
Prof. Saman Amarasinghe, MIT. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 18

The Future

2 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Predicting the Future is Always Risky

● "I think there is a world market for
maybe five computers.“

– Thomas Watson, chairman of IBM, 1949

● "There is no reason in the world
anyone would want a computer in their
home. No reason.”

– Ken Olsen, Chairman, DEC, 1977

● "640K of RAM ought to be enough for
anybody.”

– Bill Gates, 1981

3 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Future = Evolution + Revolution

● Evolution
Relatively easy to predict
Extrapolate the trends

● Revolution
A completely new technology or solution
Hard to Predict

● Paradigm Shifts can occur in both

4 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries

5 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Evolution

● Look at the trends
Moore’s Law
Power Consumption
Wire Delay
Hardware Complexity
Parallelizing Compilers
Program Design Methodologies

● Design Drivers are different in
Different Generations

6 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Pe
rfo

rm
an

ce
 (v

s.
 V

A
X-

11
/7

80
)

25%/year

52%/year

??%/year

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

The March to Multicore:
Moore’s Law

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

7 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The March to Multicore:
Uniprocessor Performance (SPECint)

Specint2000

1.00

10.00

100.00

1000.00

10000.00

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07

i ntel 386

i ntel 486

i ntel pent i um

i ntel pent i um 2

i ntel pent i um 3
i ntel pent i um 4

i ntel i tani um

A l pha 21064

A l pha 21164

A l pha 21264

Spar c

Super Spar c

Spar c64

M i ps

HP PA
Power PC

AM D K6

AM D K7

AM D x86-64

8 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Power Consumption (watts)

Power

1

10

100

1000

85 87 89 91 93 95 97 99 01 03 05 07

intel 386

intel 486

intel pentium

intel pentium 2

intel pentium 3

intel pentium 4

intel i tanium

Alpha 21064

Alpha 21164

Alpha 21264

Spar c

Super Spar c

Spar c64

Mips

HP PA

Power PC

AMD K6

AMD K7

AMD x86-64

9 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Power Efficiency (watts/spec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1982 1984 1987 1990 1993 1995 1998 2001 2004 2006

Year

W
at

ts
/S

pe
c

intel 386
intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc64
M ips
HP PA
Power PC
AM D K6
AM D K7
AM D x86-64

10 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Range of a Wire in One Clock Cycle

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

P
ro

ce
ss

 (m
ic

ro
ns

)

700 MHz

1.25 GHz

2.1 GHz

6 GHz
10 GHz

13.5 GHz

• 400 mm2 Die
• From the SIA Roadmap

11 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

DRAM Access Latency

1

100

10000

1000000

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

Year

Pe
rf

or
m

an
ce

µProc
60%/yr.

(2X/1.5yr)

DRAM
9%/yr.

(2X/10 yrs)

12 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Improvement in Automatic Parallelization

1970 1980 1990 2000 2010

Vectorization
technology

Automatic
Parallelizing

Compilers for
FORTRAN

Prevalence of type
unsafe languages and

complex data
structures (C, C++)

Typesafe
languages
(Java, C#)

Demand
driven by

Multicores?Compiling for
Instruction

Level
Parallelism

13 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

1985 199019801970 1975 1995 2000 2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Ambric
AM2045

Multicores are here

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2Athlon

14 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries

15 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Novel Opportunities in Multicores

● Don’t have to contend with uniprocessors
The era of Moore’s Law induced performance gains is over!
Parallel programming will be required by the masses
– not just a few supercomputer super-users

16 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Novel Opportunities in Multicores

● Don’t have to contend with uniprocessors
The era of Moore’s Law induced performance gains is over!
Parallel programming will be required by the masses
– not just a few supercomputer super-users

● Not your same old multiprocessor problem
How does going from Multiprocessors to Multicores impact
programs?
What changed?
Where is the Impact?
– Communication Bandwidth
– Communication Latency

17 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Communication Bandwidth

● How much data can be communicated
between two cores?

● What changed?
Number of Wires
– IO is the true bottleneck
– On-chip wire density is very high
Clock rate
– IO is slower than on-chip
Multiplexing
– No sharing of pins

● Impact on programming model?
Massive data exchange is possible
Data movement is not the bottleneck

processor affinity not that important

32 Giga bits/sec ~300 Tera bits/sec

10,000X

18 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Communication Latency

● How long does it take for a round trip
communication?

● What changed?
Length of wire
– Very short wires are faster

Pipeline stages
– No multiplexing
– On-chip is much closer
– Bypass and Speculation?

