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Review: Keys to Parallel Performance 

● Coverage or extent of parallelism in algorithm
Amdahl’s Law 

● Granularity of partitioning among processors
Communication cost and load balancing

● Locality of computation and communication
Communication between processors or between 
processors and their memories
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Communication Cost Model
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Overlapping Communication with Computation

Get Data

Compute

Get Data

Compute

synchronization 
point

CPU is idle

Memory is idle
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Limits in Pipelining Communication

Get Data

Compute

Get Data

Compute

● Computation to communication ratio limits 
performance gains from pipelining

● Where else to look for performance?
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Artifactual Communication

● Determined by program implementation and 
interactions with the architecture

● Examples:
Poor distribution of data across distributed memories
Unnecessarily fetching data that is not used
Redundant data fetches
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Lessons From Uniprocessors

● In uniprocessors, CPU communicates with memory

● Loads and stores are to uniprocessors as
_______ and ______ are to distributed memory 
multiprocessors

● How is communication overlap enhanced in 
uniprocessors?

Spatial locality
Temporal locality

“get” “put”
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Spatial Locality

● CPU asks for data at address 1000
● Memory sends data at address 1000 … 1064

Amount of data sent depends on architecture 
parameters such as the cache block size

● Works well if CPU actually ends up using data from 
1001, 1002, …, 1064

● Otherwise wasted bandwidth and cache capacity
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Temporal Locality

● Main memory access is expensive
● Memory hierarchy adds small but fast memories

(caches) near the CPU
Memories get bigger as distance
from CPU increases

● CPU asks for data at address 1000
● Memory hierarchy anticipates more accesses to same 

address and stores a local copy 

● Works well if CPU actually ends up using data from 1000 over 
and over and over …

● Otherwise wasted cache capacity

main 
memory

cache
(level 2)

cache
(level 1)
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Reducing Artifactual Costs in
Distributed Memory Architectures

● Data is transferred in chunks to amortize 
communication cost

Cell: DMA gets up to 16K
Usually get a contiguous chunk of memory

● Spatial locality
Computation should exhibit good spatial locality 
characteristics

● Temporal locality
Reorder computation to maximize use of data fetched
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Single Thread Performance: the last 
frontier in the search for 

performance?
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Single Thread Performance

● Tasks mapped to execution units (threads)
● Threads run on individual processors (cores)

● Two keys to faster execution
Load balance the work among the processors
Make execution on each processor faster

finish line: sequential time + longest parallel time

sequential

parallel

sequential

parallel
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Understanding Performance

● Need some way of 
measuring performance

Coarse grained 
measurements
% gcc sample.c
% time a.out
2.312u 0.062s 0:02.50 94.8%
% gcc sample.c –O3 
% time a.out
1.921u 0.093s 0:02.03 99.0%

… but did we learn much 
about what’s going on?

#define N (1 << 23)
#define T (10)
#include <string.h>
double a[N],b[N];

void cleara(double a[N]) {
int i;
for (i = 0; i < N; i++) { 

a[i] = 0; 
}

}
int main() {

double s=0,s2=0; int i,j;
for (j = 0; j < T; j++) { 

for (i = 0; i < N; i++) { 
b[i] = 0; 

}
cleara(a);
memset(a,0,sizeof(a));

for (i = 0; i < N; i++) { 
s += a[i] * b[i];
s2 += a[i] * a[i] + b[i] * b[i];

}

}
printf("s %f s2 %f\n",s,s2);

}

record stop time

record start time
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Measurements Using Counters

● Increasingly possible to get accurate measurements 
using performance counters

Special registers in the hardware to measure events

● Insert code to start, read, and stop counter
Measure exactly what you want, anywhere you want
Can measure communication and computation duration
But requires manual changes
Monitoring nested scopes is an issue
Heisenberg effect: counters can perturb execution time

time

stopclear/start
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Dynamic Profiling

● Event-based profiling
Interrupt execution when an event counter reaches a 
threshold

● Time-based profiling
Interrupt execution every t seconds

● Works without modifying your code
Does not require that you know where problem might be
Supports multiple languages and programming models
Quite efficient for appropriate sampling frequencies
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Counter Examples

