Overview and summary

We have discussed...

- What Al and intelligent agents are
- How to develop Al systems
- How to solve problems using search
- How to play games as an application/extension of search
- How to build basic agents that reason logically,
using propositional logic
- How to write more powerful logic statements with first-order logic
- How to properly engineer a knowledge base
- How to reason logically using first-order logic inference
- Examples of logical reasoning systems, such as theorem provers
- How to plan
- Expert systems
- Reasoning under uncertainty, and also under fuzzyness
- What challenges remain
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Acting Humanly: The Turing Test

e Alan Turing's 1950 article Computing Machinery and
Intelligence discussed conditions for considering a
machine to be intelligent
e “Can machines think?” — - “Can machines behave intelligently?”
e The Turing test (The Imitation Game): Operational definition of

Intelligence.
-y e
?J
[

e Computer needs to posses: Natural language processing,
Knowledge representation, Automated reasoning, and Machine
learning

HUMAN
INTERROGATOR
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What would a computer need to pass the Turing test?

e Natural language processing: to communicate with examiner.

e Knowledge representation: to store and retrieve information
provided before or during interrogation.

e Automated reasoning: to use the stored information to answer
guestions and to draw new conclusions.

e Machine learning: to adapt to new circumstances and to detect and
extrapolate patterns.

e Vision (for Total Turing test): to recognize the examiner’s actions
and various objects presented by the examiner.

e Motor control (total test): to act upon objects as requested.
e Other senses (total test): such as audition, smell, touch, etc.
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What is an (Intelligent) Agent?

e Anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through its
effectors to maximize progress towards its goals.

e PAGE (Percepts, Actions, Goals, Environment)

e Task-specific & specialized: well-defined goals and environment
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Environment types

Environment

Accessible

Deterministic

Episodic

Static

Discrete

Operating
System

Virtual Reality

Office
Environment

Mars
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Environment types

Environment Accessible | Deterministic | Episodic | Static Discrete
Operating Yes Yes No No Yes
System

Virtual Reality | Yes Yes Yes/No No Yes/No
Office No No No No No
Environment

Mars No Semi No Semi No

The environment types largely determine the agent design.
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Agent types

e Reflex agents

e Reflex agents with internal states
e Goal-based agents

e Utility-based agents
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Reflex agents
B

What the world
is like now

- : What action |
Condition—action rules should do now
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Reflex agents w/ state
B -

' What the world
How the world evolves

What my actions do

ot : What action |
Condition—action rules e
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Goal-based agents
e —————

' What the world
How the world evolves is [ike Now

' ; What it will be like
What my actions do if I do action A

What action |
should do now
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Utility-based agents
B -

' What the world
How the world evolves

' ; What it will be like
What my actions do ) el T

o: How happy | will be
What action |
should do now
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How can we design & implement agents?

Need to study knowledge representation and reasoning algorithms

Getting started with simple cases: search, game playing
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Problem-Solving Agent

inputs: p, a percept

static: s, an action sequence, initially empty
state, some description of the current world state
¢, a goal, initially null
problem, a problem formmlation

state +— UPDATE-STATE( state, p)

if s is empty then
4+ FORMULATE-GOAL( state)
problem +— FORMULATE-PROBLEM( state, g)
84— SEARCH( problem.)

action+— RECOMMENDATION( 5, stafe)

5 +— REMAINDER( s, state)

return action

function SIMPLE-PROBLEM-SOLVING-AGENT( p) returns an action

Note: Thisis offline problem-solving. Online problem-solving involves
acting w/o complete knowledge of the problem and environment

CS 561, Session 30
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Problem types

e Single-state problem: deterministic, accessible
Agent knows everything about world, thus can
calculate optimal action sequence to reach goal state.

e Multiple-state problem: deterministic, inaccessible

Agent must reason about sequences of actions and
States assumed while working towards goal state.

e Contingency problem: nondeterministic, inaccessible
e Must use sensors during execution
e Solution is a tree or policy
e Often interleave search and execution

e EXxploration problem: unknown state space

Discover and learn about environment while taking actions.
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Search algorithms

Basic idea:

offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem

loop do
If there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end
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Implementation of search algorithms

Function General-Search(problem, Queuing-Fn) returns a solution, or failure
nodes < make-queue(make-node(initial-state[problem]))
loop do
If node is empty then return failure
node < Remove-Front(nodes)
If Goal-Test[problem] applied to State(node) succeeds then return node

nodes < Queuing-Fn(nodes, Expand(node, Operators[problem]))
end

Queuing-Fn(gueue, elements) is a queuing function that inserts a set
of elements into the queue and determines the order of node expansion.
Varieties of the queuing function produce varieties of the search algorithm.

Solution: is a sequence of operators that bring you from current state to
the goal state.
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Encapsulating state information in nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

parent
State || 2 4 Node depth =6
g=6
6 1 8
- tata
7 3 2 5 4 b
children

The ExrAND function creates new nodes, filling in the various fields and
using the OPERATORS (or SUCCESSORFN) of the problem to create the
corresponding states.
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Complexity

 Why worry about complexity of algorithms?

