
Mike Acton, Insomiac Games. 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 16

Introduction to Game Development

Introduction to Game Development
(on the Playstation 3 / Cell)

● Mike Acton
– Engine Director, Insomniac Games
– < macton @ insomniacgames.com >
– Director, CellPerformance.com
– < macton @ cellperformance.com >

Different Types of Game
Development

● Casual
● Console
● PC
● Handheld
● Cellphone
● Single Player
● Multi Player

Console Development Priorities

● The code itself is not that important.
● The design of the data affects performance

more than the design of the code.
● Ease of programming is either a minor or non-

priority.
● Portability is not a concern.
● Performance is still king.

Development Team

● Artists
– Animation, Shader, Texture, Modeling
– Environment, Lighting, ...

● Designers
– Systems, Level, ...

● Writers
● Producers
● Programmers

– Gameplay, Engine, AI, Special Effects,
– Sound/Music, ...

What Impacts Game's Technical
Design?

● Type of game
● Framerate
● Schedule
● Cost
● Hardware
● Compilers
● ...

● How does this affect
code reusability?

● How does this affect
cross-platform
design?

What are the major game modules?

● Memory
management

● Math
● Collision
● Physics
● Static graphics
● Animation
● Procedural graphics
● Lighting

● Loading, streaming
● Scene graph
● AI
● Compression
● Sound, Music
● Special Effects
● State machines
● Scripting
● Motion control
● ...

Overview

● How does programming on the Playstation 3
affect the (macro) design of the major
systems?

● Overview of design process for a specific
system (Animation).

Structure Design (1)

● Conventional structures are (surprisingly?)
needed very little in engine-level SPU code.
– Data is compressed
– Data is sorted by type (i.e. Fewer flags)
– Data is organized into blocks or streams
– Data is accessed only in quadwords

Structure Design (2)

● Organize data carefully:
– Prefer fixed (known) size blocks
– Fundamental unit: 128 bytes (Cache line)
– Fundamental unit: 16 bytes (Quadword)
– Prefer uniform data

● Minimum working sizes:
– 4 x 2 x 64 bits
– 4 x 4 x 32 bits
– 4 x 8 x 16 bits
– 4 x 16 x 8 bits
– 4 x 128 bits

Basic Math

● e.g. Vector Class
– Usually the first thing a programmer will make, but

consider:
● SIMD, Altivec vs. SPU instruction set
● Floats vs. Double vs. Fixed-point
● SPU floating-point format
● Component access

– ... There's no value here.

Memory Manager

● Static allocation is preferred to dynamic
● Most data patterns are known in advance
● When designing allocator, consider:

– Page sizes
– LRU is most common, but pretty bad.
– Hierarchy of allocations
– Fragmentation is a non-issue for well planned

architectures
– Remember cache line alignment.
– SPU transfer blocks, 16K

Collision Detection

● Affects high-level design
– Deferred results
– Grouped results

● SPU decomposition for:
– Static geometry in scene
– Dynamic geometry in scene

Procedural Graphics

● Patch size
● Filter types
● Sync of source reads
● Sync with GPU
● SPU vs. RSX

● Particles
● Cloth
● Fonts
● Textures
● Parametric geometry
● ...

Geometry databases

● No scene graph
● Domain information linked by key
● Cache and TLB affect design choices

– e.g. Static geometry lookup (Octree, BSP, etc.)
● Geometry lookups on SPU

– Spatially pre-sort
– Multiple simultaneous lookups

Game Logic

● State machines
– Size affected by SPU
– Deferred results
– Logic lines can be deferred

● Scripting
– Interpreter size
– Multiple streams to hide memory accesses

● Motion control
– High-level sync (Animation, AI, Physics)

Animation (1)

● Starting with the basics:
– Simple playback, animation channels

● Related data
● e.g. Rotation + Translation + Scale = Joint

– Euler vs. quaternion
● Euler: More compressible
● Quaternion: Less messy
● Gimbal lock is manageable in practice.

– Format, double vs. float vs. half vs. fixed-point
– Rotations: Degrees, radians or normalized?

Animation (2)

● Animation frame storage
– Basic 9 channels (raw)
– Uniform channels

● Plus uniform channel map
● Plus uniform channel count

– X Number of joints
– Decide on max channels

Animation (3)

● Channel curve fitting
– Closer to root, tighter fit.
– e.g. Simple spline

● Store time values
● Problem: Looping scalars
● Problem: Unlimited length

Animation (4)

● e.g. Spline segments
– Plus storage for time maps
– Plus segment lookup time
– Advantage: Can re-order blocks
– Advantage: Long lengths OK
– Disadvantage: Less compressable
– Advantage: Solves scalar loop problem

● Summarize: DMA and transform.

Animation (5)

● e.g. Adding dynamic channel support
– Add uniform data table

● Maximum dynamic channels with linkage, or...
● All uncompressed

– Add (simple) contraints
● Max change
● Max range
● Max acceleration (impacts storage)

– Blend information
– Summarize: DMA and transform.

Animation (6)

● More on mixing:
– Phase matching
– Transitions
– Translation matching

● Drawing animated geometry
– Single or double buffer joints:

● Single: Requires more organization
● Double: More memory, more flexible.

Optimization

● Required for practice
● Impacts design
● NOT the root of all evil

