6.189 IAP 2007

Lecture 11

Parallelizing Compilers

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Types of Parallelism

- Instruction Level Parallelism (ILP)
\rightarrow Scheduling and Hardware
- Task Level Parallelism (TLP)
\rightarrow Mainly by hand
- Loop Level Parallelism (LLP) $\quad \rightarrow$ Hand or Compiler Generated or Data Parallelism
- Pipeline Parallelism
- Divide and Conquer Parallelism
\rightarrow Hardware or Streaming
\rightarrow Recursive functions

Why Loops?

- 90% of the execution time in 10% of the code
- Mostly in loops
- If parallel, can get good performance
- Load balancing
- Relatively easy to analyze

Programmer Defined Parallel Loop

- FORALL
- No "loop carried dependences"
- Fully parallel
- FORACROSS
- Some "loop carried dependences"

Parallel Execution

- Example

```
FORPAR I = 0 to N
    A[I] = A[I] + 1
```

- Block Distribution: Program gets mapped into Iters = ceiling(N/NUMPROC); FOR $P=0$ to NUMPROC-1

FOR I = P^{*} Iters to MIN((P+1)*Iters, N$)$
$A[I]=A[I]+1$

- SPMD (Single Program, Multiple Data) Code If(myPid == 0) \{
...
Iters = ceiling(N/NUMPROC);
\}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
$A[I]=A[I]+1$
Barrier();

Parallel Execution

- Example

```
FORPAR I = 0 to N
    A[I] = A[I] + 1
```

- Block Distribution: Program gets mapped into Iters = ceiling(N/NUMPROC); FOR $P=0$ to NUMPROC-1

FOR I = P^{*} Iters to MIN((P+1)*Iters, N)
$A[I]=A[I]+1$

- Code that fork a function Iters = ceiling(N/NUMPROC); ParallelExecute(func1);

```
void func1(integer myPid)
{
    FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
    A[I] = A[I] + 1
}
```


Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Parallelizing Compilers

- Finding FORALL Loops out of FOR loops
- Examples

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \quad A[I+1]=A[I]+1 \\
& \text { FOR } I=0 \text { to } 5 \\
& \quad A[I]=A[I+6]+1
\end{aligned}
$$

For $I=0$ to 5

$$
A[2 * I]=A[2 * I+1]+1
$$

Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
- Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

- Iterations are represented as
 coordinates in iteration space
- $\mathrm{i}^{-}=\left[\mathrm{i}_{1}, \mathrm{i}_{2}, i_{3}, \ldots, \mathrm{i}_{\mathrm{n}}\right]$

Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
- Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

- Iterations are represented as
 coordinates in iteration space
- Sequential execution order of iterations \rightarrow Lexicographic order [0,0], [0,1], [0,2], ..., [0,6], [0,7], [1,1], [1,2], ..., [1,6], [1,7], [2,2], ..., [2,6], [2,7], [6,6], [6,7],

Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
- Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

- Iterations are represented as
 coordinates in iteration space
- Sequential execution order of iterations \rightarrow Lexicographic order
- Iteration i^{-}is lexicograpically less than j^{-}, $\mathrm{i}^{-}<\mathrm{j}^{-}$iff there exists c s.t. $\mathrm{i}_{1}=\mathrm{j}_{1}, \mathrm{i}_{2}=\mathrm{j}_{2}, \ldots \mathrm{i}_{\mathrm{c}-1}=\mathrm{j}_{\mathrm{c}-1}$ and $\mathrm{i}_{\mathrm{c}}<\mathrm{j}_{\mathrm{c}}$

Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
- Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

- An affine loop nest
- Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
- Array accesses are integer linear functions of constants, loop constant variables and loop indexes

Iteration Space

- N deep loops \rightarrow n-dimensional discrete cartesian space
- Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

- Affine loop nest \rightarrow Iteration space as a set of liner inequalities

$$
\begin{gathered}
0 \leq \mathrm{I} \\
\quad \mathrm{I} \leq 6 \\
\mathrm{I} \leq \mathrm{J} \\
\mathrm{~J} \leq 7
\end{gathered}
$$

