
Dr. Rodric Rabbah, IBM. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 9

Debugging Parallel Programs

2 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Debugging Parallel Programs is Hard-er

● Parallel programs are subject to the usual bugs

● Plus: new timing and synchronization errors

● And: parallel bugs often disappear when you add
code to try to identify the bug

3 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Visual Debugging of Parallel Programs

● A global view of the multiprocessor architecture
Processors and communication links

● See which communication links are used
Perhaps even change the data in transmission

● Utilization of each processor
Can identify blocked processors, deadlock

● “step” through functionality?
Lack of a global clock

● Likely won’t help with data races

4 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

TotalView

5 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Debugging Parallel Programs

● Commercial debuggers
TotalView, …

● The printf approach

● gdb, MPI gdb, ppu/spu gdb, …

● Research debuggers
StreamIt Debugger, …

6 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

StreamIt Debugger

7 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Cell Debugger in Eclipse IDE

8 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Pattern-based Approach to Debugging

● “Defect Patterns”: common kinds of bugs in parallel
programs

Useful tips to prevent them
Recipes for effective resolution

● Inspired by empirical studies at University of
Maryland

http://fc-md.umd.edu/softwareday//presentations/Session0/Keynote.pdf

● At the end of this course, will try to identify some
common Cell defect patterns based on your
feedback and projects

9 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Defect Pattern: Erroneous Use of
Language Features

● Examples
Inconsistent parameter types for get/send and put/receive
Required function calls
Inappropriate choice of functions

● Symptoms
Compile-type error (easy to fix)
Some defects may surface only under specific conditions
– Number of processors, value of input, alignment issues

● Cause
Lack of experience with the syntax and semantics of new
language features

● Prevention
Check unfamiliar language features carefully

10 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Does Cell have too many functions?

spe_create_thread
spe_wait

spe_write_in_mbox
spe_stat_in_mbox

spe_read_out_mbox
spe_stat_out_mbox

spe_write_signal

spe_get_ls
spe_get_ps_area

spe_mfc_get
spe_mfc_put
spe_mfc_read_tag_status

spe_create_group
spe_get_event

mfc_get
mfc_put
mfc_stat_cmd_queue
mfc_write_tag_mask
mfc_read_tag_status_all/any/immediate

spu_read_in_mbox
spu_stat_in_mbox

spu_write_out_mbox, spu_write_out_intr_mbox
spu_stat_out_mbox, spu_stat_out_intr_mbox

spu_read_signal1/2
spu_stat_signal1/2

spu_write_event_mask
spu_read_event_status
spu_stat_event_status
spu_write_event_ack

spu_read_decrementer
spu_write_decrementer

● Yes! But you may not need all of them
● Understand a few basic features

11 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Defect Pattern: Space Decomposition

● Incorrect mapping between the problem space and the
program memory space

● Symptoms
Segmentation fault (if array index is out of range)
Incorrect or slightly incorrect output

● Cause
Mapping in parallel version can be different from that in serial
version
– Array origin is different in every processor
– Additional memory space for communication can complicate the

mapping logic

● Prevention
Validate memory allocation carefully when parallelizing code

12 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Example Problem

● N cells, each of which holds an integer [0..9]
cell[0]=2, cell[1]=1, …, cell[N-1]=3

● In each step, cells are updated using values of neighboring cells
cellnext[x] = (cell[x-1] + cell[x+1]) mod 10
cellnext[0]=(3+1), cellnext[1]=(2+6), …

Assume the last cell is connected to the first cell
● Repeat for steps times

A sequence of N cells
2 1 6 8 7 1 0 2 4 5 1 … 3

Example adapted from
Taiga Nakamura

13 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Sequential Implementation

● Approach to implementation
Use an integer array buffer[] for current cell values
Use a second array nextbuffer[] to store the values
for next step
Swap the buffers

14 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

/* Initialize cells */
int x, n, *tmp;
int *buffer = (int*)malloc(N * sizeof(int));
int *nextbuffer = (int*)malloc(N * sizeof(int));
FILE *fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
for (x = 0; x < N; x++) { fscanf(fp, "%d", &buffer[x]); }
fclose(fp);

/* Main loop */
for (n = 0; n < steps; n++) {

for (x = 0; x < N; x++) {
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;

}

/* Final output */
...
free(nextbuffer); free(buffer);

Sequential C Code

Example adapted from
Taiga Nakamura

15 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Approach to a Parallel Version

● Each processor keeps 1/size cells
size = number of processors

● Each processor needs to:
update the locally-stored cells
exchange boundary cell values between
neighboring processes

2 1 6 8 7 1 0 2 4 5 1 … 3

2 1 …
P0 …

…

P1

…
P(size-1)

P2

Example adapted from
Taiga Nakamura

16 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

nlocal = N / size;
buffer = (int*)malloc((nlocal+2) * sizeof(int));
nextbuffer = (int*)malloc((nlocal+2) * sizeof(int));

/* Main loop */
for (n = 0; n < steps; n++) {

for (x = 0; x < nlocal; x++) {
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
/* Exchange boundary cells with neighbors */
...

tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Decomposition

…
buffer[]

0 (nlocal+1)

Where are the bugs?

