
Software Development Kit for Multicore Acceleration

Version 3.0

Programming Tutorial

DRAFT

SC33-8410-00

���

Software Development Kit for Multicore Acceleration

Version 3.0

Programming Tutorial

DRAFT

SC33-8410-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 153.

Edition notice

This edition applies to the Beta Version of the Software Development Kit (SDK) for Multicore Acceleration, Version

3.0 (program number 5724-S84) and to all subsequent releases and modifications until otherwise indicated in new

editions.

2005, 2007 - DRAFT © Copyright International Business Machines Corporation, Sony Computer Entertainment

Incorporated, Toshiba Corporation

Preface

About this book

This tutorial is written for programmers who are interested in developing

applications or libraries for the Cell Broadband Engine™ (Cell BE). It is not

intended for programmers who want to develop device drivers, compilers, or

operating systems for the Cell Broadband Engine.

The descriptions and examples in this tutorial are from the Software Development Kit

for Multicore Acceleration, Version 3.0. The examples are chosen to highlight the

general principals required for Cell Broadband Engine programming, so that an

experienced programmer can apply this knowledge to other environments.

Who should read this book

The document is intended for system and application programmers who wish to

develop Cell Broadband Engine applications.

Prerequisites

It is assumed that you are an experienced C/C++ programmer and are familiar

with the basic concepts of single-instruction, multiple-data (SIMD) vector

instruction sets, such as the PowerPC

® Architecture™ Vector/SIMD Multimedia

Extensions, Intel

® MMX™, SSE, 3DNOW!, or x86-64 instruction sets.

It is also assumed that you have the Software Development Kit (SDK) for

Multicore Acceleration, which includes a Cell BE specific, 64-bit PowerPC Linux

operating system, SDK code examples, and the IBM Full System Simulator for Cell

BE.

Related documentation

The following is a list of reference and supporting materials for the Cell Broadband

Engine. Additional documentation for specific SDK components is generally

provided with that component.

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine, Architecture

v Cell Broadband Engine Linux Reference Implementation, Application Binary Interface

Specification

v Cell Broadband Engine, Programming Handbook

v Cell Broadband Engine, Registers

v Accelerated Library Framework, Programmer’s Guide and API Reference

v Data Communication and Synchronization, Programmer’s Guide and API Reference

v PowerPC Microprocessor Family: The Programming Environments Manual for 64-bit

Microprocessors

v PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual, Version 2.06c

v PowerPC Operating Environment Architecture, Book III, Version 2.02

v PowerPC User Instruction Set Architecture, Book I, Version 2.02

 iii

v PowerPC Virtual Environment Architecture, Book II, Version 2.02

v SIMD Math Library Specification for Cell Broadband Engine

v Software Development Kit, Programmer’s Guide

v SPE Runtime Management Library (Version 2)

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

v Synergistic Processor Unit, Instruction Set Architecture

iv SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Contents

Preface iii

Figures vii

Tables ix

Chapter 1. Overview of the Cell

Broadband Engine 1

Introduction 1

Background and motivations 1

Scaling the three performance-limiting walls . . . 3

Architecture overview 4

The PowerPC Processor Element 6

Synergistic Processor Elements 7

Programming Overview 9

Byte ordering and bit numbering 9

SIMD vectorization 10

SIMD C-language intrinsics 11

Threads and tasks 12

The runtime environment 13

Application partitioning 13

The software development kit 16

Chapter 2. The PPE and the

programming process 19

PPE registers 19

PPE instruction sets 21

PowerPC instructions 22

Vector/SIMD Multimedia Extension instructions 24

C/C++ language extensions (intrinsics) 25

Programming with Vector/SIMD Multimedia

Extension intrinsics 33

The PPE and the SPEs 35

Storage Domains 35

Issuing DMA commands from the PPE 37

Creating threads for the SPEs 38

Communication between the PPE and SPEs . . 40

Developing code for the Cell Broadband Engine . . 41

Producing a simple multi-threaded CBE program 42

Running the program in the simulator 44

Debugging programs 48

Chapter 3. Programming the SPEs . . . 49

SPE configuration 49

Synergistic Processor Unit 50

Memory flow controller 54

Channels 55

SPU instruction set 60

Data layout in registers 60

Instruction types 62

SPU C/C++ language extensions (intrinsics) . . . 64

Assembly language versus intrinsics comparison:

an example 65

Intrinsic classes 66

Promoting scalar data types to vector data types 71

Differences between PPE and SPE SIMD support 72

Compiler directives 75

MFC commands 76

DMA-command tag groups 79

Synchronizing DMA transfers 80

MFC input and output macros 80

Coding methods and examples 83

DMA transfers 83

DMA-list transfers 84

Moving double-buffered data 86

Vectorizing a loop 88

Reducing the impact of branches 89

Porting SIMD code from the PPE to the SPEs . . . 92

Code-mapping considerations 93

Simple macro translation 94

Example 1: Euler particle-system simulation . . 96

Performance analysis 106

Performance issues 106

Example 1: Tuning SPE performance with static

and dynamic timing analysis 106

General SPE programming tips 115

Chapter 4. Programming models . . . 117

Function-Offload Model 117

Remote procedure call 118

Device-Extension Model 118

Computation-Acceleration Model 119

Streaming model 119

Shared-Memory Multiprocessor Model 119

Asymmetric-Thread Runtime Model 120

User-mode thread model 120

Cell application frameworks 120

SPE overlays 121

Chapter 5. The simulator 123

Simulator basics 124

Operating-system modes 124

Interacting with the simulator 124

Command-line interface 125

Graphical User Interface 126

The simulation panel 127

GUI buttons 135

Performance monitoring 140

Displaying performance statistics 141

SPE performance profile checkpoints 144

Example program: tpa1 146

Emitters 147

SPU performance and semantics 149

Notices 153

Edition notices 155

Trademarks 157

 v

Index 171

vi SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Figures

 1. Overview of Cell Broadband Engine

architecture 5

 2. PowerPC Processor Element (PPE) block

diagram 6

 3. Synergistic Processor Element (SPE) block

diagram 8

 4. Big-endian byte and bit ordering 10

 5. Four concurrent Add operations 11

 6. Byte-shuffle operation 11

 7. Application partitioning model 14

 8. PPE-centric multistage pipeline model and

parallel stages model 15

 9. PPE-centric services model 15

10. PPE user-register set 20

11. Concurrent execution of integer, floating-point,

and vector units 24

12. Running the Vector/SIMD Multimedia

Extension sample program 34

13. Storage domains defined in the Cell

Broadband Engine 36

14. Sample project directory structure and

makefiles 42

15. Windows visible after starting the simulator

GUI 45

16. Console window on completion of Linux boot 46

17. Loading the program into the simulation

environment 47

18. Running the sample program 48

19. SPE architectural block diagram 50

20. SPE user-register set 51

21. Big-endian ordering supported by the SPE 61

22. Register layout of data types and preferred

(scalar) slot 61

23. SIMD floating-point Add instruction function 63

24. Array-of-structures data organization for one

triangle 63

25. Structure-of-arrays data organization for four

triangles 64

26. DMA transfers using a double-buffering

method 87

27. Example of the Function-Offload (or RPC)

Model 118

28. Simulation stack 123

29. Simulator structures and screens 125

30. Main Graphical User Interface for the

simulator 127

31. Project and processor folders 128

32. PPE General-Purpose Registers window 129

33. PPE Floating-Point Registers window 129

34. PPE Core window 130

35. SPE MFC window 131

36. SPE MFC Address Translation window 132

37. SPE Channels window 133

38. SPE statistics 134

39. Debug Controls window 137

40. SPE Visualization window 138

41. Track All PCs window 139

42. SPU Modes window 140

43. tpa1 statistics for SPE 0 143

44. tpa1 statistics for SPE 2 144

45. Profile checkpoint output for SPE 2 146

46. Emitters 148

47. Emitter architecture 148

 vii

viii SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Tables

 1. PPE and SPE intrinsic classes 12

 2. Definition of threads and tasks 12

 3. PPE-specific scalar intrinsics 26

 4. Vector/SIMD Multimedia Extension data types 29

 5. Vector/SIMD Multimedia Extension specific

and generic intrinsics 29

 6. Vector/SIMD Multimedia Extension predicate

intrinsics 32

 7. MFC command-parameter registers for

PPE-initiated DMA transfers 37

 8. Mailbox channels and MMIO registers . . . 40

 9. Signal notification channels and MMIO

registers 41

10. LS-Access Arbitration Priority and Transfer

Size 53

11. SPU Instruction Latency and Pipeline, by

Instruction Class 53

12. SPE Channels 55

13. SPE Channel Instructions 57

14. Vector Data Types 61

15. SPU Instruction Types 62

16. Specific intrinsics not available as generic

intrinsics 66

17. Specific Casting Intrinsics 67

18. Generic SPU Intrinsics 69

19. Composite SPU intrinsics 71

20. Intrinsics for Changing Scalar and Vector Data

Types 72

21. PPE and SPE Architectural Comparison 72

22. PPE versus SPU Vector Data Types 73

23. Single-Token Vector Keyword Data Types 74

24. MFC DMA Command 76

25. MFC Command Suffixes 78

26. MFC Synchronization Commands 79

27. MFC Atomic Commands 79

28. MFC Input and Output Macros 80

29. MFC Tag Manager Functions 83

30. Branch-Hint Instructions 91

31. Vector/SIMD Multimedia Extension

Single-Token Data Types 94

32. SPU Intrinsics with One-to-One Vector/SIMD

Multimedia Extension Mapping 95

33. Vector/SIMD Multimedia Extension Intrinsics

with One-to-One SPU Mapping 95

34. Important Commands for the IBM Full

System Simulator for the Cell Broadband

Engine 126

35. Simulator Performance Statistics for the SPU 149

 ix

x SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Chapter 1. Overview of the Cell Broadband Engine

Introduction

The first generation Cell Broadband Engine is the first incarnation of a new family

of microprocessors conforming to the Cell Broadband Processor Architecture (CBEA).

The CBEA is a new architecture that extends the 64-bit PowerPC Architecture.