Data Space

- M dimensional arrays \rightarrow m-dimensional discrete cartesian space
- a hypercube

Integer $\mathrm{A}(10)$

$$
\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
& & & & & & &
\end{array}
$$

Float $\mathbf{B (5 , 6)}$

Dependences

- True dependence

$$
\begin{aligned}
\mathbf{a} & = \\
& =\mathbf{a}
\end{aligned}
$$

- Anti dependence

$$
\begin{aligned}
& =\mathbf{a} \\
& a=
\end{aligned}
$$

- Output dependence
a $=$
a $=$
- Definition:

Data dependence exists for a dynamic instance i and j iff

- either i or j is a write operation
- i and j refer to the same variable
- i executes before j
- How about array accesses within loops?

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Array Accesses in a loop

Array Accesses in a loop

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& A[I]=A[I]+1
\end{aligned}
$$

Iteration Space

Array Accesses in a loop

Iteration Space

Array Accesses in a loop

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& A[I]=A[I+2]+1
\end{aligned}
$$

Iteration Space

Array Accesses in a loop

$$
\begin{aligned}
& \text { FOR } I=0 \text { to } 5 \\
& \quad A[2 * I]=A[2 * I+1]+1
\end{aligned}
$$

Iteration Space

Recognizing FORALL Loops

- Find data dependences in loop
- For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).
Then there is a data dependence between the statements

- (Note that same array can refer to itself - output dependences)
- Definition
- Loop-carried dependence: dependence that crosses a loop boundary
- If there are no loop carried dependences \rightarrow parallelizable

Data Dependence Analysis

- Example

$$
\text { FOR I = } 0 \text { to } 5
$$

$$
A[I+1]=A[I]+1
$$

- Is there a loop-carried dependence between $A[I+1]$ and $A[I]$
- Is there two distinct iterations i_{w} and i_{r} such that $A\left[i_{w}+1\right]$ is the same location as $A\left[i_{r}\right]$
- \exists integers $i_{w}, i_{r} \quad 0 \leq i_{w}, i_{r} \leq 5 \quad i_{w} \neq i_{r} \quad i_{w}+1=i_{r}$
- Is there a dependence between $A[I+1]$ and $A[I+1]$
- Is there two distinct iterations i_{1} and i_{2} such that $A\left[i_{1}+1\right]$ is the same location as $A\left[i_{2}+1\right]$
- \exists integers $i_{1}, i_{2} \quad 0 \leq i_{1}, i_{2} \leq 5 \quad i_{1} \neq i_{2} \quad i_{1}+1=i_{2}+1$

Integer Programming

- Formulation
- \exists an integer vector i^{-}such that $\hat{A} \mathrm{i}^{-} \leq \mathrm{b}^{-}$where \hat{A} is an integer matrix and b^{-}is an integer vector
- Our problem formulation for $A[i]$ and $A[i+1]$
- \exists integers $i_{w}, i_{r} \quad 0 \leq i_{w}, i_{r} \leq 5 i_{w} \neq i_{r} i_{w}+1=i_{r}$
- $i_{w} \neq i_{r}$ is not an affine function
- divide into 2 problems
- Problem 1 with $i_{w}<i_{r}$ and problem 2 with $i_{r}<i_{w}$
- If either problem has a solution \rightarrow there exists a dependence
- How about $i_{w}+1=i_{r}$
- Add two inequalities to single problem

$$
i_{w}+1 \leq i_{r}, \text { and } i_{r} \leq i_{w}+1
$$

Integer Programming Formulation

- Problem 1

$$
\begin{aligned}
& 0 \leq i_{w} \\
& i_{w} \leq 5 \\
& 0 \leq i_{r} \\
& i_{r} \leq 5 \\
& i_{w}<i_{r} \\
& i_{w}+1 \leq i_{r} \\
& i_{r} \leq i_{w}+1
\end{aligned}
$$