● Cycles (clock ticks)
● Pipeline stalls
● Cache hits
● Cache misses
● Number of instructions
● Number of loads
● Number of stores
● Number of floating point operations
● …
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Useful Derived Measurements 

● Processor utilization
Cycles / Wall Clock Time

● Instructions per cycle
Instructions / Cycles

● Instructions per memory operation
Instructions / Loads + Stores

● Average number of instructions per load miss
Instructions / L1 Load Misses

● Memory traffic
Loads + Stores * Lk Cache Line Size

● Bandwidth consumed
Loads + Stores * Lk Cache Line Size / Wall Clock Time

● Many others 
Cache miss rate 
Branch misprediction rate
…
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Common Profiling Workflow

application
source

application
source

run
(profiles 

execution)

run
(profiles 

execution)

performance
profile

performance
profile

binary
object code

binary
object code

compiler

interpret profileinterpret profile

binary analysisbinary analysis

source 
correlation

source 
correlation
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Popular Runtime Profiling Tools

● GNU gprof
Widely available with UNIX/Linux distributions
gcc –O2 –pg foo.c –o foo
./foo
gprof foo

● HPC Toolkit
http://www.hipersoft.rice.edu/hpctoolkit/

● PAPI
http://icl.cs.utk.edu/papi/ 

● VTune
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/

● Many others
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GNU gprof

● MPEG-2 decoder (reference implementation)
%./mpeg2decode -b mei16v2.m2v -f -r

-r uses double precision inverse DCT

%./mpeg2decode -b mei16v2.m2v -f

uses fast integer based inverse DCT instead

%   cumulative   self              self     total           
time   seconds   seconds    calls  ns/call  ns/call  name 
90.48      0.19     0.19     7920 23989.90 23989.90  Reference_IDCT
4.76      0.20     0.01     2148  4655.49  4655.49  Decode_MPEG1_Intra_Block

66.67      0.02     0.02     8238  2427.77  2427.77  form_component_prediction
33.33      0.03     0.01    63360   157.83   157.83  idctcol
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HPC Toolkit
% hpcrun -e PAPI_TOT_CYC:499997 -e PAPI_L1_LDM \

-e PAPI_FP_INS -e PAPI_TOT_INS mpeg2decode -- …

Profile the “total cycles” using period 499997 

Profile the “L1 data cache load misses” using the default period

Profile the “total instructions” using the default period

Profile the “floating point instructions” using default period

Running this command on a machine “sloth” produced a data file 
mpeg2dec.PAPI_TOT_CYC-etc.sloth.1234



22 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Interpreting a Profile
% hpcprof -e mpeg2dec mped2dec.PAPI_TOT_CYC-etc.sloth.1234
Columns correspond to the following events [event:period (events/sample)]

PAPI_TOT_CYC:499997 - Total cycles (698 samples)

PAPI_L1_LDM:32767 - Level 1 load misses (27 samples)

PAPI_FP_INS:32767 - Floating point instructions (789 samples)

PAPI_TOT_INS:32767 - Instructions completed (4018 samples)

Load Module Summary:

91.7%  74.1% 100.0%  84.1% /home/guru/mpeg2decode

8.3%  25.9%   0.0%  15.9% /lib/libc-2.2.4.so

Function Summary:

...

Line summary:

...
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hpcprof Annotated Source File
1                             #define N (1 << 23)
2                             #define T (10)
3                             #include <string.h>
4                             double a[N],b[N];
5                             void cleara(double a[N]) {
6                               int i;
7  14.5%  16.7%   0.0%   0.2%   for (i = 0; i < N; i++) { 
8                                 a[i] = 0; 
9                               }

10                             }
11                             int main() {
12                               double s=0,s2=0; int i,j;
13                               for (j = 0; j < T; j++) { 
14   9.0%  14.6%   0.0%   0.1%     for (i = 0; i < N; i++) {
15   5.6%   6.2%   0.0%   0.1%       b[i] = 0; 
16                                 }
17                                 cleara(a);
18                                 memset(a,0,sizeof(a));
19   3.6%   5.8%  10.6%   9.2%     for (i = 0; i < N; i++) {
20  36.2%  32.9%  53.2%  49.1%       s += a[i]*b[i];
21  16.7%  23.8%  36.2%  41.2%       s2 += a[i]*a[i]+b[i]*b[i];
22                                 }
23                               }
24                               printf("s %d s2 %d\n",s,s2);
25                             }
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hpcviewer Screenshot
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Performance in Uniprocessors
time = compute + wait

● Instruction level parallelism
Multiple functional units, deeply pipelined, speculation, ...

