car, passenger), Beside(driver, passenger)
• Functions: ColorOf(car)
• Properties: Color(car), IsOpen(door), IsOn(engine)

• Functions are relations with single value for each object

CS 561, Session 30 79

Universal quantification (for all): ∀

∀∀∀∀ <variables> <sentence>
• “Every one in the 561a class is smart”:

∀∀∀∀ x In(561a, x) ���� Smart(x)
• ∀∀∀∀ P corresponds to the conjunction of instantiations of P

In(561a, Manos) ���� Smart(Manos) ∧∧∧∧
In(561a, Dan) ���� Smart(Dan) ∧∧∧∧
…
In(561a, Clinton) ���� Smart(Mike)

• ���� is a natural connective to use with ∀∀∀∀
• Common mistake: to use ∧∧∧∧ in conjunction with ∀∀∀∀

e.g: ∀∀∀∀ x In(561a, x) ∧∧∧∧ Smart(x)
means “every one is in 561a and everyone is smart”

CS 561, Session 30 80

Existential quantification (there exists): ∃

∃∃∃∃ <variables> <sentence>
• “Someone in the 561a class is smart”:

∃∃∃∃ x In(561a, x) ∧∧∧∧ Smart(x)
• ∃∃∃∃ P corresponds to the disjunction of instantiations of P

In(561a, Manos) ∧∧∧∧ Smart(Manos) ∨∨∨∨
In(561a, Dan) ∧∧∧∧ Smart(Dan) ∨∨∨∨
…
In(561a, Clinton) ∧∧∧∧ Smart(Mike)
∧∧∧∧ is a natural connective to use with ∃∃∃∃

• Common mistake: to use ���� in conjunction with ∃∃∃∃
e.g: ∃∃∃∃ x In(561a, x) ���� Smart(x)
is true if there is anyone that is not in 561a!
(remember, false � true is valid).

CS 561, Session 30 81

Properties of quantifiers

CS 561, Session 30 82

Example sentences

• Brothers are siblings

∀∀∀∀ x, y Brother(x, y) � Sibling(x, y)

• Sibling is transitive

∀∀∀∀ x, y, z Sibling(x,y) ∧∧∧∧ Sibling(y,z) � Sibling(x,z)

• One’s mother is one’s sibling’s mother

∀∀∀∀ m, c Mother(m, c) ∧∧∧∧ Sibling(c, d) � Mother(m, d)

• A first cousin is a child of a parent’s sibling

∀∀∀∀ c, d FirstCousin(c, d) ⇔⇔⇔⇔
∃∃∃∃ p, ps Parent(p, d) ∧∧∧∧ Sibling(p, ps) ∧∧∧∧ Parent(ps, c)

CS 561, Session 30 83

Higher-order logic?

• First-order logic allows us to quantify over objects (= the first-order
entities that exist in the world).

• Higher-order logic also allows quantification over relations and
functions.
e.g., “two objects are equal iff all properties applied to them are
equivalent”:

∀ x,y (x=y) ⇔ (∀ p, p(x) ⇔ p(y))

• Higher-order logics are more expressive than first-order; however,
so far we have little understanding on how to effectively reason
with sentences in higher-order logic.

CS 561, Session 30 84

Using the FOL Knowledge Base

CS 561, Session 30 85

Wumpus world, FOL Knowledge Base

CS 561, Session 30 86

Deducing hidden properties

CS 561, Session 30 87

Situation calculus

CS 561, Session 30 88

Describing actions

CS 561, Session 30 89

Describing actions (cont’d)

CS 561, Session 30 90

Planning

CS 561, Session 30 91

Generating action sequences

CS 561, Session 30 92

Summary on FOL

CS 561, Session 30 93

Knowledge Engineer

• Populates KB with facts and relations

• Must study and understand domain to pick important objects and
relationships

• Main steps:
Decide what to talk about
Decide on vocabulary of predicates, functions & constants
Encode general knowledge about domain
Encode description of specific problem instance
Pose queries to inference procedure and get answers

CS 561, Session 30 94

Knowledge engineering vs. programming

Knowledge Engineering Programming

1. Choosing a logic Choosing programming language
2. Building knowledge base Writing program
3. Implementing proof theory Choosing/writing compiler
4. Inferring new facts Running program

Why knowledge engineering rather than programming?
Less work: just specify objects and relationships known to be true, but

leave it to the inference engine to figure out how to solve a problem
using the known facts.

