Perceptual Grouping in Computer Vision

Gérard Medioni

University of Southern California

What is Computer Vision?

• Computer Vision
 – Attempt to emulate Human Visual System
 – Perceive visual stimuli with cameras instead of eyes
 – Apply laws and constraints to analyze and interpret what is being seen
Human vs. Computer Vision

Wishful thinking, but incorrect
Human Visual System

- Eyes
 - Perceive stimuli
 - Perform low-level processing
 - Dispatch processed information to the brain
- Brain
 - Recalls relevant memories
 - Incorporates prior knowledge in the analysis

Vision is not that easy!

Do you see a bunch of animals or a human face?
What is hard about vision?

- Mapping from 2-D to 3-D
 - Numerous shapes can generate the same projections on the image plane
- Inverse, ill-posed problem
- Mathematically provably impossible

The human visual system is not perfect

Which of the two stripes is larger?
The human visual system is not perfect

Which of the two stripes is larger?

Need for Constraints

• Since the problem has infinite solutions, hard constraints need to be imposed
• Restrict the class of objects and scenes to the “most usual” or “simplest”
• For instance, the “matter is cohesive” constraint holds for the majority of natural scenes and is a basis for many algorithms
• Not all constraints apply to all scenes, leading to misinterpretations
Illusions

• Visual illusions violate some of the constraints imposed by the Human Visual System
• They result from conflicts among the various constraints
Simultaneous Contrast

Simultaneous Contrast
Figure/Ground Segmentation

Impossible Drawings
Low level Vision

- Determination of local image properties
 - Smoothing
 - Thresholding
 - Edge detection
 - Color
 - Texture
- Pre-attentive retinal processes
- Occurs at the image level (2-D)

High level Vision

- Inference of scene description
- Semantic analysis and interpretation
- Inference of unseen details based on experience
- Usually 3-D processes
Mid level Vision

- Low level vision processes can be performed by image processing methods
- High level analysis is feasible given complete and accurate data
- The missing link is mid level vision that can convert low level data into objects and scene descriptions
Mid level Vision

Low level Vision

Mid level Vision

High level Vision

Boundaries
Regions
Surfaces
Objects

Perceptual Grouping

• Occurs after local primitives have been detected
• Pre-attentive process
• Does not involve cognition, it occurs without conscious effort
Perceptual grouping illusions

This is not a pre-attentive illusion
Gestalt Principles

• “The whole is different from the sum of the parts”
• Established by psychological experiments
• Often conflicting

Gestalt Laws

• Proximity
• Similarity
• Closure
• Good Continuation
• Simplicity or Good Form
Proximity

Objects that are close to one another tend to be grouped together.

Similarity

Objects that are more similar to one another tend to be grouped together.
Closure

Stimuli tend to be grouped into complete figures

Good Continuation

Objects organized in a straight line or a smooth curve tend to be perceived as a unit

The lines from a to b and c to d are the most salient perceptual groups in this image
Illusory Contours

The simplest interpretation of stimuli will be perceived:
(a) as 3-D and (b) as 2-D.

Simplicity or “good form”

The simplest interpretation organization of stimuli will be perceived:
(a) as 3-D and (b) as 2-D.
Approaches to Grouping in Computer Vision

- Regularization
- Relaxation labeling
- Clustering
- Robust methods
- Level Sets

Regularization Approaches

- Define a “quality of fit” or error metric
- Express it as a function of some parameters
- Maximize objective or minimize error using numerical optimization techniques
Relaxation Labeling

- Begin by assigning all possible labels to every scene object
- Remove labels that are inconsistent based on unary constraints
- Remove labels that are inconsistent based on N-ary constraints
- Converge to consistent labeling of all objects

Relaxation Labeling Example

(a) Input with all possible labels
(b) Labels after unary constraints
(c) Labels after binary constraints
Clustering and Robust Methods

- Use statistical methods to explore the tendency of a point pattern to form compact groups
- Examine data sets for the presence of pre-specified configurations
- Detection is possible even in excessive corruption by noise
- For example, the Hough transform can be used to detect straight lines in point clouds

Level Set Methods

- Implicit representation of curves or surfaces
- Points on curves are on the zero level of function
- Common function used is the distance function
- Inherently multi-resolution representation
- Can handle topological changes
Structural Saliency

- Saliency literally means the quality of jumping out, being prominent
- Structural Saliency is a property of the structure as a whole
 - Parts of the structure are not salient in isolation
- Sha’ashua and Ullman defined a saliency measure based on curvature and curvature variation
Drawbacks of these methods

• Inherently exponential
 – With respect to the number of:
 Images
 Features
 Pixels
• Iterative
• Not general due to enforcement of strict constraints

Overview of Tensor Voting

• Introduction

• Salient feature inference
 - tensor voting
 - 2D and 3D systems
 - shape from shading
 - shape from stereo
 - optical flow

• Applications

• Perspectives
Computational Approach

Grouping/Matching

Optimization

Constraints/Evaluation Criteria

Choice of Criteria

Matter is cohesive

Smoothness

Objects are opaque

Uniqueness along line of sight

Implementation at the image level?
Examples

- 2-D curves
- 2-D regions
- 3-D surfaces

Tensor Voting

- Representation: 2nd order symmetric Tensor
 - shape: orientation certainty
 - size: feature saliency
Tensor Voting

• Constraint Representation: Voting fields
 – tensor fields
 – encode smoothness criteria

• Communication: Voting
 – non-iterative
 – no initialization

Our approach in a nutshell

• Each input site propagates its information in a neighborhood

• Each site collects the information cast there

• Salient features correspond to local extrema
Properties of Tensor Voting

- Linear
- Non-Iterative
- Extract all features *simultaneously*
- 1 parameter (scale)
- Objective thresholds
- Efficient
 - $O(1)$ for parallel computation