The CBEA and the Cell Broadband Engine are the result of a collaboration between

Sony, Toshiba, and IBM, known as STI, formally started in early 2001.

Background and motivations

Although the Cell Broadband Engine is initially intended for application in game

consoles and media-rich consumer-electronics devices such as high-definition

televisions, the architecture and the Cell Broadband Engine implementation have

been designed to enable fundamental advances in processor performance. A much

broader use of the architecture is envisioned.

The Cell Broadband Engine is a single-chip multiprocessor with nine processors

operating on a shared, coherent memory. In this respect, it extends current trends

in PC and server processors. The most distinguishing feature of the Cell

Broadband Engine is that, although all processors share main storage (the

effective-address space that includes main memory), their function is specialized

into two types:

v the PowerPC Processor Element (PPE),

v the Synergistic Processor Element (SPE).

The Cell Broadband Engine has:

v one PPE,

v eight SPEs.

The PPE (the first type of processor element) is a 64-bit PowerPC Architecture core.

It is fully compliant with the 64-bit PowerPC Architecture and can run 32-bit and

64-bit operating systems and applications.

The SPE (the second type of processor element) is optimized for running

compute-intensive applications, and it is not optimized for running an operating

system. The SPEs are independent processors, each running its own individual

application programs. Each SPE has full access to coherent shared memory,

including the memory-mapped I/O space.

The designation synergistic for this processor was chosen carefully because there is

a mutual dependence between the PPE and the SPEs. The SPEs depend on the PPE

to run the operating system, and, in many cases, the top-level control thread of an

application. The PPE depends on the SPEs to provide the bulk of the application

performance.

The SPEs are designed to be programmed in high-level languages and support a

rich instruction set that includes extensive single-instruction, multiple-data (SIMD)

functionality. However, just like conventional processors with SIMD extensions, use

of SIMD data types is preferred, not mandatory. For programming convenience,

the PPE also supports the PowerPC Architecture Vector/SIMD Multimedia

Extension.

 1

To an application programmer, the Cell Broadband Engine looks like a 9-way

coherent multiprocessor. The PPE is more adept at control-intensive tasks and

quicker at task switching. The SPEs are more adept at compute-intensive tasks and

slower at task switching. However, either processor is capable of both types of

functions. This specialization has allowed increased efficiency in the

implementation of both the PPE and especially the SPEs. It is a significant factor in

the approximate order-of-magnitude improvement in peak computational

performance and area-and-power efficiency that the Cell Broadband Engine

achieves over conventional PC processors.

A significant difference between the PPE and SPEs is how they access memory:

v The PPE accesses main storage (the effective-address space that includes main

memory) with load and store instructions that go between a private register file

and main storage (which may be cached).

v The SPEs access main storage with direct memory access (DMA) commands that

go between main storage and a private local memory used to store both

instructions and data. SPE instruction-fetches and load and store instructions

access this private local store, rather than shared main storage. This 3-level

organization of storage (register file, local store, main storage), with

asynchronous DMA transfers between local store and main storage, is a radical

break with conventional architecture and programming models, because it

explicitly parallelizes computation and the transfers of data and instructions.

The reason for this radical change is that memory latency, measured in processor

cycles, has gone up several hundredfold in the last 20 years. The result is that

application performance is, in most cases, limited by memory latency rather than

by peak compute capability or peak bandwidth. When a sequential program on a

conventional architecture performs a load instruction that misses in the caches,

program execution now comes to a halt for several hundred cycles. Compared to

this penalty, the few cycles it takes to set up a DMA transfer for an SPE is quite

small. Conventional processors, even with deep and costly speculation, manage to

get, at best, a handful of independent memory accesses in flight. The result can be

compared to a bucket brigade in which a hundred people are required to cover the

distance to the water needed to put the fire out, but only a few buckets are

available. In contrast, the explicit DMA model allows each SPE to have many

concurrent memory accesses in flight, without the need for speculation.

The most productive SPE memory-access model appears to be the one in which a

list (such as a scatter-gather list) of DMA transfers is constructed in an SPE’s local

store, so that the SPE’s DMA controller can process the list asynchronously while

the SPE operates on previously transferred data. In several cases, this new

approach to accessing memory has led to application performance exceeding that

of conventional processors by almost two orders of magnitude, significantly more

than one would expect from the peak performance ratio (about 10x) between the

Cell Broadband Engine and conventional PC processors.

It is also possible to write compilers that manage an SPE’s local Store as a very

large second-level register file or to automatically bring in code when needed and

present a conventional symmetric multiprocessing (SMP) model. Although such a

compiler exists, at least in prototype form, it does not today result in the most

optimal application performance. Hence, this tutorial focuses on approaches to

programming the Cell Broadband Engine that expose the local store and the

asynchronous DMA-transfer commands.

2 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Scaling the three performance-limiting walls

The Cell Broadband Engine overcomes three important limiters of contemporary

microprocessor performance: power use, memory use, and processor frequency.

Scaling the power-limitation wall

Increasingly, microprocessor performance is limited by achievable power

dissipation rather than by the number of available integrated-circuit resources

(transistors and wires).

