
Dr. Rodric Rabbah, IBM. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 10

Performance Monitoring and
Optimizations

2 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Review: Keys to Parallel Performance

● Coverage or extent of parallelism in algorithm
Amdahl’s Law

● Granularity of partitioning among processors
Communication cost and load balancing

● Locality of computation and communication
Communication between processors or between
processors and their memories

3 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Communication Cost Model

)/ (overlapt
B
mnlofC −+++∗=

frequency
of messages

overhead per
message

(at both ends)

network delay
per message

number of messages

cost induced by
contention per

message

amount of latency
hidden by concurrency

with computation

total data sent

bandwidth along path
(determined by network)

4 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Overlapping Communication with Computation

Get Data

Compute

Get Data

Compute

synchronization
point

CPU is idle

Memory is idle

5 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Limits in Pipelining Communication

Get Data

Compute

Get Data

Compute

● Computation to communication ratio limits
performance gains from pipelining

● Where else to look for performance?

6 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Artifactual Communication

● Determined by program implementation and
interactions with the architecture

● Examples:
Poor distribution of data across distributed memories
Unnecessarily fetching data that is not used
Redundant data fetches

7 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Lessons From Uniprocessors

● In uniprocessors, CPU communicates with memory

● Loads and stores are to uniprocessors as
_______ and ______ are to distributed memory
multiprocessors

● How is communication overlap enhanced in
uniprocessors?

Spatial locality
Temporal locality

“get” “put”

8 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Spatial Locality

● CPU asks for data at address 1000
● Memory sends data at address 1000 … 1064

Amount of data sent depends on architecture
parameters such as the cache block size

● Works well if CPU actually ends up using data from
1001, 1002, …, 1064

● Otherwise wasted bandwidth and cache capacity

9 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Temporal Locality

● Main memory access is expensive
● Memory hierarchy adds small but fast memories

(caches) near the CPU
Memories get bigger as distance
from CPU increases

● CPU asks for data at address 1000
● Memory hierarchy anticipates more accesses to same

address and stores a local copy

● Works well if CPU actually ends up using data from 1000 over
and over and over …

● Otherwise wasted cache capacity

main
memory

cache
(level 2)

cache
(level 1)

10 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Reducing Artifactual Costs in
Distributed Memory Architectures

● Data is transferred in chunks to amortize
communication cost

Cell: DMA gets up to 16K
Usually get a contiguous chunk of memory

● Spatial locality
Computation should exhibit good spatial locality
characteristics

● Temporal locality
Reorder computation to maximize use of data fetched

Dr. Rodric Rabbah, IBM. 11 6.189 IAP 2007 MIT

6.189 IAP 2007

Single Thread Performance: the last
frontier in the search for

performance?

12 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Single Thread Performance

● Tasks mapped to execution units (threads)
● Threads run on individual processors (cores)

● Two keys to faster execution
Load balance the work among the processors
Make execution on each processor faster

finish line: sequential time + longest parallel time

sequential

parallel

sequential

parallel

13 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Understanding Performance

● Need some way of
measuring performance

Coarse grained
measurements
% gcc sample.c
% time a.out
2.312u 0.062s 0:02.50 94.8%
% gcc sample.c –O3
% time a.out
1.921u 0.093s 0:02.03 99.0%

… but did we learn much
about what’s going on?

#define N (1 << 23)
#define T (10)
#include <string.h>
double a[N],b[N];

void cleara(double a[N]) {
int i;
for (i = 0; i < N; i++) {

a[i] = 0;
}

}
int main() {

double s=0,s2=0; int i,j;
for (j = 0; j < T; j++) {

for (i = 0; i < N; i++) {
b[i] = 0;

}
cleara(a);
memset(a,0,sizeof(a));

for (i = 0; i < N; i++) {
s += a[i] * b[i];
s2 += a[i] * a[i] + b[i] * b[i];

}

}
printf("s %f s2 %f\n",s,s2);

}

record stop time

record start time

14 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Measurements Using Counters

● Increasingly possible to get accurate measurements
using performance counters

Special registers in the hardware to measure events

● Insert code to start, read, and stop counter
Measure exactly what you want, anywhere you want
Can measure communication and computation duration
But requires manual changes
Monitoring nested scopes is an issue
Heisenberg effect: counters can perturb execution time

time

stopclear/start

15 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Dynamic Profiling

● Event-based profiling
Interrupt execution when an event counter reaches a
threshold

● Time-based profiling
Interrupt execution every t seconds

● Works without modifying your code
Does not require that you know where problem might be
Supports multiple languages and programming models
Quite efficient for appropriate sampling frequencies