Integer Programming Formulation

- Problem 1

$$
\begin{array}{lll}
0 \leq i_{w} & \rightarrow & -i_{w} \leq 0 \\
i_{w} \leq 5 & \rightarrow & i_{w} \leq 5 \\
0 \leq i_{r} & \rightarrow & -i_{r} \leq 0 \\
i_{r} \leq 5 & \rightarrow & i_{r} \leq 5 \\
i_{w}<i_{r} & \rightarrow & i_{w}-i_{r} \leq-1 \\
i_{w}+1 \leq i_{r} & \rightarrow & i_{w}-i_{r} \leq-1 \\
i_{r} \leq i_{w}+1 & \rightarrow & -i_{w}+i_{r} \leq 1
\end{array}
$$

Integer Programming Formulation

- Problem 1

$0 \leq i_{w}$	\rightarrow	$-i_{w} \leq 0$
$i_{w} \leq 5$	\rightarrow	$i_{w} \leq 5$
$0 \leq i_{r}$	\rightarrow	$-i_{r} \leq 0$
$i_{r} \leq 5$	\rightarrow	$i_{r} \leq 5$
$i_{w}<i_{r}$	\rightarrow	$i_{w}-i_{r} \leq-1$
$i_{w}+1 \leq i_{r}$	\rightarrow	$i_{w}-i_{r} \leq-1$
$i_{r} \leq i_{w}+1$	\rightarrow	$-i_{w}+i_{r} \leq 1$

- and problem 2 with $i_{r}<i_{w}$

Generalization

- An affine loop nest

$$
\begin{aligned}
& \text { FOR } i_{1}=f_{11}\left(c_{1} \ldots c_{k}\right) \text { to } I_{u 1}\left(c_{1} \ldots c_{k}\right) \\
& \qquad \text { FOR } i_{2}=f_{12}\left(i_{1}, c_{1} \ldots c_{k}\right) \text { to } I_{u 2}\left(i_{1}, c_{1} \ldots c_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { FOR } i_{n}=f_{l n}\left(i_{1} \ldots i_{n-1}, c_{1} \ldots c_{k}\right) \text { to } I_{u n}\left(i_{1} \ldots i_{n-1}, c_{1} \ldots c_{k}\right) \\
& A\left[f_{a 1}\left(i_{1} \ldots i_{n}, c_{1} \ldots c_{k}\right), f_{a 2}\left(i_{1} \ldots i_{n}, c_{1} \ldots c_{k}\right), \ldots, f_{a m}\left(i_{1} \ldots i_{n}, c_{1} \ldots c_{k}\right)\right]
\end{aligned}
$$

- Solve 2*n problems of the form

$$
\begin{aligned}
& -\mathbf{i}_{1}=\mathbf{j}_{1}, \mathbf{i}_{2}=\mathbf{j}_{2}, \ldots \ldots \mathbf{i}_{n-1}=\mathbf{j}_{n-1}, \mathbf{i}_{n}<\mathbf{j}_{n} \\
& -\mathbf{i}_{1}=\mathbf{j}_{1}, \mathbf{i}_{2}=\mathbf{j}_{2}, \ldots \ldots . \mathbf{i}_{n-1}=\mathbf{j}_{n-1}, \mathbf{j}_{n}<\mathbf{i}_{n} \\
& -\mathbf{i}_{1}=\mathbf{j}_{1}, \mathbf{i}_{2}=\mathbf{j}_{2}, \ldots \ldots . \mathbf{i}_{n-1}<\mathbf{j}_{n-1} \\
& -\mathbf{i}_{1}=\mathbf{j}_{1}, \mathbf{i}_{2}=\mathbf{j}_{2}, \ldots \ldots . \mathbf{j}_{\mathrm{n}-1}<\mathbf{i}_{n-1} \\
& -\mathbf{i}_{1}=\mathbf{j}_{1}, \mathbf{i}_{2}<\mathbf{j}_{2} \\
& -\mathbf{i}_{1}=\mathbf{j}_{1}, \mathbf{j}_{2}<\mathbf{i}_{2} \\
& -\mathbf{i}_{1}<\mathbf{j}_{1} \\
& -\mathbf{j}_{1}<\mathbf{i}_{1}
\end{aligned}
$$