Therefore, the only way to significantly increase the performance of

microprocessors is to improve power efficiency at about the same rate as the

performance increase.

One way to increase power efficiency is to differentiate between:

v processors optimized to run an operating system and control-intensive code, and

v processors optimized to run compute-intensive applications.

The Cell Broadband Engine does this by providing a general-purpose PPE to run

the operating system and other control-plane code, and eight SPEs specialized for

computing data-rich (data-plane) applications.

Scaling the memory-limitation wall

On multi-gigahertz symmetric multiprocessors (even those with integrated memory

controllers) latency to DRAM memory is currently approaching 1,000 cycles.

As a result, program performance is dominated by the activity of moving data

between main storage (the effective-address space that includes main memory) and

the processor. Increasingly, compilers and even application writers must manage

this movement of data explicitly, even though the hardware cache mechanisms are

supposed to relieve them of this task.

The Cell Broadband Engine’s SPEs use two mechanisms to deal with long

main-memory latencies:

v a 3-level memory structure (main storage, local stores in each SPE, and large

register files in each SPE),

v asynchronous DMA transfers between main storage and local stores.

These features allow programmers to schedule simultaneous data and code

transfers to cover long latencies effectively. Because of this organization, the Cell

Broadband Engine can usefully support 128 simultaneous transfers between the

eight SPE local stores and main storage. This surpasses the number of

simultaneous transfers on conventional processors by a factor of almost twenty.

Scaling the frequency-limitation wall

Conventional processors require increasingly deeper instruction pipelines to

achieve higher operating frequencies. This technique has reached a point of

diminishing returns – and even negative returns if power is taken into account.

By specializing the PPE and the SPEs for control and compute-intensive tasks,

respectively, the Cell Broadband Engine Architecture, on which the Cell Broadband

Engine is based, allows both the PPE and the SPEs to be designed for high

frequency without excessive overhead. The PPE achieves efficiency primarily by

executing two threads simultaneously rather than by optimizing single-thread

performance.

Chapter 1. Overview of the Cell Broadband Engine 3

Each SPE achieves efficiency by using a large register file, which supports many

simultaneous in-process instructions without the overhead of register-renaming or

out-of-order processing. Each SPE also achieves efficiency by using asynchronous

DMA transfers, which support many concurrent memory operations without the

overhead of speculation.

How the Cell Broadband Engine overcomes performance

limitations

By optimizing control-plane and data-plane processors individually, the Cell

Broadband Engine alleviates the problems posed by the power, memory, and

frequency limitations.

The net result is a processor that, at the power budget of a conventional PC

processor, can provide approximately ten-fold the peak performance of a

conventional processor. Of course, actual application performance varies. Some

applications may benefit little from the SPEs, whereas others show a performance

increase well in excess of ten-fold. In general, compute-intensive applications that

use 32-bit or smaller data formats (such as single-precision floating-point and

integer) are excellent candidates for the Cell Broadband Engine.

The remainder of this chapter describes the Cell Broadband Engine hardware,

some basic programming conventions, a typical software-development sequence,

and the major support tools available in the software development kit (SDK).

v Programming the PPE is described in Chapter 2, “The PPE and the

programming process,” on page 19.

v Programming the SPEs is described in Chapter 3, “Programming the SPEs,” on

page 49.

v Programming models are described in Chapter 4, “Programming models,” on

page 117.

v The IBM Full System Simulator for the Cell Broadband Engine is described in

Chapter 5, “The simulator,” on page 123.

v A glossary is provided in “Glossary” on page 159.

Architecture overview

The Cell Broadband Engine consists of nine processors on a single chip, all

connected to each other and to external devices by a high-bandwidth,

memory-coherent bus.

Figure 1 on page 5 shows a block diagram of the Cell Broadband Engine. The main

blocks include the:

v PowerPC Processor Element (PPE). The PPE is the main processor. It contains a

64-bit PowerPC Architecture reduced instruction set computer (RISC) core with a

traditional virtual-memory subsystem. It runs an operating system, manages

system resources, and is intended primarily for control processing, including the

allocation and management of SPE threads. It can run legacy PowerPC

Architecture software and performs well executing system-control code. It

supports both the PowerPC instruction set and the Vector/SIMD Multimedia

Extension instruction set.

v Synergistic Processor Elements (SPEs). The eight SPEs are SIMD processors

optimized for data-rich operations allocated to them by the PPE. Each of these

identical elements contains a RISC core, 256-KB, software-controlled local store

for instructions and data, and a large (128-bit, 128-entry) unified register file. The

SPEs support a special SIMD instruction set, and they rely on asynchronous

4 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

DMA transfers to move data and instructions between main storage (the

effective-address space that includes main memory) and their local stores. SPE

DMA transfers access main storage using PowerPC effective addresses. As on

the PPE, address translation is governed by PowerPC Architecture segment and

page tables. The SPEs are not intended to run an operating system.

v Element Interconnect Bus (EIB). The PPE and SPEs communicate coherently with

each other and with main storage and I/O through the EIB. The EIB is a 4-ring

structure (two clockwise and two counterclockwise) for data, and a tree structure

for commands. The EIB’s internal bandwidth is 96 bytes per cycle, and it can

support more than 100 outstanding DMA memory requests between main

storage and the SPEs.