» because a problem may be solvable in principle but may take too
long to solve in practice

e How can we evaluate the complexity of algorithms?

» through asymptotic analysis, i.e., estimate time (or number of
operations) necessary to solve an instance of size n of a problem
when 1 tends towards infinity
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Why is exponential complexity “hard”?

It means that the number of operations necessary to compute the exact
solution of the problem grows exponentially with the size of the problem
(here, the number of cities).

e exp(l) =2.72

e exp(10) = 2.20 104 (daily salesman trip)

e exp(100) = 2.69 10%3 (monthly salesman planning)
e exp(500) = 1.40 10%Y/ (music band worldwide tour)
e exp(250,000) = 10108573 (fedex, postal services)

e Fastest computer = 1012 gperations/second

In general, exponential-complexity problems cannot be solved for any
but the smallest instances!
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Landau symbols

f Is dominated by qg:

f

O(9g) =

K, f(n) < kg(n) = —- is bounded
= 0

N - oo

f Is negligible compared to g:

f

o(g) =

() < kg(n) =
g(n) n_%
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Polynomial-time hierarchy

e From Handbook of Brain
Theory & Neural Networks
(Arbib, ed.;

MIT Press 1995).

NC! ) NC P complete NP complete

ACY: can be solved using gates of constant depth

NC!: can be solved in logarithmic depth using 2-input gates

NC: can be solved by small, fast parallel computer

P: can be solved in polynomial time

P-complete: hardest problems in P; if one of them can be proven to be
NC, then P = NC

NP: non-polynomial algorithms

NP-complete: hardest NP problems; if one of them can be proven to be
P, then NP =P

PH: polynomial-time hierarchy
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Search strategies

Uninformed: Use only information available in the problem formulation
e Breadth-first
e Uniform-cost
e Depth-first
e Depth-limited
e lterative deepening

Informed: Use heuristics to guide the search
e Greedy search

e A* search

Iterative Improvement: Progressively improve single current state
e Hill climbing
e Simulated annealing
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Search strategies

Uninformed: Use only information available in the problem formulation
e Breadth-first — expand shallowest node first; successors at end of queue
e Uniform-cost — expand least-cost node; order queue by path cost
 Depth-first — expand deepest node first; successors at front of queue
e Depth-limited — depth-first with limit on node depth
e lterative deepening — iteratively increase depth limit in depth-limited search

Informed: Use heuristics to guide the search

e Greedy search — queue first nodes that maximize heuristic “desirability”
based on estimated path cost from current node to goal

e A* search — queue first nodes that minimize sum of path cost so far and
estimated path cost to goal

Iterative Improvement: Progressively improve single current state
e Hill climbing — select successor with highest “value”

e Simulated annealing — may accept successors with lower value, to escape

local optima CS 561, Session 30 24



Example: Traveling from Arad To Bucharest

I:I Vaslui

Timisoara

Lugoj

Mehadia

Hirsova
Urzicani

Craiova Eforie
Giurgiu

Dobreta
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Breadth-first search

26
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Breadth-first search

mits:Dara

Siliu

radaa

-
]

Arad

27
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Breadth-first search

Arad Luga

Sl ]
Vilces

ragaras

radaa

-
]

radaa

-
]

Arad
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Uniform-cost search

Timisoara

CS 561, Session 30
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Uniform-cost search

Sgatatoe
T 140
A
SPSI,
ThH T T
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Uniform-cost search

SRS,
o
75 140 15
SR, IR
(oesdsi (sou ) PR
RSLLSSEDS Setatatatry
Th T B
Arad Oradaa Arad Luga

CS 561, Session 30 31



Depth-first search
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Depth-first search
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Depth-first search

KSR
yratatatey!
Ry -
ﬁt*ttﬂhﬁ Sihiu Tirmisoara
S Pataba® 2!
e,
R Tatatatr el

l.e., depth-first search can perform infinite cyclic excursions

Need a finite, non-cyclic search space (or repeated-state checking)
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Informed search: Best-first search

e ldea:
use an evaluation function for each node; estimate of “desirability”

— expand most desirable unexpanded node.
e Implementation:

QueueingFn = insert successors in decreasing order of desirability

e Special cases:
greedy search
A* search
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Greedy search

Estimation function:
h(n) = estimate of cost from n to goal (heuristic)

For example:
hs, ,(n) = straight-line distance from 77 to Bucharest

Greedy search expands first the node that appears to be closest to
the goal, according to A(n).
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A* search

e |dea: avoid expanding paths that are already expensive

evaluation function: 7(n) = g(n) + h(n) with:
g(n) — cost so far to reach n
h(n) — estimated cost to goal from n
f(n) — estimated total cost of path through » to goal

e A* search uses an admissible heuristic, that is,
h(n) < h*(n) where h*(n) is the true cost from n.