Multi-Dimensional Dependence

```
FOR I = 1 to n
    FOR J = 1 to n
    \(\mathrm{A}[\mathrm{I}, \mathrm{J}]=\mathrm{A}[\mathrm{I}, \mathrm{J}-1]+1\)
```


Multi-Dimensional Dependence

FOR I = 1 to n
FOR J = 1 to n
$\mathrm{A}[\mathrm{I}, \mathrm{J}]=\mathrm{A}[\mathrm{I}, \mathrm{J}-1]+1$

FOR I = 1 to n

$$
\text { FOR } J=1 \text { to } n
$$

$$
\mathrm{A}[\mathrm{I}, \mathrm{~J}]=\mathrm{A}[\mathrm{I}+1, \mathrm{~J}]+1
$$

Prof. Saman Amarasinghe, MIT.

6.189 IAP 2007 MIT

What is the Dependence?

```
FOR I = 1 to n
    FOR J = 1 to n
        \(A[I, J]=A[I-1, J+1]+1\)
```


FOR I = 1 to n

$$
\begin{aligned}
& \text { FOR J }=1 \text { to } n \\
& B[I]=B[I-1]+1
\end{aligned}
$$

What is the Dependence?

```
FOR I = 1 to n
    FOR J = 1 to n
        \(A[I, J]=A[I-1, J+1]+1\)
```


FOR I = 1 to n

$$
\begin{aligned}
\mathrm{FOR} J & =1 \text { to } \mathrm{n} \\
\mathrm{~A}[\mathrm{I}] & =\mathrm{A}[\mathrm{I}-1]+1
\end{aligned}
$$

Prof. Saman Amarasinghe, MIT.

What is the Dependence?

```
FOR I = 1 to n
    FOR J = 1 to n
        \(A[I, J]=A[I-1, J+1]+1\)
```


FOR I = 1 to n

$$
\begin{aligned}
& \text { FOR J }=1 \text { to } n \\
& B[I]=B[I-1]+1
\end{aligned}
$$

Prof. Saman Amarasinghe, MIT.
6.189 IAP 2007 MIT

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Interprocedural Parallelization
- Loop Transformations
- Granularity of Parallelism

Scalar Privatization

- Example

$$
\begin{aligned}
& \text { FOR } i=1 \text { to } n \\
& \quad X=A[i] * 3 ; \\
& B[i]=x ;
\end{aligned}
$$

- Is there a loop carried dependence?
- What is the type of dependence?

Privatization

- Analysis:
- Any anti- and output- loop-carried dependences
- Eliminate by assigning in local context

```
FOR i = 1 to n
    integer Xtmp;
    Xtmp = A[i] * 3;
    B[i] = Xtmp;
```

- Eliminate by expanding into an array

```
FOR i = 1 to n
    Xtmp[i] = A[i] * 3;
    B[i] = Xtmp[i];
```


Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
        integer Xtmp;
    Xtmp = A[i] * 3;
    B[i] = Xtmp;
    if(i == n) X = Xtmp
```

- Eliminate by expanding into an array FOR i = 1 to n
Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];
X = Xtmp[n];

Another Example

- How about loop-carried true dependences?
- Example

$$
\begin{aligned}
& \text { FOR i }=1 \text { to n } \\
& x=X+A[i]
\end{aligned}
$$

- Is this loop parallelizable?

Reduction Recognition

- Reduction Analysis:
- Only associative operations
- The result is never used within the loop
- Transformation