● Data level parallelism
SIMD: short vector instructions (multimedia extensions)
– Hardware is simpler, no heavily ported register files
– Instructions are more compact
– Reduces instruction fetch bandwidth

● Complex memory hierarchies
Multiple level caches, may outstanding misses, 
prefetching, …
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SIMD

● Single Instruction, Multiple Data
● SIMD registers hold short vectors
● Instruction operates on all elements in SIMD register at once

for (int i = 0; i < n; i+=1) {
c[i] = a[i] + b[i]

}

Scalar code
for (int i = 0; i < n; i += 4) {

c[i:i+3] = a[i:i+3] + b[i:i+3]
}

Vector code

a

b

c

a

b

c

SIMD registerscalar register
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SIMD Example

LOAD LOAD

ADD

STORE

for (int i = 0; i < n; i+=1) {
c[i] = a[i] + b[i]

}

…

LOAD

Slot 2

ADD2

LOAD1

Slot 1Cycle

STORE3

……

b[i]a[i]

c[i]

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration
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SIMD Example

VLOAD VLOAD

VADD

VSTORE

for (int i = 0; i < n; i+=4) {
c[i:i+3] = a[i:i+3] + b[i:i+3]

}

…

VLOAD

Slot 2

VADD2

VLOAD1

Slot 1Cycle

VSTORE3

……

b[i:i+3]a[i:i+3]

c[i:i+3]

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration
● SIMD loop

n/4 iterations ∗ 3 cycles/iteration
● Speedup: ?
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SIMD Example

VLOAD VLOAD

VADD

VSTORE

for (int i = 0; i < n; i+=4) {
c[i:i+3] = a[i:i+3] + b[i:i+3]

}

…

VLOAD

Slot 2

VADD2

VLOAD1

Slot 1Cycle

VSTORE3

……

b[i:i+3]a[i:i+3]

c[i:i+3]

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration
● SIMD loop

n/4 iterations ∗ 3 cycles/iteration
● Speedup: 4x
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SIMD in Major ISAs

● And of course Cell
SPU has 128 128-bit registers
All instructions are SIMD instructions
Registers are treated as short vectors of 8/16/32-bit 
integers or single/double-precision floats

Instruction Set Architecture SIMD Width Floating Point
AltiVec PowerPC 128 yes
MMX/SSE Intel 64/128 yes
3DNow! AMD 64 yes
VIS Sun 64 no
MAX2 HP 64 no
MVI Alpha 64 no
MDMX MIPS V 64 yes
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Using SIMD Instructions

● Library calls and inline assembly
Difficult to program
Not portable

● Different extensions to the same ISA
MMX and SSE
SSE vs. 3DNow!

● You’ll get first hand-experience experience with Cell
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Superword Level Parallelism (SLP)

● Small amount of parallelism
Typically 2 to 8-way

exists within basic blocks 

● Uncovered with simple analysis

Samuel Larsen. Exploiting Superword Level Parallelism with Multimedia Instruction 
Sets. Master's thesis, Massachusetts Institute of Technology, May 2000.
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1.  Independent ALU Ops

R = R + XR * 1.08327
G = G + XG * 1.89234
B = B + XB * 1.29835

R   R   XR   1.08327
G = G + XG * 1.89234
B   B   XB   1.29835
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2.  Adjacent Memory References

R = R + X[i+0]
G = G + X[i+1]
B = B + X[i+2]

R   R
G = G + X[i:i+2]
B   B
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for (i=0; i<100; i+=1)
A[i+0] = A[i+0] + B[i+0]

3.  Vectorizable Loops
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3.  Vectorizable Loops

for (i=0; i<100; i+=4)

A[i:i+3] = B[i:i+3] + C[i:i+3]

for (i=0; i<100; i+=4)
A[i+0] = A[i+0] + B[i+0]
A[i+1] = A[i+1] + B[i+1]
A[i+2] = A[i+2] + B[i+2]
A[i+3] = A[i+3] + B[i+3]
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4.  Partially Vectorizable Loops

for (i=0; i<16; i+=1)
L = A[i+0] – B[i+0]
D = D + abs(L)
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4.  Partially Vectorizable Loops

for (i=0; i<16; i+=2)