For example: A, (1) never overestimates actual road distance.

e Theorem: A* search is optimal
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Comparing uninformed search strategies

Criterion Breadth- Uniform Depth- Depth- Iterative Bidirectional
first cost first limited deepening (if applicable)

Time bNd bNd b~ m b bNd b~ (d/2)

Space bNd b™Nd bm bl bd b (d/2)

Optimal? Yes Yes No No Yes Yes

Complete? Yes Yes No Yesifl=d Yes Yes

e b — max branching factor of the search tree

d — depth of the least-cost solution

e m —max depth of the state-space (may be infinity)
/ — depth cutoff
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Comparing uninformed search strategies

Criterion Greedy A*

Time b~ m (at worst) b~*m (at worst)
Space b~ m (at worst) b~m (at worst)
Optimal? No Yes

Complete? No Yes

e b — max branching factor of the search tree

d — depth of the least-cost solution

e m —max depth of the state-space (may be infinity)
/ — depth cutoff
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Iterative improvement

e In many optimization problems, path is irrelevant;
the goal state itself is the solution.

e In such cases, can use iterative improvement algorithms: keep a
single “current” state, and try to improve it.

CS 561, Session 30
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Hill climbing (or gradient ascent/descent)

e lteratively maximize “value” of current state, by replacing it by
successor state that has highest value, as long as possible.

“Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING( problem) returns a solution state
inputs: problem, a problem
local variables: current. a node
next, a node

current <+ MAKE-NODE(INITIAL-STATE[problem])

loop do
next 4 a highest-valued successor of current
if VALvgnext] < VArvg[current] then return current
current 4— nert

end

CS 561, Session 30
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Simulated Annealing

C

Consider how one might get a ball-bearing traveling along the curve to
"probably end up” in the deepest minimum. The idea is to shake the
box "about h hard" — then the ball is more likely to go from D to C
than from C to D. So, on average, the ball should end up in C's

valley.
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Simulated annealing algorithm

e ldea: Escape local extrema by allowing “bad moves,” but gradually
decrease their size and frequency.

function SIMULATED- ANNEALING( problem, schedule) returns a solution state
inputs: problemn, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node

nexf, a node
T a “temperature” controlling the probability of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t+— 1 to oc do
T+ schedulelt]
if 7=0 then return current
next < a randomly selected successor of current Note: goa| here iIs to
A F+ VALUE[next] = VALUE[ current] .
if AF > 0 then current &« next maximize E.
else current<— next only with probability AEIT
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Note on simulated annealing: limit cases

e Boltzmann distribution: accept “bad move” with AE<O (goal is to
maximize E) with probability P(AE) = exp(AE/T)

e If Tislarge: AE <O

AE/T < 0 and very small

exXp(AE/T) close to 1

accept bad move with high probability

Random walk

e |fTis near O: AE <O

AE/T < 0 and very large

eXp(AE/T) close to O

accept bad move with low probability

Deterministic

down-hill
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The GA Cycle




Is search applicable to game playing?

e Abstraction: To describe a game we must capture every relevant
aspect of the game. Such as:
e Chess
e Tic-tac-toe

e Accessible environments: Such games are characterized by
perfect information

e Search: game-playing then consists of a search through possible
game positions

e Unpredictable opponent: introduces uncertainty thus game-
playing must deal with contingency problems
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Searching for the next move

1.

2.

Complexity: many games have a huge search space

e Chess: b =35 m=100 = nodes = 35 100
if each node takes about 1 ns to explore
then each move will take about 20 Y millennia
to calculate.

Resource (e.qg., time, memory) limit: optimal solution not
feasible/possible, thus must approximate

makes the search more efficient by discarding portions
of the search tree that cannot improve quality result.

heuristics to evaluate utility of a state
without exhaustive search.

CS 561, Session 30
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The minimax algorithm

e Perfect play for deterministic environments with perfect information

e Basic idea: choose move with highest minimax value
= best achievable payoff against best play
e Algorithm:
1. Generate game tree completely
2. Determine utility of each terminal state

3. Propagate the utility values upward in the three by applying MIN and
MAX operators on the nodes in the current level

4. At the root node use minimax decision to select the move with the
max (of the min) utility value

e Steps 2 and 3 in the algorithm assume that the opponent will play
perfectly.
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minimax = maximum of the minimum

MAX

MIN
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a-Fpruning: search cutoff

e Pruning: eliminating a branch of the search tree from
consideration without exhaustive examination of each node

e a-fpruning: the basic idea is to prune portions of the search tree
that cannot improve the utility value of the max or min node, by
just considering the values of nodes seen so far.

e Does it work? Yes, in roughly cuts the branching factor from b to
Vb resulting in double as far look-ahead than pure minimax

e Important note: pruning does NOT affect the final result!
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a-Fpruning: example

MAX

MIN 5

CS 561, Session 30
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a-Fpruning: example

>0

MAX
MIN 6 <?
X X
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a-Fpruning: example

MAX

MIN
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a-Fpruning: example

>6
MAX
Selected move
_— e
MIN 6 <2 <5
X X D 4 D 4
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Nondeterministic games: the element of chance

expectimax and expectimin, expected values over all possible outcomes

CHANCE O »
0.5 0.5
MAX A\ 3 [\ ?
CHANCE SO (-1 ? O (-1
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MIN 2N/ a4\ / 0N/ -2/ 2/ 8 Y\/ oY/ -2V
4 4 . 0 - 4 17 8 . 0 —
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Nondeterministic games: the element of chance