```
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
    Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {
    FOR p = 0 to NUMPROC-1
    X = X + Xtmp[p];
```


Induction Variables

- Example

FOR $i=0$ to N

$$
A[i]=2^{\wedge} i
$$

- After strength reduction

$$
\begin{aligned}
& t=1 \\
& \text { FOR } i=0 \text { to } N \\
& \quad A[i]=t ; \\
& t=t * 2 ;
\end{aligned}
$$

- What happened to loop carried dependences?
- Need to do opposite of this!
- Perform induction variable analysis
- Rewrite IVs as a function of the loop variable

Array Privatization

- Similar to scalar privatization
- However, analysis is more complex
- Array Data Dependence Analysis: Checks if two iterations access the same location
- Array Data Flow Analysis:

Checks if two iterations access the same value

- Transformations
- Similar to scalar privatization
- Private copy for each processor or expand with an additional dimension

Interprocedural Parallelization

- Function calls will make a loop unparallelizatble
- Reduction of available parallelism
- A lot of inner-loop parallelism
- Solutions
- Interprocedural Analysis
- Inlining

Interprocedural Parallelization

- Issues
- Same function reused many times
- Analyze a function on each trace \rightarrow Possibly exponential
- Analyze a function once \rightarrow unrealizable path problem
- Interprocedural Analysis
- Need to update all the analysis
- Complex analysis
- Can be expensive
- Inlining
- Works with existing analysis
- Large code bloat \rightarrow can be very expensive

Loop Transformations

- A loop may not be parallel as is
- Example

```
FOR i = 1 to N-1
    FOR j = 1 to N-1
    A[i,j] = A[i,j-1] + A[i-1,j];
```


Loop Transformations

- A loop may not be parallel as is
- Example

FOR i $=1$ to $N-1$

$$
\begin{aligned}
& \text { FOR } j=1 \text { to } N-1 \\
& \qquad A[i, j]=A[i, j-1]+A[i-1, j]
\end{aligned}
$$

- After loop Skewing

$$
\begin{aligned}
& \text { FOR } i=1 \text { to } 2^{*} N-3 \\
& \quad \text { FORPAR } j=\max (1, i-N+2) \text { to } \min (i, N-1) \\
& \quad A[i-j+1, j]=A[i-j+1, j-1]+A[i-j, j] ;
\end{aligned}
$$

Granularity of Parallelism

- Example

$$
\begin{aligned}
& \text { FOR } i=1 \text { to } N-1 \\
& \quad \text { FOR } j=1 \text { to } N-1 \\
& \quad A[i, j]=A[i, j]+A[i-1, j]
\end{aligned}
$$

- Gets transformed into

```
FOR i = 1 to N-1
    Barrier();
    FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
        A[i,j] = A[i,j] + A[i-1,j];
    Barrier();
```

- Inner loop parallelism can be expensive
- Startup and teardown overhead of parallel regions
- Lot of synchronization
- Can even lead to slowdowns

Granularity of Parallelism

- Inner loop parallelism can be expensive
- Solutions
- Don't parallelize if the amount of work within the loop is too small
or
- Transform into outer-loop parallelism

Outer Loop Parallelism

- Example

```
FOR i = 1 to N-1
    FOR j = 1 to N-1
        A[i,j] = A[i,j] + A[i-1,j];
```

- After Loop Transpose

$$
\begin{aligned}
& \text { FOR } j=1 \text { to } N-1 \\
& \quad \text { FOR } i=1 \text { to } N-1 \\
& \quad A[i, j]=A[i, j]+A[i-1, j] ;
\end{aligned}
$$

- Get mapped into

```
Barrier();
    FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
        FOR i = 1 to N-1
        A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```


Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Generating Transformed Loop Bounds

for $i=1$ to n do

$$
\begin{aligned}
& X[i]=\ldots \\
& \text { for } j=1 \text { to } i-1 \text { do } \\
& \ldots=X[j]
\end{aligned}
$$

- Assume we want to parallelize the i loop

- What are the loop bounds?
- Use Projections of the Iteration Space
- Fourier-Motzkin Elimination

$$
\left\{(p, i, j) \left\lvert\, \begin{array}{c}
1 \leq i \leq n \\
1 \leq j \leq i-1 \\
i=p
\end{array}\right.\right\}
$$ Algorithm