● Impact on programming model?
Ultra-fast synchronization
Can run real-time apps
on multiple cores

50X

~200 Cycles ~4 cycles

19 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Past, Present and the Future?

PE PE

$$ $$

Memory

PE PE

$$

Memory

$$

PE

$$ X

PE

$$ X

PE

$$ X

PE

$$ X

MemoryMemory

M
em

or
y

M
em

or
y

Basic Multicore
IBM Power5

Traditional
Multiprocessor

Integrated Multicore
16 Tile MIT Raw

20 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries

21 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The OO Revolution

● Object Oriented revolution did not come out of a vacuum

● Hundreds of small experimental languages

● Rely on lessons learned from lesser-known languages
C++ grew out of C, Simula, and other languages
Java grew out of C++, Eiffel, SmallTalk, Objective C, and
Cedar/Mesa1

● Depend on results from research community

J. Gosling, H. McGilton, The Java Language Enviornment1

22 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Object Oriented Languages

● Ada 95
● BETA
● Boo
● C++
● C#
● ColdFusion
● Common Lisp
● COOL (Object

Oriented COBOL)
● CorbaScript
● Clarion
● Corn
● D
● Dylan
● Eiffel
● F-Script
● Fortran 2003
● Gambas
● Graphtalk
● IDLscript
● incr Tcl
● J
● JADE

● Java
● Lasso
● Lava
● Lexico
● Lingo
● Modula-2
● Modula-3
● Moto
● Nemerle
● Nuva
● NetRexx
● Nuva
● Oberon (Oberon-1)
● Object REXX
● Objective-C
● Objective Caml
● Object Pascal

(Delphi)
● Oz
● Perl 5
● PHP
● Pliant
● PRM
● PowerBuilder

● ABCL
● Python
● REALbasic
● Revolution
● Ruby
● Scala
● Simula
● Smalltalk
● Self
● Squeak
● Squirrel
● STOOP (Tcl

extension)
● Superx++
● TADS
● Ubercode
● Visual Basic
● Visual FoxPro
● Visual Prolog
● Tcl
● ZZT-oop

Source: Wikipedia

23 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Language Evolution
From FORTRAN to a few present day languages

Source: Eric Levenez

24 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Origins of C++

Source: B. Stroustrup, The Design and Evolution of C++

1960

1970

1980

1990

Structural influence
Feature influence

Fortran
Algol 60

CPL

BCPL

C

ANSI C

Simula 67

C with Classes

C++

C++arm

C++std

ML CluAlgol 68

Ada

25 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Academic Influence on C++

“Exceptions were considered in the original design of C++, but
were postponed because there wasn't time to do a thorough job of
exploring the design and implementation issues.

In retrospect, the greatest influence on the C++ exception
handling design was the work on fault-tolerant systems started at the
University of Newcastle in England by Brian Randell and his
colleagues and continued in many places since.”

-- B. Stroustrup, A History of C++

…

26 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Origins of Java
● Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa
● Example lessons learned:

Stumbling blocks of C++ removed (multiple inheritance, preprocessing, operator
overloading, automatic coercion, etc.)
Pointers removed based on studies of bug injection
GOTO removed based on studies of usage patterns
Objects based on Eiffel, SmallTalk
Java interfaces based on Objective C protocols
Synchronization follows monitor and condition variable paradigm (introduced by
Hoare, implemented in Cedar/Mesa)
Bytecode approach validated as early as UCSD P-System (‘70s)

Lesser-known precursors essential to Java’s success

Source: J. Gosling, H. McGilton, The Java Language Enviornment

27 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Why New Programming Models
and Languages?
● Paradigm shift in architecture

From sequential to multicore
Need a new “common machine language”

● New application domains
Streaming
Scripting
Event-driven (real-time)

● New hardware features
Transactions
Introspection
Scalar Operand Networks or Core-to-core DMA

● New customers
Mobile devices
The average programmer!

● Can we achieve parallelism without burdening the programmer?