0.5 0.5

MAX A\ 3 A 5

Expectimin 3 () @ =1 5 () () =1

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MIN 2N/ a4\ / 0N/ -2/ 2/ 8 Y\/ oY/ -2V

4 4d b6 D - 4 17 8 6 O —
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Summary on games

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

{» perfection is unattainable = must approximate

{ good idea to think about what to think about

{) uncertainty constrains the assignment of values to states

Games are to Al as grand prix racing is to automobile design
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Knowledge-Based Agent

e Agent that uses prior or acquired
knowledge to achieve its goals

e Can make more efficient decisions

Domain independent algorithms = Can make informed decisions
e« Knowledge Base (KB): contains a set of
\ representations of facts about the

Agent’s environment

ASK «——  Inference engine  Each representation is called a

sentence
TELL——» KnowledgeBese  Use some knowledge representation
/ language, to TELL it what to know
e.g., (temperature 72F)
Domain specific content « ASK agent to query what to do

e Agent can use inference to deduce new
facts from TELLed facts
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Generic knowledge-based agent

function KB-AGENT( percept) returns an action
static: KB, a knowledge base

t, a counter, initially (, indicating tirne

TELL( KB, MAKE-PERCEPT-SENTENCE( percept, t})
action < AsK( KB, MAKE-ACTION-QQUERY (1))
TELL( KB, MAKE- ACTION- SENTENCE( action, t))
t«—t 41

return action

1. TELL KB what was perceived
Uses a KRL to insert new sentences, representations of facts, into KB

2. ASK KB what to do.
Uses logical reasoning to examine actions and select best.

CS 561, Session 30
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Logic in general

Logics are formal languages for representing information
such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the “meaning” of sentences;
i.e., define truth of a sentence in a world

E.g., the language of arithmetic

x+ 2 > g is a sentence; 2 4+ y > 1s not a sentence

x4+ 2 > y is true iff the number x4+ 2 is no less than the number y
x—+2 >4 is true in a world where x=7, y=

1
x+2 >y is false in a world where =0, y=6

CS 561, Session 30
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Types of logic

Logics are characterized by what they commit to as “primitives”

Ontological commitment: what exists—facts? objects? time? beliefs?

Epistemological commitment: what states of knowledge?

Language

Omtological Commitment

Epistemological Commitment

Propositional logic
First-order logic
Temporal logic
Probability theory
Fuzzy logic

facts

facts, objects, relations

facts, objects, relations, times
facts

degree of truth

true /false funknown
true /false funknown
true /false funknown
degree of belief 0...1
degree of belief 0...1

CS 561, Session 30
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Entaillment

KBEa«a

Knowledge base K B entails sentence ¢
if and only if
« 1s true in all worlds where K'B is true

E.g., the KB containing “the Giants won" and “the Reds won”
entails “Either the Giants won or the Reds won"

CS 561, Session 30
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Inference

KB I; a = sentence « can be derived from K B by procedure ¢

Soundness: ¢ is sound if
whenever KB |; ¢, it is also true that KB E o

Completeness: ¢ is complete if
whenever KB |= ¢, it is also true that KB | «

Preview: we will define a logic (first-order logic) which is expressive
enough to say almost anything of interest, and for which there exists a
sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows
from what is known by the K'B.
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Validity and satisfiability
A sentence is valid if it is true in all models
eg, AV-A, A=A, (AA{A = B) =

Validity is connected to inference via the Deduction Theorem
KB Eaifandonly if (KB = «) is valid

A sentence is satisfiable if it is true in some model
eg., AV B, C

A sentence is unsatisfiable if it is true in no models
eg., AA-A

Satisfiability is connected to inference via the following:
KB | «if and only if (KB A —a) is unsatisfiable
l.e., prove « by reductio ad absurdum

CS 561, Session 30

72



Propositional logic: semantics

Each model specifies true/false for each proposition symbol

Eg A B o
True True False

Rules for evaluating truth with respect to a model m:

=S8 is true iff S is false
S1 A 859 is true iff S is true and S is true
51V 59 is true iff S1 IS true or Sy Is true
S1 = 5y is true iff 51 is false or So IS true
i.e., is false iff 51 is true and Sy is false
S & 5 istrueiff 51 = 55 istrueand S = 57 is true
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Propositional inference: normal forms

Other approaches to inference use syntactic operations on sentences,
often expressed in standardized forms

Conjunctive Normal Form (CNF—universal) “product of sums of

conjunction of disjunctions of literals simple variables or
‘ negated simple variables”

clauses
E.g., (AV-B)A(BV-CV-D)

“sum of products of
simple variables or
negated simple variables”

Disjunctive Normal Form (DNF—universal)
disjunction of conjunctions of literals
terms
Eg, (AAB)V(AA-C)YV(AA-D)V(-BA-C)V (-BA-D)

Horn Form (restricted)
conjunction of Horn clauses (clauses with < 1 positive literal)
Eg., (AV-B)A(BV-CV-D)
Often written as set of implications:
B=> Aand{(CAD) = B




Proof methods

Proof methods divide into (roughly) two kinds:

Model checking
truth table enumeration (sound and complete for propositional)
heuristic search in model space (sound but incomplete)
e.g., the GSAT algorithm (Ex. 5.15)

Application of inference rules
Legitimate (sound) generation of new sentences from old
Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search alg.
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Inference
rules

Modus Ponens or Implication-Elimination: (From an implication and the
premise of the implication, you can infer the conclusion.)

o = 3, (8%
/‘3
And-Elimination: (From a conjunction, you can infer any of the conjuncts.)
AN & AN AN

Xy

And-Introduction: (From a list of sentences, you can infer their conjunction.)
Ny, o, ..., (¥
SN S AN AN ¢ O
Or-Introduction: (From a sentence, you can infer its disjunction with anything
else at all.)

o
apVar V... Vo,
Double-Negation Elimination: (From a doubly negated sentence, you can infer
a positive sentence.)

v
Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
can infer the other one is true.)

a Vv ,3, -3

/

¥
Resolution: (This is the most difficult. Because 3 cannot be both true and false,
one of the other disjuncts must be true in one of the premises. Or equivalently,
implication is transitive.)
aV 3, =3V - = [, 7 =~

or equivalentl
a V7 4 Y o = Y




Limitations of Propositional Logic

1. It is too weak, i.e., has very limited expressiveness:

Each rule has to be represented for each situation:
e.g., “don’'t go forward if the wumpus is in front of you” takes 64 rules

2. It cannot keep track of changes:

If one needs to track changes, e.g., where the agent has been before then
we need a timed-version of each rule. To track 100 steps we’ll then need
6400 rules for the previous example.

Its hard to write and maintain such a huge rule-base
Inference becomes intractable
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First-order logic (FOL)

e Ontological commitments:

e Objects: wheel, door, body, engine, seat, car, passenger, driver
e Relations: Inside(car, passenger), Beside(driver, passenger)
e Functions: ColorOf(car)

e Properties: Color(car), IsOpen(door), IsOn(engine)

e Functions are relations with single value for each object

CS 561, Session 30
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Universal quantification (for all): L

[0 <variables> <sentence=>

“Every one in the 561a class Is smart’™
O x In(561a, x) = Smart(x)

[0 P corresponds to the conjunction of instantiations of P
In(561a, Manos) = Smart(Manos) []
In(561a, Dan) = Smart(Dan) O

In(561a, Clinton) = Smart(Mike)

= IS a natural connective to use with [

Common mistake: to use Jin conjunction with [
e.g: O x In(561a, x) Smart(x)
means “every one is in 561a and everyone Is smart

7
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Existential quantification (there exists): L

O <variables> <sentence=>

e “Someone in the 561a class is smart™
Ox In(561a, x) O Smart(x)

e [P corresponds to the disjunction of instantiations of P
In(561a, Manos) OO Smart(Manos) O
In(561a, Dan) O Smart(Dan) [

In(561a, Clinton) 0O Smart(Mike)
[1is a natural connective to use with [

e Common mistake: to use = in conjunction with [
e.g: Ox In(561a, X) = Smart(x)
IS true if there is anyone that is not in 561a!

(remember, false = true is valid).

CS 561, Session 30
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Properties of quantifiers

Vz Yy isthesameasVy Vr (why??)
dz dy isthesameasdy Jz (why??)
dx Yy is not the same as Vy da

Jdz Yy Loves(z,y)
“There is a person who loves everyone in the world”

Vy dz Loves(z,y)
“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

Vx Likes(x, IceCream) —-Jdz —Likes(z, IceCream)

Jx Likes(x, Broccoli) -V - Likes(x, Broccoli)
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Example sentences

e Brothers are siblings

O x,y Brother(x, y) = Sibling(x, y)
e Sibling is transitive
0 X, Yy, z Sibling(x,y) O Sibling(y,z) = Sibling(x,z)
e One’s mother is one’s sibling’s mother
O m, c Mother(m, c) OSibling(c, d) = Mother(m, d)

e A first cousin is a child of a parent’s sibling

Oc,d FirstCousin(c, d) <
Op, ps Parent(p, d) O Sibling(p, ps) O Parent(ps, c)

CS 561, Session 30
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Higher-order logic?

First-order logic allows us to quantify over objects (= the first-order
entities that exist in the world).

Higher-order logic also allows quantification over relations and
functions.

e.g., “two objects are equal iff all properties applied to them are
equivalent”:

Oxy (x=y) = (Up, p(x) = py))

Higher-order logics are more expressive than first-order; however,
so far we have little understanding on how to effectively reason
with sentences in higher-order logic.
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Using the FOL Knowledge Base

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢ = 5:

TeLL{ K B, Percept{|Smell, Breeze, Nonel, 5))
ASK(KB,da Action(a,5))

l.e., does the KB entail any particular actions at ¢ = 57
Answer: Yes, {a/Shoot} < substitution (binding list)

Given a sentence S and a substitution o,

So denotes the result of plugging ¢ into S; e.g.,
S = Smarter(z,y)

o = {z/Hillary,y/Bill}

So = Smarter{ Hillary, Bill)

Ask(KB, S) returns some/all ¢ such that KB | So
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Wumpus world, FOL Knowledge Base