Space of Iterations

for $p=2$ to n do
i $=p$

for $\mathrm{j}=1$ to i - 1 do

Projections

for $p=2$ to n do

$$
\mathrm{i}=\mathrm{p}
$$

for $\mathrm{j}=1$ to $\mathrm{i}-1$ do

Projections

$$
\begin{aligned}
& p=\text { my_pid() } \\
& \text { if } p>=2 \text { and } p<=n \text { then } \\
& i=p \\
& \quad \text { for } j=1 \text { to } i-1 \text { do }
\end{aligned}
$$

Fourier Motzkin Elimination

$$
\begin{aligned}
& 1 \leq i \leq n \\
& 1 \leq j \leq i-1 \\
& i=p
\end{aligned}
$$

- Project $\mathrm{i} \rightarrow \mathrm{j} \rightarrow \mathrm{p}$
- Find the bounds of i
$1 \leq i$
$j+1 \leq i$
$p \leq i$
$i \leq n$
$i \leq p$
i: $\max (1, j+1, p)$ to $\min (n, p)$
i: p
- Eliminate i

$$
\begin{gathered}
1 \leq n \\
j+1 \leq n \\
p \leq n \\
\hline 1 \leq p \\
j+1 \leq p
\end{gathered}
$$

$$
\frac{p \leq p}{1 \leq j}
$$

- Eliminate redundant

$$
p \leq n
$$

$$
1 \leq p
$$

$$
j+1 \leq p
$$

$$
1 \leq j
$$

- Continue onto finding bounds of j

Fourier Motzkin Elimination

$$
\begin{aligned}
& p \leq n \\
& 1 \leq p \\
& j+1 \leq p \\
& 1 \leq j
\end{aligned}
$$

- Find the bounds of j $1 \leq j$
$j \leq p-1$
j: 1 to $p-1$
- Eliminate j

$$
\begin{aligned}
& 1 \leq p-1 \\
& \hline p \leq n \\
& 1 \leq p
\end{aligned}
$$

- Eliminate redundant

$$
\begin{aligned}
& 2 \leq p \\
& p \leq n
\end{aligned}
$$

- Find the bounds of p
$2 \leq p$

$$
p \leq n
$$

p: 2 to n

$$
\begin{aligned}
& p=m y _p i d() \\
& \text { if } p>=2 \text { and } p<=n \text { then } \\
& \text { for } j=1 \text { to } p-1 \text { do } \\
& \quad i=p
\end{aligned}
$$

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Communication Code Generation

- Cache Coherent Shared Memory Machine
- Generate code for the parallel loop nest
- No Cache Coherent Shared Memory or Distributed Memory Machines
- Generate code for the parallel loop nest
- Identify communication
- Generate communication code

Identify Communication

- Location Centric
- Which locations written by processor 1 is used by processor 2?
- Multiple writes to the same location, which one is used?
- Data Dependence Analysis
- Value Centric
- Who did the last write on the location read?
- Same processor \rightarrow just read the local copy
- Different processor \rightarrow get the value from the writer
- No one \rightarrow Get the value from the original array

Last Write Trees (LWT)

- Input: Read access and write access(es)
for $i=1$ to n do for $j=1$ to n do

$$
\mathrm{A}[\mathrm{j}]=\ldots
$$

Lodadlan Centric Dependences

$$
\ldots=x[j-1]
$$

- Output: a function mapping each read iteration to a write creating that value

The Combined Space

the receive iterations

Precv
 $\mathrm{i}_{\text {recv }}$
 $\mathrm{j}_{\text {recv }}$
 Psend
 $\mathrm{i}_{\text {send }}$

send iterations
$P_{\text {send }}=i_{\text {send }}$
Non-local communication
$P_{\text {recv }} \neq P_{\text {send }}$