The memory-coherent EIB has two external interfaces, as shown in Figure 1:

v The Memory Interface Controller (MIC) provides the interface between the EIB and

main storage. It supports two Rambus Extreme Data Rate (XDR) I/O (XIO)

memory channels and memory accesses on each channel of 1-8, 16, 32, 64, or 128

bytes.

v The Cell Broadband Engine Interface (BEI) manages data transfers between the EIB

and I/O devices. It provides address translation, command processing, an

internal interrupt controller, and bus interfacing. It supports two Rambus FlexIO

external I/O channels. One channel supports only non-coherent I/O devices.

The other channel can be configured to support either non-coherent transfers or

coherent transfers that extend the logical EIB to another compatible external

device, such as another Cell Broadband Engine.

The Cell Broadband Engine supports concurrent real-time and non-real-time

operating systems and resource management. Software development in the C/C++

language is supported by a rich set of language extensions that define C/C++ data

types for SIMD operations and map C/C++ intrinsics (commands, in the form of

function calls) to one or more assembly instructions.

Figure 1. Overview of Cell Broadband Engine architecture

Chapter 1. Overview of the Cell Broadband Engine 5

These language extensions give C/C++ programmers much greater control over

code performance, without the need for assembly-language programming. Software

development is further supported by:

v a complete Linux-based SDK,

v a full-system simulator, and

v a rich set of application libraries, performance tools and debug tools.

The PowerPC Processor Element

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit

RISC processor that conforms to the PowerPC Architecture, version 2.02, with the

Vector/SIMD Multimedia Extension.

Programs written for the PowerPC 970 processor, for example, should run on the

Cell Broadband Engine without modification.

As shown in Figure 2, the PPE consists of two main units:

v The Power Processor Unit (PPU).

v The Power Processor Storage Subsystem (PPSS).

The PPE is responsible for overall control of the system. It runs the operating

systems for all applications running on the Cell Broadband Engine.

The PPU deals with instruction control and execution. It includes:

v the full set of 64-bit PowerPC registers,

v 32 128-bit vector registers,

v a 32-KB level 1 (L1) instruction cache,

v a 32-KB level 1 (L1) data cache,

v an instruction-control unit,

v a load and store unit,

v a fixed-point integer unit,

Figure 2. PowerPC Processor Element (PPE) block diagram

6 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

v a floating-point unit,

v a vector unit,

v a branch unit,

v a virtual-memory management unit.

The PPU supports two simultaneous threads of execution and can be viewed as a

2-way multiprocessor with shared dataflow. This appears to software as two

independent processing units. The state for each thread is duplicated, including all

architected and special-purpose registers except those that deal with system-level

resources, such as logical partitions, memory, and thread-control. Most

non-architected resources, such as caches and queues, are shared by both threads,

except in cases where the resource is small or offers a critical performance

improvement to multithreaded applications.

The PPSS handles memory requests from the PPE and external requests to the PPE

from other processors or I/O devices. It includes:

v a unified 512-KB level 2 (L2) instruction and data cache,

v various queues,

v a bus interface unit that handles bus arbitration and pacing on the EIB.

Memory is seen as a linear array of bytes indexed from 0 to 2⁶⁴ - 1. Each byte is

identified by its index, called an address, and each byte contains a value. One

storage access occurs at a time, and all accesses appear to occur in program order.

The L2 cache and the address-translation caches use replacement-management

tables that allow software to control use of the caches. This software control over

cache resources is especially useful for real-time programming.

Synergistic Processor Elements

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor

specialized for data-rich, compute-intensive SIMD applications.

As shown in Figure 3 on page 8, each SPE consists of two main units:

v The Synergistic Processor Unit (SPU).

v The Memory Flow Controller (MFC).

Chapter 1. Overview of the Cell Broadband Engine 7

The SPU deals with instruction control and execution. It includes a single register

file with 128 registers (each one 128 bits wide), a unified (instructions and data)

256-KB local store (LS), an instruction-control unit, a load and store unit, two

fixed-point units, a floating-point unit, and a channel-and-DMA interface. The SPU

implements a new SIMD instruction set, the SPU Instruction Set Architecture, that is

specific to the Broadband Processor Architecture.

Each SPU is an independent processor with its own program counter and is

optimized to run SPE threads spawned by the PPE. The SPU fetches instructions

from its own LS, and it loads and stores data from and to its own LS. With respect

to accesses by its SPU, the LS is unprotected and un-translated storage. The MFC

contains a DMA controller that supports DMA transfers. Programs running on the

SPU, the PPE, or another SPU, use the MFC’s DMA transfers to move instructions

and data between the SPU’s LS and main storage. (Main storage is the

effective-address space that includes main memory, other SPEs’ LS, and

memory-mapped registers such as memory-mapped I/O [MMIO] registers.) The

MFC interfaces the SPU to the EIB, implements bus bandwidth-reservation

features, and synchronizes operations between the SPU and all other processors in

the system.