28 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Domain Specific Languages

● There is no single programming domain!
Many programs don’t fit the OO model (ex: scripting and
streaming)

● Need to identify new programming models/domains
Develop domain specific end-to-end systems
Develop languages, tools, applications ⇒ a body of
knowledge

● Stitching multiple domains together is a hard problem
A central concept in one domain may not exist in another
– Shared memory is critical for transactions, but not available in

streaming
Need conceptually simple and formally rigorous interfaces
Need integrated tools
But critical for many applications

29 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

programmability

domain specific
optimizations

enable parallel
execution

simple and effective optimizations for
domain specific abstractions

boost productivity, enable faster
development and rapid prototyping

Compiler-Aware Language Design:
StreamIt Experience

● Some programming models are inherently concurrent
Coding them using a sequential language is…
– Harder than using the right parallel abstraction
– All information on inherent parallelism is lost

● There are win-win situations
Increasing the programmer productivity while extracting parallel
performance

target tiled architectures, clusters,
DSPs, multicores, graphics processors,

…

30 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1 2 3 4 5 6 7 8 9 10 11 12 13

Benchmarks

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

I

StreamIt Performance on Raw

GeoMean

31 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Parallelizing Compilers:
SUIF Experience

● Automatic Parallelism is not impossible
Can work well in many domains (example: ILP)

● Automatic Parallelism for multiprocessors “almost” worked in the ‘90s
SUIF compiler got the Best SPEC results by automatic parallelization

● But…
The compilers were not robust
Clients were impossible (performance at any cost)
Multiprocessor communication was expensive
Had to compete with improvements in sequential performance
The Dogfooding problem

● Today: Programs are even harder to analyze
Complex data structures
Complex control flow
Complex build process
Aliasing problem (type unsafe languages)

32 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Compilers

● Compilers are critical in reducing the burden on
programmers

Identification of data parallel loops can be easily
automated, but many current systems (Brook,
PeakStream) require the programmer to do it.

● Need to revive the push for automatic parallelization
Best case: totally automated parallelization hidden from
the user
Worst case: simplify the task of the programmer

33 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Tools

● A lot of progress in tools to improve programmer
productivity

● Need tools to
Identify parallelism
Debug parallel code
Update and maintain parallel code
Stitch multiple domains together

● Need an “Eclipse platform for multicores”

34 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Facilitate Evaluation and Feedback for
Rapid Evolution

Language/Compiler/Tools
Idea

Implementation

Evaluation

Evaluation

Develop a
Program

Functional
Debugging

Performance
DebuggingEvaluate

35 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The Dogfooding Problem
CAD Tools vs. OO Languages

● CAD Tools
Universally hated by the
users
Only a few can hack it
Very painful to use

● Origins
Developed by CAD experts
User community is separate

● Object Oriented Languages
User friendly
Universal acceptance
Use by ordinary
programmers
Huge improvements in
programmer productivity

● Origins
Developed by PL experts
The compiler is always
written using the
language/tools
Rapid feedback

● High Performance Languages
User community is separate
Hard to get feedback
Slow evolution

36 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Rapid Evaluation

● Extremely hard to get
Real users have no interest in flaky tools
Hard to quantify
Superficial users vs. Deep users will give different feedback
– Fatal flaws as well as amazing uses may not come out immediately

● Need a huge, sophisticated (and expensive) infrastructure
How to get a lot of application experts to use the system?
How do you get them to become an expert?
How do you get them to use it for a long time?
How do you scientifically evaluate?
How go you get actionable feedback?

● A “Center for Evaluating Multicore Programming Environments”??

37 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Identify, Collect, Standardize, Adopt

● Good languages/tools cannot be designed by
committee

● However, you need a vibrant ecosystem of ideas

● Need a process of natural selection
Quantify Productivity and Performance
Competition between multiple teams
Winner(s) get to design the final language

38 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Migrate the Dusty Deck

● Impossible to bring them to the new era automatically
Badly mangled, hand-optimized, impossible to analyze code
Automatic compilation, even with a heroic effort, cannot do anything

● Help rewrite the huge stack of dusty deck
Application in use
Source code available
Programmer long gone

● Getting the new program to have the same behavior is hard
“Word pagination problem”

● Can take advantage of many recent advances
Creating test cases
Extracting invariants
Failure oblivious computing

39 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries

40 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

How about Revolutions?

● What are the far-out technologies?
● Wishful Thinking?

41 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries

42 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Computer Systems from 10,000 feet
foo(int x)
{ .. }

class of
computation

convenient
physical
phenomenon

… we use
abstractions
to make this
easier

43 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The Abstraction Layers Make This Easier

foo(int x) { .. }

Computation
Language / API
Compiler / OS
ISA
Micro Architecture
Layout
Design Style
Design Rules
Process
Materials Science
Physics

IBM 360/RISC/Transmeta
Fortran

Mead & Conway

44 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

A Case Against Entrenched Abstractions

foo(int x) { .. }

Computation
Language / API
Compiler / OS
ISA
Micro Architecture
Layout
Design Style
Design Rules
Process
Materials Science
Physics