“Perception”
Vb,g,t Percept([Smell, b, gl,t) = Smeli(t)
Vs,b,t Percept(|s, b, Glitter],t) = AtGold(t)

Reflex: Vi AtGold(t) = Action{Grab,t)

Reflex with internal state: do we have the gold already?
Vi AtGold(t) A ~Holding(Gold,t) = Action(Grab,t)

Holding{Gold,t) cannot be observed
= keeping track of change is essential
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Deducing hidden properties

Properties of locations:
Vit At(Agent,l,t) A Smelt(t) = Smelly(l)
Vit At{Agent,l,t) A Breeze(t) = Breezy(l)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezy(y) = dx Pit(x) A Adjacent(x,y)

Causal rule—infer effect from cause
Va,y Pit{x) A Adjacenit(z,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Vy Breezy(y) & [z Pit{z) A Adjacent{z, )]
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Situation calculus

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate

E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a is s
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Describing actions

“Effect” axiom—describe changes due to action
Vs AtGold(s) = Holding(Gold, Result{Grab, 3))

“Frame” axiom—describe non-changes due to action
Vs HaveArrow(s) = HaveArrow(Result(Grab, s))

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless
caveats—what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, ...
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Describing actions (cont’d)

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):
P true afterwards < [an action made P true

V P true already and no action made P false]

For holding the gold:
Va,s Holding(Gold, Result{a, 3)) &
[{a=Grab A AtGold(s))
V (Holding(Gold, s) A a # Release)]
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Planning

Initial condition in KB:
At(Agent, [1,1], So)
At(Gold, [1,2], Sp)

Query: Ask(K B,ds Holding(Gold, s))
i.e., in what situation will | be holding the gold?

Answer: {s/Result(Grab, Result{ Forward, 5))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at Sy and
that &g is the only situation described in the KB
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Generating action sequences

Represent plans as action sequences [a1,as,. . ., a4
PlanResult(p, s) is the result of executing p in s

Then the query Ask(K B,3p Holding(Gold, PlanResult(p, Sp)))
has the solution {p/[Forward, Grab]}

Definition of PlanResult in terms of Result:
Vs PlanResult([],s) = s
Va,p,s PlanResult(|a|p],s) = PlanResult(p, Result(a, s))

Planning systems are special-purpose reasoners designed to do this type
of inference more efficiently than a general-purpose reasoner
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Summary on FOL

First-order logic:
— objects and relations are semantic primitives
— syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
— conventions for describing actions and change in FOL
— can formulate planning as inference on a situation calculus KB
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Knowledge Engineer

e Populates KB with facts and relations

e Must study and understand domain to pick important objects and
relationships

e Main steps:
Decide what to talk about
Decide on vocabulary of predicates, functions & constants
Encode general knowledge about domain
Encode description of specific problem instance
Pose queries to inference procedure and get answers
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Knowledge engineering vs. programming

Knowledge Engineering

Programming

Choosing a logic

Building knowledge base
Implementing proof theory
Inferring new facts

e

Choosing programming language
Writing program
Choosing/writing compiler
Running program

Why knowledge engineering rather than programming?

Less work: just specify objects and relationships known to be true, but
leave it to the inference engine to figure out how to solve a problem

using the known facts.
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Towards a general ontology

e Develop good representations for:

- categories

- measures

- composite objects

- time, space and change

- events and processes

- physical objects

- substances

- mental objects and beliefs

CS 561, Session 30

95



Inference in First-Order Logic

e Proofs — extend propositional logic inference to deal with quantifiers

e Unification

e Generalized modus ponens

e Forward and backward chaining — inference rules and reasoning
program

e Completeness — Gddel's theorem: for FOL, any sentence entailed by
another set of sentences can be proved from that set

e Resolution — inference procedure that is complete for any set of
sentences

e Logic programming

CS 561, Session 30 96



Proofs

The three new inference rules for FOL (compared to propositional logic) are:

e Universal Elimination (UE):
for any sentence a, variable x and ground term T,
X a e.g., from [x Likes(x, Candy) and {x/Joe}
a{x/t} we can infer Likes(Joe, Candy)

e Existential Elimination (EE):
for any sentence a, variable x and constant symbol k not in KB,
(X « e.g., from X Kill(x, Victim) we can infer
a{x/k} Kill(Murderer, Victim), if Murderer new symbol

e Existential Introduction (El):
for any sentence a, variable x not in a and ground term g in q,
o e.g., from Likes(Joe, Candy) we can infer
(X af{g/x} [X Likes(x, Candy)
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Generalized Modus Ponens (GMP)

plra p?"a R p-'tf'.l (pl ApE ZANRIN /'\-p“ - Q)
o

Eg. p/= Faster(Bob,Pat)
po' = Faster(Pat,Steve)
prAps = q = Faster(x,y) A Faster(y,z) = Faster(x, z)
o= {x/Bob,y/Pat, z/Steve}
go = Faster(Bob, Steve)

where p;'o = p;o for all

GMP used with KB of definite clauses (ezactly one positive literal):

either a single atomic sentence or
(conjunction of atomic sentences) = (atomic sentence)

All variables assumed universally quantified
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Forward chaining