CS 561, Session 30 95

Towards a general ontology

• Develop good representations for:

- categories
- measures
- composite objects
- time, space and change
- events and processes
- physical objects
- substances
- mental objects and beliefs
- …

CS 561, Session 30 96

Inference in First-Order Logic

• Proofs – extend propositional logic inference to deal with quantifiers

• Unification
• Generalized modus ponens
• Forward and backward chaining – inference rules and reasoning

program
• Completeness – Gödel’s theorem: for FOL, any sentence entailed by

another set of sentences can be proved from that set
• Resolution – inference procedure that is complete for any set of

sentences
• Logic programming

CS 561, Session 30 97

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

• Universal Elimination (UE):
for any sentence α, variable x and ground term τ,

∀ x α e.g., from ∀ x Likes(x, Candy) and {x/Joe}
α{x/τ} we can infer Likes(Joe, Candy)

• Existential Elimination (EE):
for any sentence α, variable x and constant symbol k not in KB,

∃ x α e.g., from ∃ x Kill(x, Victim) we can infer
α{x/k} Kill(Murderer, Victim), if Murderer new symbol

• Existential Introduction (EI):
for any sentence α, variable x not in α and ground term g in α,

α e.g., from Likes(Joe, Candy) we can infer
∃ x α{g/x} ∃ x Likes(x, Candy)

CS 561, Session 30 98

Generalized Modus Ponens (GMP)

CS 561, Session 30 99

Forward chaining

CS 561, Session 30 100

Backward chaining

CS 561, Session 30 101

Resolution

CS 561, Session 30 102

Resolution inference rule

CS 561, Session 30 103

Resolution proof

CS 561, Session 30 104

Logical reasoning systems

• Theorem provers and logic programming languages

• Production systems

• Frame systems and semantic networks

• Description logic systems

CS 561, Session 30 105

Logical reasoning systems

• Theorem provers and logic programming languages – Provers: use
resolution to prove sentences in full FOL. Languages: use backward
chaining on restricted set of FOL constructs.

• Production systems – based on implications, with consequents
interpreted as action (e.g., insertion & deletion in KB). Based on
forward chaining + conflict resolution if several possible actions.

• Frame systems and semantic networks – objects as nodes in a
graph, nodes organized as taxonomy, links represent binary
relations.

• Description logic systems – evolved from semantic nets. Reason
with object classes & relations among them.

CS 561, Session 30 106

Membership functions: S-function

• The S-function can be used to define fuzzy sets
• S(x, a, b, c) =

• 0 for x ≤ a
• 2(x-a/c-a)2 for a ≤ x ≤ b
• 1 – 2(x-c/c-a)2 for b ≤ x ≤ c
• 1 for x ≥ c

a b c

CS 561, Session 30 107

Membership functions: ΠΠΠΠ−−−−Function

• Π(x, a, b) =
• S(x, b-a, b-a/2, b) for x ≤ b
• 1 – S(x, b, b+a/2, a+b) for x ≥ b

E.g., close (to a)

b-a b+a/2b-a/2 b+a

a

a

CS 561, Session 30 108

Linguistic Hedges

• Modifying the meaning of a fuzzy set using hedges such as very,
more or less, slightly, etc.