To support DMA transfers, the MFC maintains and processes queues of DMA

commands. After a DMA command has been queued to the MFC, the SPU can

continue to execute instructions while the MFC processes the DMA command

autonomously and asynchronously. The MFC also can autonomously execute a

sequence of DMA transfers, such as scatter-gather lists, in response to a DMA-list

command. This autonomous execution of MFC DMA commands and SPU

instructions allows DMA transfers to be conveniently scheduled to hide memory

latency.

Each DMA transfer can be up to 16 KB in size. However, only the MFC’s

associated SPU can issue DMA-list commands. These can represent up to 2,048

DMA transfers, each one up to 16 KB in size. DMA transfers are coherent with

respect to main storage. Virtual-memory address-translation information is

provided to each MFC by the operating system running on the PPE. Attributes of

system storage (address translation and protection) are governed by the page and

Figure 3. Synergistic Processor Element (SPE) block diagram

8 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

segment tables of the PowerPC Architecture. Although privileged software on the

PPE can map LS addresses and certain MFC resources to the main-storage address

space, enabling the PPE or other SPUs in the system to access these resources, this

aliased memory is not coherent in the system.

The SPEs provide a deterministic operating environment. They do not have caches,

so cache misses are not a factor in their performance. Pipeline-scheduling rules are

simple, so it is easy to statically determine the performance of code. Although the

LS is shared between DMA read and write operations, load and store operations,

and instruction prefetch, DMA operations are accumulated and can only access the

LS for at most one of every eight cycles. Instruction prefetch delivers at least 17

instructions sequentially from the branch target. Thus, the impact of DMA

operations on loads and stores and program-execution times is, by design, limited.

Programming Overview

The instruction set for the PPE is an extended version of the PowerPC instruction

set. The extensions consist of the Vector/SIMD Multimedia Extension instruction set

plus a few additions and changes to PowerPC instructions.

The instruction set for the SPE is similar to that of the PPE’s Vector/SIMD

Multimedia Extension instruction set. Although the PPE and the SPEs execute

SIMD instructions, the two instruction sets are different, and programs for the PPE

and SPEs must be compiled by different compilers.

Byte ordering and bit numbering

Storage of data and instructions in the Cell Broadband Engine is big-endian.

Big-endian ordering has the following characteristics:

v Most-significant byte is stored at the lowest address, and least-significant byte is

stored at the highest address.

v Bit numbering within a byte goes from most-significant bit (bit 0) to

least-significant bit (bit n). This differs from some other big-endian processors.

Figure 4 on page 10 shows a summary of the byte-ordering and bit-ordering in

memory, as well as the bit-numbering conventions.

Chapter 1. Overview of the Cell Broadband Engine 9

SIMD vectorization

A vector is an instruction operand containing a set of data elements packed into a

one-dimensional array. The elements can be integer or floating-point values. Most

Vector/SIMD Multimedia Extension and SPU instructions operate on vector

operands. Vectors are also called SIMD operands or packed operands.

SIMD processing exploits data-level parallelism. Data-level parallelism means that

the operations required to transform a set of vector elements can be performed on

all elements of the vector at the same time. That is, a single instruction can be

applied to multiple data elements in parallel.

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the

PPE, they are supported by the Vector/SIMD Multimedia Extension instruction set.

In the SPEs, they are supported by the SPU instruction set.

In both the PPE and SPEs, vector registers hold multiple data elements as a single

vector. The data paths and registers supporting SIMD operations are 128 bits wide,

corresponding to four full 32-bit words. This means that four 32-bit words can be

loaded into a single register, and, for example, added to four other words in a

different register in a single operation. Figure 5 on page 11 shows such an

operation. Similar operations can be performed on vector operands containing 16

bytes, 8 halfwords, or 2 doublewords.

Figure 4. Big-endian byte and bit ordering

10 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The process of preparing a program for use on a vector processor is called

vectorization or SIMDization. It can be done manually by the programmer, or it can

be done by a compiler that does auto-vectorization.

Figure 6 shows another example of an SIMD operation– in this case, a byte-shuffle

operation. Here, the bytes selected for the shuffle from the source registers, VA and

VB, are based on byte entries in the control vector, VC, in which a 0 specifies VA

and a 1 specifies VB. The result of the shuffle is placed in register VT.

SIMD C-language intrinsics

Both the Vector/SIMD Multimedia Extension and SPU instruction sets have

extensions that support C-language intrinsics. Intrinsics are C-language commands,

in the form of function calls, that are convenient substitutes for one or more inline

assembly-language instructions.

In a specific instruction set, most intrinsic names use a standard prefix in their

mnemonic, and some intrinsic names incorporate the mnemonic of an associated

Figure 5. Four concurrent Add operations

Figure 6. Byte-shuffle operation

Chapter 1. Overview of the Cell Broadband Engine 11

assembly-language instruction. For example, the Vector/SIMD Multimedia

Extension intrinsic that implements the add Vector/SIMD Multimedia Extension

assembly-language instruction is named vec_add, and the SPU intrinsic that

implements the stop SPU assembly-language instruction is named spu_stop.