16 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Counter Examples

● Cycles (clock ticks)
● Pipeline stalls
● Cache hits
● Cache misses
● Number of instructions
● Number of loads
● Number of stores
● Number of floating point operations
● …

17 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Useful Derived Measurements

● Processor utilization
Cycles / Wall Clock Time

● Instructions per cycle
Instructions / Cycles

● Instructions per memory operation
Instructions / Loads + Stores

● Average number of instructions per load miss
Instructions / L1 Load Misses

● Memory traffic
Loads + Stores * Lk Cache Line Size

● Bandwidth consumed
Loads + Stores * Lk Cache Line Size / Wall Clock Time

● Many others
Cache miss rate
Branch misprediction rate
…

18 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Common Profiling Workflow

application
source

application
source

run
(profiles

execution)

run
(profiles

execution)

performance
profile

performance
profile

binary
object code

binary
object code

compiler

interpret profileinterpret profile

binary analysisbinary analysis

source
correlation

source
correlation

19 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Popular Runtime Profiling Tools

● GNU gprof
Widely available with UNIX/Linux distributions
gcc –O2 –pg foo.c –o foo
./foo
gprof foo

● HPC Toolkit
http://www.hipersoft.rice.edu/hpctoolkit/

● PAPI
http://icl.cs.utk.edu/papi/

● VTune
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/

● Many others

20 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

GNU gprof

● MPEG-2 decoder (reference implementation)
%./mpeg2decode -b mei16v2.m2v -f -r

-r uses double precision inverse DCT

%./mpeg2decode -b mei16v2.m2v -f

uses fast integer based inverse DCT instead

% cumulative self self total
time seconds seconds calls ns/call ns/call name
90.48 0.19 0.19 7920 23989.90 23989.90 Reference_IDCT
4.76 0.20 0.01 2148 4655.49 4655.49 Decode_MPEG1_Intra_Block

66.67 0.02 0.02 8238 2427.77 2427.77 form_component_prediction
33.33 0.03 0.01 63360 157.83 157.83 idctcol

21 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

HPC Toolkit
% hpcrun -e PAPI_TOT_CYC:499997 -e PAPI_L1_LDM \

-e PAPI_FP_INS -e PAPI_TOT_INS mpeg2decode -- …

Profile the “total cycles” using period 499997

Profile the “L1 data cache load misses” using the default period

Profile the “total instructions” using the default period

Profile the “floating point instructions” using default period

Running this command on a machine “sloth” produced a data file
mpeg2dec.PAPI_TOT_CYC-etc.sloth.1234

22 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Interpreting a Profile
% hpcprof -e mpeg2dec mped2dec.PAPI_TOT_CYC-etc.sloth.1234
Columns correspond to the following events [event:period (events/sample)]

PAPI_TOT_CYC:499997 - Total cycles (698 samples)

PAPI_L1_LDM:32767 - Level 1 load misses (27 samples)

PAPI_FP_INS:32767 - Floating point instructions (789 samples)

PAPI_TOT_INS:32767 - Instructions completed (4018 samples)

Load Module Summary:

91.7% 74.1% 100.0% 84.1% /home/guru/mpeg2decode

8.3% 25.9% 0.0% 15.9% /lib/libc-2.2.4.so

Function Summary:

...

Line summary:

...

23 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

hpcprof Annotated Source File
1 #define N (1 << 23)
2 #define T (10)
3 #include <string.h>
4 double a[N],b[N];
5 void cleara(double a[N]) {
6 int i;
7 14.5% 16.7% 0.0% 0.2% for (i = 0; i < N; i++) {
8 a[i] = 0;
9 }

10 }
11 int main() {
12 double s=0,s2=0; int i,j;
13 for (j = 0; j < T; j++) {
14 9.0% 14.6% 0.0% 0.1% for (i = 0; i < N; i++) {
15 5.6% 6.2% 0.0% 0.1% b[i] = 0;
16 }
17 cleara(a);
18 memset(a,0,sizeof(a));
19 3.6% 5.8% 10.6% 9.2% for (i = 0; i < N; i++) {
20 36.2% 32.9% 53.2% 49.1% s += a[i]*b[i];
21 16.7% 23.8% 36.2% 41.2% s2 += a[i]*a[i]+b[i]*b[i];
22 }
23 }
24 printf("s %d s2 %d\n",s,s2);
25 }

24 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

hpcviewer Screenshot

25 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Performance in Uniprocessors
time = compute + wait

● Instruction level parallelism
Multiple functional units, deeply pipelined, speculation, ...