When a new fact p is added to the KB
for each rule such that p unifies with a premise
If the other premises are known
then add the conclusion to the KB and continue chaining

Forward chaining is data-driven
e.g., inferring properties and categories from percepts
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Backward chaining

When a query q is asked
if a matching fact ¢’ is known, return the unifier
for each rule whose consequent ¢’ matches ¢
attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming, e.g., Prolog
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Resolution

Entailment in first-order logic is only semidecidable:

can find a proof of o if 'B = a

cannot always prove that A'B ~ o
Cf. Halting Problem: proof procedure may be about to terminate with
success or failure, or may go on for ever

Resolution is a refutation procedure:
to prove KB |= a, show that KK B A =« is unsatisfiable

Resolution uses K'B, -« in CNF (conjunction of clauses)

Resoclution inference rule combines two clauses to make a new one:

C, C>
7

Inference continues until an empty clause is derived (contradiction)
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Resolution inference rule

Basic propositional version:
aV 3, -GVy —a = 4, 3 =7

or equivalentl
a Ny q Y =y

Full first-order version:

V... pj .V P
G V... q -..Vq,

{Pl Voo pica Vit P VAo @1 Vgisr -0V q”}{]‘

where pjo = ~qro
For example,

~Rich(x) v Unhappy(x)
Rich(Me)
Unhappy(Me)

with ¢ = {z/Me}

CS 561, Session 30
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Resolution proof

To prove n:
— negate it
— convert to CNF

— add to CNF KB
— infer contradiction

E.g., to prove Rich(me), add —Rich(me) to the CNF KB

-~ PhD(z)V HighlyQuali fied(x)
PhD(zx)V EarlyEarnings(z)
~HighlyQualified(z) V Rich(x)
-~ FarlyEarnings(x) V Rich(x)
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Logical reasoning systems

e Theorem provers and logic programming languages

e Production systems

e Frame systems and semantic networks

e Description logic systems
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Logical reasoning systems

e Theorem provers and logic programming languages — Provers: use
resolution to prove sentences in full FOL. Languages: use backward
chaining on restricted set of FOL constructs.

e Production systems — based on implications, with consequents
Interpreted as action (e.g., insertion & deletion in KB). Based on
forward chaining + conflict resolution if several possible actions.

e Frame systems and semantic networks — objects as nodes in a
graph, nodes organized as taxonomy, links represent binary
relations.

e Description logic systems — evolved from semantic nets. Reason
with object classes & relations among them.
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Membership functions: S-function

e The S-function can be used to define fuzzy sets

e Sx a,b,c)=
e 0 forx<a
o 2(x-alc-a)? fora<x<b
o 1-2(x-c/c-a)? forb<x<c
e 1 forx=>c
1
09
0.8
07
0.6
i’tﬁ
0.4
0.3
0.2
01 a b C
A | |
13 1.4 g 16 |1? 1|$ 18 2

height [m]
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Membership functions: MN—-Function

e TM(x ab)=

e S(x, b-a, b-a/2, b) forx<b
e 1-3(X, b, b+a/2, at+Db) forx=Db

1

0.9

E.g., close(toa) s

07

0.6

20 = 40 80 80 100

b-a b-a/2 a bt+a/2 bta
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Linguistic Hedges

e Modifying the meaning of a fuzzy set using hedges such as very,
more or less, slightly, etc.

e VeryF=F tall
e More or less F = F2 e
- elc.

M oreﬁbr less tall

(LN
0.3}
02t

0t
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Fuzzy set operators

o Equality
A=B
Ha (X) = Mg (X)
o Complement
A
Ha (X) = 1 - pa(X)
e Containment
ALCB
Ha (X) < g (X)
e Union
A B
Ha o g (X) = max(H, (X), Mg (X))
e |ntersection
AnB

Ha o 5 (X) = Min(p, (%), g (%))

foral x X

foral x X

foral x X

foral x X

foral x X
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What we have so far

e Can TELL KB about new percepts about the world

e KB maintains model of the current world state

e (Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent,

l.e., an agent that constructs plans that can achieve its goals, and that
then executes these plans?
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Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms

Go To Pet Store

seem to fail miserably:

Talk to Parrot

Buy a Dog

Go To School

- P

Go To Class

Start

Go To Supermarket

- -

Buy Tuna Fish

o -
Go To Sleep Buy Arugula
Read A Book Buy Milk
. -
Sit in Chair Sit Some More
- -
Etc. Etc. ... Read A Book
- e

After-the-fact heuristic/goal test inadequate

Finish
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Types of planners

e Situation space planner: search through possible situations

e Progression planner: start with initial state, apply operators until
goal is reached

Problem: high branching factor!

e Regression planner: start from goal state and apply operators until
start state reached

Why desirable? usually many more operators are applicable to
Initial state than to goal state.
Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner
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A Simple Planning Agent

function SIMPLE-PLANNING-AGENT (percept) returns an action
static: KB, a knowledge base (includes action descriptions)
p, a plan (initially, NoPlan)
t, a time counter (initially 0)
local variables:G, a goal
current, a current state description
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current — STATE-DESCRIPTION(KB, t)
if p = NoPlan then
G « ASK(KB, MAKE-GOAL-QUERY(t))
p — IDEAL-PLANNER(current, G, KB)
if p = NoPlan or p is empty then
action — NoOp
else
action — FIRST(p)
p — REST(p)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t « t+1
return action
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STRIPS operators

Tidily arranged actions descriptions, restricted language

AcCTION: Buy(x)
PRECONDITION: At(p), Sells(p,x)
EFrFECT: Have(x)

[Note: this abstracts away many important details!]