Example adapted from
Taiga Nakamura

17 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

nlocal = N / size;
buffer = (int*)malloc((nlocal+2) * sizeof(int));
nextbuffer = (int*)malloc((nlocal+2) * sizeof(int));

/* Main loop */
for (n = 0; n < steps; n++) {

for (x = 0; x < nlocal; x++) {
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
/* Exchange boundary cells with neighbors */
...

tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

Decomposition

…
buffer[]

0 (nlocal+1)

Where are the bugs?

N may not be divisible by size

(x = 1; x < nlocal+1; x++)

Example adapted from
Taiga Nakamura

18 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Defect Pattern: Synchronization

● Improper coordination between processes
Well-known defect type in parallel programming
Deadlocks, race conditions

● Symptoms
Program hangs
Incorrect/non-deterministic output

● Causes
Some defects can be very subtle
Use of asynchronous (non-blocking) communication can lead
to more synchronization defects

● Preventions
Make sure that all communication is correctly coordinated

19 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

/* Main loop */
for (n = 0; n < steps; n++) {

for (x = 1; x < nlocal+1; x++) {
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
/* Exchange boundary cells with neighbors */
receive (&nextbuffer[0], (rank+size-1)%size);
send (&nextbuffer[nlocal], (rank+1)%size);
receive (&nextbuffer[nlocal+1], (rank+1)%size);
send (&nextbuffer[1], (rank+size-1)%size);
tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;

}

Communication Where are the bugs?

● Deadlock …

…

…

0 (nlocal+1)
Example adapted from
Taiga Nakamura

20 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Modes of Communication

● Recall there are different types of sends and
receives

Synchronous
Asynchronous
Blocking
Non-blocking

● Tips for orchestrating communication
Alternate the order of sends and receives
Use asynchronous and non-blocking messages
where possible

21 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Defect Pattern: Side-effect of
Parallelization

● Ordinary serial constructs may have unexpected side-effects
when they used concurrently

● Symptoms
Various correctness and performance problems

● Causes
Sequential part of code is overlooked
Typical parallel programs contain only a few parallel
primitives, and the rest of the code is a sequential program
running many times

● Prevention
Don’t just focus on the parallel code
Check that the serial code is working on one processor, but
remember that the defect may surface only in a parallel
context

22 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

/* Initialize cells with input file */
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
nskip = ...
for (x = 0; x < nskip; x++) { fscanf(fp, "%d", &dummy);}
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
fclose(fp);

/* Main loop */
...

Data I/O in SPMD Program Where are the bugs?

Example adapted from
Taiga Nakamura

23 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

/* Initialize cells with input file */
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
nskip = ...
for (x = 0; x < nskip; x++) { fscanf(fp, "%d", &dummy);}
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
fclose(fp);

/* Main loop */
...

Data I/O in SPMD Program Where are the bugs?

● File system may cause performance bottleneck if all
processors access the same file simultaneously

● Schedule I/O carefully

Example adapted from
Taiga Nakamura

24 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Data I/O in SPMD Program

● Often only one processor (master) needs to do the I/O

Where are the bugs?

/* Initialize cells with input file */
if (rank == MASTER) {
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
for (p = 1; p < size; p++) {

/* Read initial data for process p and send it */
}
fclose(fp);
}
else {

/* Receive initial data*/
}

Example adapted from
Taiga Nakamura

25 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

/* What if we initialize cells with random values... */
srand(time(NULL));
for (x = 0; x < nlocal; x++) {

buffer[x+1] = rand() % 10;
}

/* Main loop */
...

Generating Initial Data Where are the bugs?

Example adapted from
Taiga Nakamura

26 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

/* What if we initialize cells with random values... */
srand(time(NULL));
for (x = 0; x < nlocal; x++) {

buffer[x+1] = rand() % 10;
}

/* Main loop */
...

Generating Initial Data Where are the bugs?

● All processors might use the same pseudo-random seed
(and hence sequence), spoiling independence

● Hidden serialization in rand() causes performance
bottleneck

srand(time(NULL) + rank);

Example adapted from
Taiga Nakamura

27 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Defect Pattern: Performance Scalability

● Symptoms
Sub-linear scalability
Performance much less than expected
Most time spent waiting

● Causes
Unbalanced amount of computation
Load balancing may depend on input data

● Prevention
Make sure all processors are “working” in parallel
Profiling tools might help

28 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Summary

● Some common bugs in parallel programming
Erroneous use of language features
Space decomposition
Side-effect of parallelization
Synchronization
Performance scalability

● There are other kinds of bugs as well: data race

29 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Comment on Data Race Detection

● Trace analysis can help
Execute program
Generate trace of all memory accesses and
synchronization operations
Build a graph of orderings (solid arrows below) and
conflicting memory references (dashed lines below)
Detect races (when two nodes connected by dashed
lines are not ordered by solid arrows)

● Intel Thread Checker is an example
More tools available for automatic race detection

30 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Trend in Debugging Technology

● Trace-based
● Checkpointing
● Replay

● One day… you’ll have the equivalent of TiVo for
debugging your programs