The PPE’s Vector/SIMD Multimedia Extension instruction set and the SPE’s SPU

instruction set both have extensions that define somewhat different sets of

intrinsics, but they all fall into four types of intrinsics. These are listed in Table 1-1.

Although the intrinsics provided by the two instruction sets are similar in function,

their naming conventions and function-call forms are different.

 Table 1. PPE and SPE intrinsic classes

Types of

Intrinsic Definition PPE SPE

Specific One-to-one mapping to a single assembly-language

instruction.

X X

Generic Map to one or more assembly-language instructions,

depending on types of input parameters.

X X

Composite Constructed from a sequence of Specific or Generic

intrinsics.

X

Predicates Evaluate SIMD conditionals. X

For more information about the PPE intrinsics, see “C/C++ language extensions

(intrinsics)” on page 25.

For more information about the SPE intrinsics, see “SPU C/C++ language

extensions (intrinsics)” on page 64.

Threads and tasks

In a system running the Linux operating system, the main thread of a program is a

Linux thread running on the PPE. The program’s main Linux thread can spawn

one or more Cell Broadband Engine Linux tasks.

A Cell Broadband Engine Linux task has one or more Linux threads associated

with it that may execute on either a PPE or a SPE. An SPE thread is a Linux thread

that is executing on a SPE. These terms are defined in Table 2.

The software threads described in this section are unrelated to the hardware

multithreading capability of the PPE.

 Table 2. Definition of threads and tasks

Term Definition

Linux thread A thread running in the Linux operating-system environment.

PPE thread A Linux thread running on a PPE.

SPE thread A Linux thread running on an SPE. Each such thread:

v has its own SPE context which includes the 128 x 128-bit

register file, program counter, and MFC Command Queues.

v can communicate with other execution units (or with

effective-address memory through the MFC channel

interface).

12 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 2. Definition of threads and tasks (continued)

Term Definition

Cell Broadband Engine

Linux task

A task running on the PPE and SPE.

v Each such task has one or more Linux threads.

v All the Linux threads within the task share the task’s

resources.

A Linux thread can interact directly with an SPE thread through the SPE’s local

store or its problem state. It can interact indirectly through effective-address (EA)

memory or the interface provided by the SPE Runtime Management library

subroutines.

The operating system defines the mechanism and policy for scheduling an

available SPE. It must prioritize among all the Cell Broadband Engine Linux

applications in the system, and it must schedule SPE execution independent from

regular Linux threads. It is also responsible for runtime loading, passing

parameters to SPE programs, notification of SPE events and errors, and debugger

support.

The runtime environment

The PPE runs PowerPC applications and operating systems, which may include

Vector/SIMD Multimedia Extension instructions.

The PPE requires an operating system that is extended to support the hardware

features of Cell Broadband Engines, such as multiprocessing with the SPEs, access

to the PPE Vector/SIMD Multimedia Extension functions, the Cell Broadband

Engine interrupt controller, and all other functions on the Cell Broadband Engine.

The assumed development and operating-system environment for this tutorial are

described in the “Preface” on page iii. In this operating environment, the PPE

handles thread allocation and resource management among SPEs. The PPE’s Linux

kernel controls the SPUs’ execution of programs.

SPE threads follow the M:N thread model, meaning M threads distributed over N

processor elements. Typically SPE threads run to completion. However, the SPE

threads are pre-emptible in accordance with the thread’s scheduling policy and

priority. Time slice quanta for the SPE threads is typically longer than PPE threads

because of the SPE context switch is relatively heavy.

The Linux kernel manages virtual memory, including mapping each SPE’s local

store (LS) and problem state (PS) into the effective-address space. The kernel also

controls virtual-memory mapping of MFC resources, as well as MFC segment-fault

and page-fault handling. Large pages (16-MB pages), using the hugetlbfs Linux

extension, are supported.

Application partitioning

Programs running on the Cell Broadband Engine’s nine processor elements

typically partition the work among the available processor elements.

In determining when and how to distribute the workload and data, take into

account the following considerations:

v processing-load distribution,

v program structure,

Chapter 1. Overview of the Cell Broadband Engine 13

v program data flow and data access patterns,

v cost, in time and complexity of code movement and data movement among

processors, and

v cost of loading the bus and bus attachments.

The main model for partitioning an application is PPE-centric, as shown in

Figure 7.

In the PPE-centric model, the main application runs on the PPE, and individual

tasks are off-loaded to the SPEs. The PPE then waits for, and coordinates, the

results returning from the SPEs. This model fits an application with serial data and

parallel computation.

In the SPE-centric model, most of the application code is distributed among the

SPEs. The PPE acts as a centralized resource manager for the SPEs. Each SPE

fetches its next work item from main storage (or its own local store) when it

completes its current work.

There are three ways in which the SPEs can be used in the PPE-centric model:

v the multistage pipeline model,

v the parallel stages model, and

v the services model.

The first two of these are shown in Figure 8 on page 15.