Communication Space

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& A[j]=\ldots \\
& \ldots=X[j-1]
\end{aligned}
$$

$$
\left\{\begin{array}{c}
1 \leq i_{\text {recv }} \leq n \\
0 \leq j_{\text {recv }} \leq i_{\text {recv }}-1 \\
i_{\text {send }}=i_{\text {recv }} \\
P_{\text {recv }}=i_{\text {recv }} \\
P_{\text {send }}=i_{\text {send }} \\
P_{\text {recv }} \neq P_{\text {send }}
\end{array}\right\}
$$

Precv

Prof. Saman Amarasinghe, MIT.
63

Communication Loop Nests

Send Loop Nest

$$
\begin{aligned}
& \text { for } \mathrm{p}_{\text {send }}=1 \text { to } \mathrm{n}-1 \text { do } \\
& \mathrm{i}_{\text {send }}=\mathrm{p}_{\text {send }} \\
& \text { for } \mathrm{p}_{\text {recv }}=\mathrm{i}_{\text {send }}+1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{i}_{\text {recv }}=\mathrm{p}_{\text {recv }} \\
& \mathrm{j}_{\text {recv }}=\mathrm{i}_{\text {send }} \\
& \text { send } X\left[i_{\text {send }}\right] \text { to } \\
& \text { iteration }\left(\mathrm{i}_{\text {recv }}, \mathrm{j}_{\text {recv }}\right) \text { in } \\
& \text { processor } \mathrm{p}_{\text {recv }}
\end{aligned}
$$

Prof. Saman Amarasinghe, MIT.

Receive Loop Nest

$$
\begin{aligned}
& \text { for } p_{\text {recv }}=2 \text { to } n \text { do } \\
& \mathrm{i}_{\text {recv }}=\text { p }_{\text {recv }} \\
& \text { for } j_{\text {recv }}=1 \text { to } i_{\text {recv }}-1 \text { do } \\
& \mathrm{p}_{\text {send }}=\mathrm{j}_{\text {recv }} \\
& \mathrm{i}_{\text {send }}=\mathrm{p}_{\text {send }} \\
& \text { receive } X\left[\mathrm{j}_{\text {recv }}\right] \text { from } \\
& \text { iteration } \mathrm{i}_{\text {send }} \text { in } \\
& \text { processor } \mathrm{p}_{\text {send }}
\end{aligned}
$$

6.189 IAP 2007 MIT

Merging Loops

Computation Send Recv

Merging Loop Nests

```
if \(p==1\) then
    \(\mathrm{X}[\mathrm{p}]=.\).
    for \(\mathrm{pr}=\mathrm{p}+1\) to n do
                send \(\mathrm{X}[\mathrm{p}]\) to iteration ( \(\mathrm{pr}, \mathrm{p}\) ) in processor pr
if \(p>=2\) and \(p<=n-1\) then
    \(\mathrm{X}[\mathrm{p}]=.\).
    for \(\mathrm{pr}=\mathrm{p}+1\) to n do
        send \(\mathrm{X}[\mathrm{p}]\) to iteration ( \(\mathrm{pr}, \mathrm{p}\) ) in processor pr
    for \(j=1\) to \(p\) - 1 do
        receive \(\mathrm{X}[\mathrm{j}]\) from iteration (j) in processor j
        ... = X[j]
if \(\mathrm{p}=\mathrm{n}\) then
    X[p] =...
    for \(\mathrm{j}=1\) to p - 1 do
        receive \(\mathrm{X}[\mathrm{j}]\) from iteration (j) in processor j
        ... = X[j]
```


Communication Optimizations

- Eliminating redundant communication
- Communication aggregation
- Multi-cast identification
- Local memory management

Summary

- Automatic parallelization of loops with arrays
- Requires Data Dependence Analysis
- Iteration space \& data space abstraction
- An integer programming problem
- Many optimizations that'll increase parallelism
- Transforming loop nests and communication code generation
- Fourier-Motzkin Elimination provides a nice framework