● Data level parallelism
SIMD: short vector instructions (multimedia extensions)
– Hardware is simpler, no heavily ported register files
– Instructions are more compact
– Reduces instruction fetch bandwidth

● Complex memory hierarchies
Multiple level caches, may outstanding misses,
prefetching, …

26 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SIMD

● Single Instruction, Multiple Data
● SIMD registers hold short vectors
● Instruction operates on all elements in SIMD register at once

for (int i = 0; i < n; i+=1) {
c[i] = a[i] + b[i]

}

Scalar code
for (int i = 0; i < n; i += 4) {

c[i:i+3] = a[i:i+3] + b[i:i+3]
}

Vector code

a

b

c

a

b

c

SIMD registerscalar register

27 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SIMD Example

LOAD LOAD

ADD

STORE

for (int i = 0; i < n; i+=1) {
c[i] = a[i] + b[i]

}

…

LOAD

Slot 2

ADD2

LOAD1

Slot 1Cycle

STORE3

……

b[i]a[i]

c[i]

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration

28 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SIMD Example

VLOAD VLOAD

VADD

VSTORE

for (int i = 0; i < n; i+=4) {
c[i:i+3] = a[i:i+3] + b[i:i+3]

}

…

VLOAD

Slot 2

VADD2

VLOAD1

Slot 1Cycle

VSTORE3

……

b[i:i+3]a[i:i+3]

c[i:i+3]

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration
● SIMD loop

n/4 iterations ∗ 3 cycles/iteration
● Speedup: ?

29 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SIMD Example

VLOAD VLOAD

VADD

VSTORE

for (int i = 0; i < n; i+=4) {
c[i:i+3] = a[i:i+3] + b[i:i+3]

}

…

VLOAD

Slot 2

VADD2

VLOAD1

Slot 1Cycle

VSTORE3

……

b[i:i+3]a[i:i+3]

c[i:i+3]

Estimated cycles for loop:
● Scalar loop

n iterations ∗ 3 cycles/iteration
● SIMD loop

n/4 iterations ∗ 3 cycles/iteration
● Speedup: 4x

30 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SIMD in Major ISAs

● And of course Cell
SPU has 128 128-bit registers
All instructions are SIMD instructions
Registers are treated as short vectors of 8/16/32-bit
integers or single/double-precision floats

Instruction Set Architecture SIMD Width Floating Point
AltiVec PowerPC 128 yes
MMX/SSE Intel 64/128 yes
3DNow! AMD 64 yes
VIS Sun 64 no
MAX2 HP 64 no
MVI Alpha 64 no
MDMX MIPS V 64 yes

31 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Using SIMD Instructions

● Library calls and inline assembly
Difficult to program
Not portable

● Different extensions to the same ISA
MMX and SSE
SSE vs. 3DNow!

● You’ll get first hand-experience experience with Cell

32 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Superword Level Parallelism (SLP)

● Small amount of parallelism
Typically 2 to 8-way

exists within basic blocks

● Uncovered with simple analysis

Samuel Larsen. Exploiting Superword Level Parallelism with Multimedia Instruction
Sets. Master's thesis, Massachusetts Institute of Technology, May 2000.

33 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

1. Independent ALU Ops

R = R + XR * 1.08327
G = G + XG * 1.89234
B = B + XB * 1.29835

R R XR 1.08327
G = G + XG * 1.89234
B B XB 1.29835

34 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

2. Adjacent Memory References

R = R + X[i+0]
G = G + X[i+1]
B = B + X[i+2]

R R
G = G + X[i:i+2]
B B

35 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

for (i=0; i<100; i+=1)
A[i+0] = A[i+0] + B[i+0]

3. Vectorizable Loops

36 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

3. Vectorizable Loops

for (i=0; i<100; i+=4)

A[i:i+3] = B[i:i+3] + C[i:i+3]

for (i=0; i<100; i+=4)
A[i+0] = A[i+0] + B[i+0]
A[i+1] = A[i+1] + B[i+1]
A[i+2] = A[i+2] + B[i+2]
A[i+3] = A[i+3] + B[i+3]

37 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

4. Partially Vectorizable Loops

for (i=0; i<16; i+=1)
L = A[i+0] – B[i+0]
D = D + abs(L)

38 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

4. Partially Vectorizable Loops

for (i=0; i<16; i+=2)

L0
L1

= A[i:i+1] – B[i:i+1]