• Very F = F2

• More or less F = F1/2

• etc.

tall

More or less tall
Very tall

CS 561, Session 30 109

Fuzzy set operators

• Equality
A = B
µA (x) = µB (x) for all x ∈ X

• Complement
A’
µA’ (x) = 1 - µA(x) for all x ∈ X

• Containment
A ⊆ B
µA (x) ≤ µB (x) for all x ∈ X

• Union
A ∪ B
µA ∪ B (x) = max(µA (x), µB (x)) for all x ∈ X

• Intersection
A ∩ B
µA ∩ B (x) = min(µA (x), µB (x)) for all x ∈ X

CS 561, Session 30 110

Tip = 16.7 %
Result of defuzzification
(centroid)

Fu
zz

y
in

fe
re

nc
e

ov
er

vi
ew

CS 561, Session 30 111

What we have so far

• Can TELL KB about new percepts about the world

• KB maintains model of the current world state

• Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent,

i.e., an agent that constructs plans that can achieve its goals, and that
then executes these plans?

CS 561, Session 30 112

Search vs. planning

CS 561, Session 30 113

Types of planners

• Situation space planner: search through possible situations

• Progression planner: start with initial state, apply operators until
goal is reached

Problem: high branching factor!

• Regression planner: start from goal state and apply operators until
start state reached

Why desirable? usually many more operators are applicable to
initial state than to goal state.
Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner

CS 561, Session 30 114

A Simple Planning Agent

function SIMPLE-PLANNING-AGENT(percept) returns an action
static: KB, a knowledge base (includes action descriptions)

p, a plan (initially, NoPlan)
t, a time counter (initially 0)

local variables:G, a goal
current, a current state description

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current ← STATE-DESCRIPTION(KB, t)
if p = NoPlan then

G ← ASK(KB, MAKE-GOAL-QUERY(t))
p ← IDEAL-PLANNER(current, G, KB)

if p = NoPlan or p is empty then
action ← NoOp

else
action ← FIRST(p)
p ← REST(p)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t ← t+1
return action

CS 561, Session 30 115

STRIPS operators

Graphical notation:

CS 561, Session 30 116

Partially ordered plans

CS 561, Session 30 117

Plan

We formally define a plan as a data structure consisting of:

• Set of plan steps (each is an operator for the problem)

• Set of step ordering constraints

e.g., A � B means “A before B”

• Set of variable binding constraints

e.g., v = x where v variable and x constant or other variable

• Set of causal links

e.g., A B means “A achieves c for B”c

CS 561, Session 30 118

POP algorithm sketch

CS 561, Session 30 119

POP algorithm (cont.)

CS 561, Session 30 120

• A McCulloch-Pitts neuron operates on a discrete
time-scale, t = 0,1,2,3, ... with time tick equal to
one refractory period

• At each time step, an input or output is

on or off — 1 or 0, respectively.

• Each connection or synapse from the output of one neuron to the
input of another, has an attached weight.

Warren McCulloch and Walter Pitts (1943)

x (t)1

x (t)n

x (t)2

y(t+1)

w1

2

n

w

w

axonθθθθ

CS 561, Session 30 121

Multi-layer Perceptron Classifier

CS 561, Session 30 122

Bayes’ rule

CS 561, Session 30 123

Example

CS 561, Session 30 124

Markov blanket

CS 561, Session 30 125

Some problems remain…

• Vision
• Audition / speech processing
• Natural language processing
• Touch, smell, balance and other senses
• Motor control

They are extensively studied in other courses.

CS 561, Session 30 126

Computer Perception

• Perception: provides an agent information about its environment.
Generates feedback. Usually proceeds in the following steps.

1. Sensors: hardware that provides raw measurements of properties
of the environment
1. Ultrasonic Sensor/Sonar: provides distance data
2. Light detectors: provide data about intensity of light
3. Camera: generates a picture of the environment

2. Signal processing: to process the raw sensor data in order to
extract certain features, e.g., color, shape, distance, velocity, etc.

3. Object recognition: Combines features to form a model of an
object

4. And so on to higher abstraction levels

CS 561, Session 30 127

Perception for what?

• Interaction with the environment, e.g., manipulation, navigation
• Process control, e.g., temperature control
• Quality control, e.g., electronics inspection, mechanical parts
• Diagnosis, e.g., diabetes
• Restoration, of e.g., buildings
• Modeling, of e.g., parts, buildings, etc.
• Surveillance, banks, parking lots, etc.
• …
• And much, much more