Restricted language = efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

At(p) Sells(p,x)

Graphical notation: Buy(x)

Have(x) 115



Partially ordered plans

Start

LeftShoeOn, lnghfShoeDn

Finish

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step

Start

/N

Left
Sock

:

LeftSockOn

Left
Shoe

RightSockOn

Right
Sock

i

Right
Shoe

\ /

[ eftShoeOn, RightShoeOn

Finish

and no possibly intervening step undoes it
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Plan

We formally define a plan as a data structure consisting of:

Set of plan steps (each is an operator for the problem)

Set of step ordering constraints

e.g.,A<B means “A before B”

Set of variable binding constraints

e.g., vV =xX where v variable and x constant or other variable

Set of causal links

e.g., A=< B means “A achieves c for B”
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POP algorithm sketch

function POPD (initial, goal, operators) returns plan

plan + MAKE-MINIMAL-PLAN(#2nitial, goal)

loop do
if SoLvTioN?( plan) then return plan
Speed. €4 SELECT-SUBGOALI( plan)
CHOOSE-QPERATORI( plan, operators, S, .4, c)
RESOLVE-THREATS( plan)

end

function SELECT-SUBGOAL( plan) returns .S, . ¢

pick a plan step S,..q from STEPSI plan)
with a precondition ¢ that has not been achieved
return S,..4. ¢
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POP algorithm (cont.)

procedure CHOOSE-OPERATOR(plan, operators. S, .q. ¢)

choo ie a step S,y from operators or STEPS| plan) that has ¢ as an effect
if there is no such step then fail
add the causal link S,q0 — S,ccq to LINKS( plan)
add the ordering constraint Syqq < Speeqd to ORDERINGS( plan)
if S 4q 1s a newly added step from operators then
add S,qq to STEPS( plan)
add Start < S, < Finish to ORDERINGS{ plan)

procedure RESOLVE-THREATS( plan)

for each S, . that threatens a link S; —=5 §; in LINKS( plan) do
choo e either
Demotion: Add Syppeqr = S; to ORDERINGS( plan)
Promotion: Add 5; < Siprear to ORDERINGS | plan)
if not ConsiIsTENT( plan) then fail
end

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals



Warren McCulloch and Walter Pitts (1943)

A McCulloch-Pitts neuron operates on a discrete
time-scale, t = 0,1,2,3, ... with time tick equal to
one refractory period

X4(t)

x A1)

axon

P y(t+1)

X (1)

At each time step, an input or output is
on or off — 1 or O, respectively.

Each connection or synapse from the output of one neuron to the
iInput of another, has an attached weight.
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Multi-layer Perceptron Classifier

e
LN
j ety
Connection
meights\
1

T i T, 44 . | - LTF.1 .
JINIT FAITerTL IBATUre ¥iallles
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Bayes’ rule

Product rule P(A A B) = P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)

= Bayes' rule P(A|B) = P(B)

Why is this useful???

For assessing diagnostic probability from causal probability:

P(Ef fect|Cause)P(Cause)
P(Ef fect)

E.g., let M be meningitis, S be stiff neck:

P(S|M)P(M) 0.8 x 0.0001
P(S) B 0.1

Note: posterior probability of meningitis still very smalll

P(Cause|Ef fect) =

P(M|S) = = 0.0008
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is there
a burglar?

Variables: Burglar, FEarthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

Burglary Earthquake P;i

PiA)
05

T == |
E

29
001

A PiT) A PiM)
T 0

Note: < k parents = O(d*n) numbers vs. O(d")

=




Markov blanket
e

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

124



Some problems remain...

e Vision

e Audition / speech processing

e Natural language processing

e Touch, smell, balance and other senses
e Motor control

They are extensively studied in other courses.
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Computer Perception

e Perception: provides an agent information about its environment.
Generates feedback. Usually proceeds in the following steps.

1. Sensors: hardware that provides raw measurements of properties
of the environment

1. Ultrasonic Sensor/Sonar: provides distance data
2. Light detectors: provide data about intensity of light
3. Camera: generates a picture of the environment

2. Signal processing: to process the raw sensor data in order to
extract certain features, e.g., color, shape, distance, velocity, etc.

3. Object recognition: Combines features to form a model of an
object

4. And so on to higher abstraction levels
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Perception for what?

e Interaction with the environment, e.g., manipulation, navigation
e Process control, e.g., temperature control

e Quality control, e.g., electronics inspection, mechanical parts

e Diagnosis, e.g., diabetes

e Restoration, of e.g., buildings

e Modeling, of e.qg., parts, buildings, etc.

e Surveillance, banks, parking lots, etc.

e And much, much more
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