L0
L1

= A[i:i+1] – B[i:i+1]

D = D + abs(L0)
D = D + abs(L1)

for (i=0; i<16; i+=2)
L = A[i+0] – B[i+0]
D = D + abs(L)
L = A[i+1] – B[i+1]
D = D + abs(L)
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From SLP to SIMD Execution

● Benefits
Multiple ALU ops → One SIMD op
Multiple load and store ops → One wide memory op

● Cost
Packing and unpacking vector register
Reshuffling within a register
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Packing and Unpacking Costs

● Packing source operands
● Unpacking destination operands

C    C
D    D

A = f()
B = g()
C = A + 2
D = B + 3
E = C / 5
F = D * 7

A    A
B    B

C   A   2
D   B   3
=   +
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Packing Costs can be Amortized

● Use packed result operands
● Share packed source operands 

A = B + C
D = E + F

G = B + H
I = E + J

A = B + C
D = E + F

G = A - H
I = D - J
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Adjacent Memory is Key

● Large potential performance gains
Eliminate load/store instructions
Reduce memory bandwidth

● Few packing possibilities
Only one ordering exploits pre-packing
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SLP Extraction Algorithm

● Identify adjacent memory references

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B
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SLP Extraction Algorithm

● Identify adjacent memory references

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]
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SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]
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SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

H
J

C
D

A
B=   -
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SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

H
J

C
D

A
B=   -
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SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

C
D

E
F

3
5=   *

H
J

C
D

A
B=   -
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SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

C
D

E
F

3
5=   *

H
J

C
D

A
B=   -
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SLP Availability

0
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Speedup on AltiVec

1
1.1
1.2
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Performance in Uniprocessors
time = compute + wait

● Instruction level parallelism
Multiple functional units, deeply pipelined, speculation, ...

● Data level parallelism
SIMD: short vector instructions (multimedia extensions)
– Hardware is simpler, no heavily ported register files
– Instructions are more compact
– Reduces instruction fetch bandwidth

● Complex memory hierarchies
Multiple level caches, may outstanding misses, 
prefetching, …
Exploiting locality is essential
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Instruction Locality

A

B

C

for i = 1 to N
A();
B();
C();

end

Baseline

miss rate = 1 

cache miss cache hit

Working 
Set Size

cache 
size A

B
C

+
+
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Instruction Locality

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working 
Set Size

cache 
size

A B C

A
B
C

+
+

Full ScalingBaseline

miss rate = 1 / Nmiss rate = 1 

cache miss cache hit
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Example Memory (Cache) Optimization

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working 
Set Size

inst
A B C

datainst data

A
B
C

+
+ C

B
C
B

B
A

B
A

Full ScalingBaseline

cache 
size
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Example Memory (Cache) Optimization

A

B

C

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

for i = 1 to N
A();
B();

end
for i = 1 to N

C();

Working 
Set Size

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full ScalingBaseline

C
B

cache 
size

for i = 1 to N
A();
B();
C();

end
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for j = 1 to N/64

end

for i = 1 to 64
A();
B();

end
for i = 1 to 64

C();

Example Memory (Cache) Optimization

A

B

C

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working 
Set Size

cache 
size

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full ScalingBaseline Cache Aware

C
B

for i = 1 to N
A();
B();
C();

end
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Results from Cache Optimizations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

StrongARM 1110 Pentium 3 Itanium 2

ignoring cache constraints cache aware

Janis Sermulins. Cache Aware Optimizations of Stream Programs. 
Master's thesis, Massachusetts Institute of Technology, May 2005.
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Summary
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Programming for Performance

● Tune the parallelism first

● Then tune performance on individual processors
Modern processors are complex
Need instruction level parallelism for performance
Understanding performance requires a lot of probing

● Optimize for the memory hierarchy
Memory is much slower than processors 
Multi-layer memory hierarchies try to hide the speed gap
Data locality is essential for performance
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Programming for Performance

● May have to change everything! 
Algorithms, data structures, program structure

● Focus on the biggest performance impediments
Too many issues to study everything
Remember the law of diminishing returns