Overview

- Introduction
- Salient feature inference
 - tensor voting
 - 2D and 3D systems
 - shape from shading
 - shape from stereo
 - optical flow
- Applications
- Perspectives
 - curvature
 - N/D
Overview

Input tokens (sparse) → Encode → Tensor tokens (sparse) → Tensor Voting → Tensor tokens (refined) → Tensor Voting → Saliency tensor field (dense) → Feature Extraction

2-D Tensor Voting

- Representation: 2-D Tensor
- Constraints: 2-D Voting fields
- Data communication: Voting
2-D Tensor

- are extreme cases of a tensor

\begin{align*}
\text{Conversely, any tensor can be expressed as} \\
\end{align*}

\begin{align*}
\text{Decomposition & Interpretation} \\
\text{in 2-D is 3 numbers } \lambda_{\text{max}}, \lambda_{\text{min}}, \theta \\
\lambda_{\text{min}} \text{ represents orientation uncertainty} \\
(\lambda_{\text{max}} - \lambda_{\text{min}}) \text{ represents orientation saliency}
\end{align*}
Design of Voting Field

Fundamental Stick Voting Field
2-D Ball Field

2D Voting Fields

Each input site propagates its information in a neighborhood

- votes with

- votes with

votes with
Vote Collection

Each site collects the information cast there

By tensor addition:

\[\bigcirc + \bigcirc = \bigcirc \quad \bigcirc + \longrightarrow = \bigcirc \bigcirc \]

\[\longrightarrow + \longrightarrow = \longrightarrow \quad \longrightarrow + \bigcirc = \bigcirc \bigcirc \]

Vote Interpretation

Salient features correspond to local extrema

At each site

\[\Rightarrow 2 \text{“images”} \]

\[\text{CMap} \quad \text{JMap} \]
Feature Extraction

- **Curves** are local maxima of Cmap
- **Junctions** are local maxima of Jmap
- performed by a local marching process

2-D Feature Inference
2-D Feature Inference

- Decompose
- Tensor Voting
- Encode

Points: balls, stick voting field

Curves: sticks, stick voting field

Feature Extraction: junctions, curve saliency map
Results

input points region boundariness curve and junctions

Results
2-D system demo

3-D Tensor Voting

- Representation: 3-D Tensor
- Constraints: 3-D Voting fields
- Data communication: Voting
3-D Tensor

Input may consist of

point curvel surfel

3-D Tensor = Ellipsoid

SMOOTH SURFACE

+ CURVE JUNCTION

+ POINT JUNCTION

= ELLIPSOID (TENSOR)
Decomposition

3 eigenvalues ($\lambda_{\text{max}} \lambda_{\text{mid}} \lambda_{\text{min}}$)
3 eigenvectors ($V_{\text{max}} V_{\text{mid}} V_{\text{min}}$)

Interpretation

<table>
<thead>
<tr>
<th>Saliency</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>$\lambda_{\text{max}} - \lambda_{\text{mid}}$</td>
</tr>
<tr>
<td>Curve</td>
<td>$\lambda_{\text{mid}} - \lambda_{\text{min}}$</td>
</tr>
<tr>
<td>Junction</td>
<td>λ_{min}</td>
</tr>
</tbody>
</table>
3-D Voting Fields
Derived from the Fundamental 2-D Stick Field

3-D Stick Voting Field

Stick kernel
Plate kernel
Ball kernel
3-D Plate Voting Field

\[\lambda_{\text{max}} - \lambda_{\text{mid}} \]

\[\lambda_{\text{mid}} - \lambda_{\text{min}} \]

3-D Ball Voting Field

- Isotropic tensor field
Tensor Voting

Decompose

Tensor Voting

Decompose

Feature Extraction

Encode

points → balls

curves → plates

surfels → sticks

tensor tokens

ball → plate → stick

dense tensor map

junction saliency map

curve saliency map

surface saliency map

junction → curve → surface

Issue of Scale

Elliptic point Saddle point
Scale

3-D System
3-D Feature Inference

Results

noisy input two views of output surface
Results

noisy input
two views of output surface

Results
Results

1200% noise

Overview

- Introduction
- Salient feature inference
 - tensor voting
 - 2D and 3D systems
- Applications
 - shape from shading
 - shape from stereo
 - optical flow
- Perspectives
Applications to Low-level vision

- Shape from Shading
- Shape from stereo
- optical flow

Shape From Shading

- Image $I(x,y)$
- Boundary Conditions $n(x_0,y_0)$ and $z(x_0,y_0)$
- Light Source Direction l

Tensor Voting from where $z(x,y)$ unknown

Assign Depth and Normal where $|R(n(x,y),z(x,y))l| - E(x,y)|$ is minimum

Unknown Depth? Yes

Unknown Depth? No
Results

Results
Applications to Low-level vision

- Shape from Shading
- Shape from stereo
- optical flow

Application to Stereo

1. Feature Extraction and Matching
2. Initial Disparity Data
3. Saliency Estimation
4. Uniqueness Enforcement
5. Unique Disparity Assignments
6. Surface Extraction
7. Overlapping Disparity Surfaces
8. Region Trimming
9. Overlapping, Bounded Disparity Surfaces
Results

Applications to Low-level vision

- Shape from Shading
- Shape from stereo
- Optical flow
Flower Garden Sequence

Layered Segmentation of the Flower Garden Sequence

Flower Garden Sequence Layers
Conclusions

• Simultaneous determination of motion boundaries and accurate optical flow
• No need for iterative global optimization
• Layered description resulting from segmentation, not an *a priori* model or mathematical fit

Conclusion

• Unified framework
• Applicable to many problems
• Non-iterative optimization
• Promising results
• Issues ...