D = D + abs(L0)
D = D + abs(L1)

for (i=0; i<16; i+=2)
L = A[i+0] – B[i+0]
D = D + abs(L)
L = A[i+1] – B[i+1]
D = D + abs(L)

39 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

From SLP to SIMD Execution

● Benefits
Multiple ALU ops → One SIMD op
Multiple load and store ops → One wide memory op

● Cost
Packing and unpacking vector register
Reshuffling within a register

40 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Packing and Unpacking Costs

● Packing source operands
● Unpacking destination operands

C C
D D

A = f()
B = g()
C = A + 2
D = B + 3
E = C / 5
F = D * 7

A A
B B

C A 2
D B 3
= +

41 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Packing Costs can be Amortized

● Use packed result operands
● Share packed source operands

A = B + C
D = E + F

G = B + H
I = E + J

A = B + C
D = E + F

G = A - H
I = D - J

42 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Adjacent Memory is Key

● Large potential performance gains
Eliminate load/store instructions
Reduce memory bandwidth

● Few packing possibilities
Only one ordering exploits pre-packing

43 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Extraction Algorithm

● Identify adjacent memory references

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

44 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Extraction Algorithm

● Identify adjacent memory references

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

45 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

46 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

H
J

C
D

A
B= -

47 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

H
J

C
D

A
B= -

48 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

C
D

E
F

3
5= *

H
J

C
D

A
B= -

49 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Extraction Algorithm

● Follow operand use

A = X[i+0]
C = E * 3
B = X[i+1]
H = C – A
D = F * 5
J = D - B

A
B = X[i:i+1]

C
D

E
F

3
5= *

H
J

C
D

A
B= -

50 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

SLP Availability

0
10
20
30
40
50
60
70
80
90

100

sw
im

tomcatv
mgrid
su

2c
or

wave
5

apsi
hy

dro2d
tur

b3d
applu
fpppp FIR IIR

VMM
MMM

YUV
% dynamic SUIF instructions eliminated

128 bits
1024 bits

51 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Speedup on AltiVec

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

sw
im

tomcatv FIR IIR

VMM

MMM

YUV
6.7

52 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Performance in Uniprocessors
time = compute + wait

● Instruction level parallelism
Multiple functional units, deeply pipelined, speculation, ...

● Data level parallelism
SIMD: short vector instructions (multimedia extensions)
– Hardware is simpler, no heavily ported register files
– Instructions are more compact
– Reduces instruction fetch bandwidth

● Complex memory hierarchies
Multiple level caches, may outstanding misses,
prefetching, …
Exploiting locality is essential

53 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Instruction Locality

A

B

C

for i = 1 to N
A();
B();
C();

end

Baseline

miss rate = 1

cache miss cache hit

Working
Set Size

cache
size A

B
C

+
+

54 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Instruction Locality

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working
Set Size

cache
size

A B C

A
B
C

+
+

Full ScalingBaseline

miss rate = 1 / Nmiss rate = 1

cache miss cache hit

55 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Example Memory (Cache) Optimization

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working
Set Size

inst
A B C

datainst data

A
B
C

+
+ C

B
C
B

B
A

B
A

Full ScalingBaseline

cache
size

56 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Example Memory (Cache) Optimization

A

B

C

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

for i = 1 to N
A();
B();

end
for i = 1 to N

C();

Working
Set Size

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full ScalingBaseline

C
B

cache
size

for i = 1 to N
A();
B();
C();

end

57 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

for j = 1 to N/64

end

for i = 1 to 64
A();
B();

end
for i = 1 to 64

C();

Example Memory (Cache) Optimization

A

B

C

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working
Set Size

cache
size

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full ScalingBaseline Cache Aware

C
B

for i = 1 to N
A();
B();
C();

end

58 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Results from Cache Optimizations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

StrongARM 1110 Pentium 3 Itanium 2

ignoring cache constraints cache aware

Janis Sermulins. Cache Aware Optimizations of Stream Programs.
Master's thesis, Massachusetts Institute of Technology, May 2005.

Dr. Rodric Rabbah, IBM. 59 6.189 IAP 2007 MIT

6.189 IAP 2007

Summary

60 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Programming for Performance

● Tune the parallelism first

● Then tune performance on individual processors
Modern processors are complex
Need instruction level parallelism for performance
Understanding performance requires a lot of probing

● Optimize for the memory hierarchy
Memory is much slower than processors
Multi-layer memory hierarchies try to hide the speed gap
Data locality is essential for performance

61 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Programming for Performance

● May have to change everything!
Algorithms, data structures, program structure

● Focus on the biggest performance impediments
Too many issues to study everything
Remember the law of diminishing returns