If a task requires sequential stages, the SPEs can act as a multistage pipeline. The left

side of Figure 8 on page 15 shows a multistage pipeline. Here, the stream of data is

sent into the first SPE, which performs the first stage of the processing. The first

SPE then passes the data to the next SPE for the next stage of processing. After the

last SPE has done the final stage of processing on its data, that data is returned to

the PPE. As with any pipeline architecture, parallel processing occurs, with various

portions of data in different stages of being processed.

Multistage pipelining is typically avoided because of the difficulty of load

balancing. In addition, the multistage model increases the data-movement

requirement because data must be moved for each stage of the pipeline.

Figure 7. Application partitioning model

14 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

If the task to be performed is not a multistage task, but a task in which there is a

large amount of data that can be partitioned and acted on at the same time, then it

typically make sense to use SPEs to process different portions of that data in

parallel. This parallel stages model is shown on the right side of Figure 8.

The third way in which SPEs can be used in a PPE-centric model is the services

model. In the services model, the PPE assigns different services to different SPEs,

and the PPE’s main process calls upon the appropriate SPE when a particular

service is needed.

Figure 9 shows the PPE-centric services model. Here, one SPE processes data

encryption, another SPE processes MPEG encoding, and a third SPE processes

curve analysis. Fixed static allocation of SPU services should be avoided. These

services should be virtualized and managed on a demand-initiated basis.

For a more detailed view of programming models, see Chapter 4, “Programming

models,” on page 117.

Figure 8. PPE-centric multistage pipeline model and parallel stages model

Figure 9. PPE-centric services model

Chapter 1. Overview of the Cell Broadband Engine 15

The software development kit

A software development kit (SDK) is available for the Cell Broadband Engine.

The SDK contains the essential tools required for developing programs for the Cell

Broadband Engine. “Preface” on page iii describes the assumptions with respect to

the available SDK.

The SDK consists of numerous components including the following:

v The IBM Full System Simulator for the Cell Broadband Engine, systemsim (see

Chapter 5, “The simulator,” on page 123).

v system root image containing Linux execution environment for use within

systemsim.

v GNU tools including C and C++ compilers, linkers, assemblers and binary

utilities for both PPU and SPU.

v IBM xlc (C and C++) compiler for both PPU and SPU.

v IBM xlf (Fortran) compiler for both PPU and SPU.

v newlib for the SPU. newlib is a C standard library designed for use on

embedded systems.

v gdb debuggers for both PPU and SPU with support for remote gdbserver

debugging. The PPU debugger also provides combined, PPU and SPU,

debugging.

v PPC64 Linux with CBE enhancements.

v SPE Runtime Management Library providing a standardized, low-level

application programming interface for application access to the SPEs.

v Libraries to assist in the development and execution of parallel applications,

including the:

– Accelerated Library Framework library (ALF) support SM, and the

– Data Communication and Synchronization (DaCS) library.
v Performance tools including:

– oprofile – a system-wide profiler for Linux,

– CellPerfCount – a low level tool to configure and access HW performance

counters,

– FDPR-Pro – a tool for gather information for feedback directed optimization,

– CodeAnalyzer – examines executable files and displays detailed information

about functions, basic blocks, and assembly instructions, and

– Visual Performance Analyzer (VPA) – an Eclipse-based performance

visualization toolkit.

– spu_timing – a static timing analysis timing tool that instruments assembly

source (either compiler or programmer generated) with expected, linear,

instruction timing details.

– PDT – a performance debugging tool which provides a tracing infrastructure

for application timing analysis.
v An Eclipse-based Integrated Development Environment (IDE) to improve

programmer productivity and integration of development tools.

v Standardized SIMD math libraries for the PPU’s Vector/SIMD Multimedia

Extension and the SPU.

v Mathematical Acceleration Subsystem (MASS) libraries supporting both long and

short (SIMD) vectors.

v Cell optimized domain-specific application libraries, including Basic Linear

Algebra Subprograms (BLAS) library, Fast Fourier Transform (FFT) library, and

Monte Carlo Random Number Generator library.

16 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

v Example source code containing programming examples, example libraries,

benchmarks, and demos.

Chapter 1. Overview of the Cell Broadband Engine 17

18 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Chapter 2. The PPE and the programming process

This chapter describes the PowerPC Processor Element (PPE) registers, the PPE’s

two instruction sets, and the C-language intrinsics for the PPE and Vector/SIMD

Multimedia Extension instructions.

“The PowerPC Processor Element” on page 6 introduced the organization and

functions of the PowerPC Processor Element (PPE). This chapter describes the

relation between the PPE and Synergistic Processor Element (SPE) address spaces.

Examples are provided of:

v PPE-initiated DMA transfers between main storage and an SPE’s local store (LS).

v PPE thread-creation for the SPE.

PPE registers

This section describes the complete set of PowerPC Processor Element (PPE) user

(problem-state) registers.

Figure 10 on page 20 shows all the PPE user (problem-state) registers. All

computational instructions operate only on registers – there are no computational

instructions that modify storage.

To use a storage operand in a computation and then modify the same or another

storage location, the contents of the storage operand must be:

1. loaded into a register,

2. modified,

3. stored back to the target location.

 19

The PPE registers include:

v General-Purpose Registers (GPRs) – Fixed-point instructions operate on the full

64-bit width of the GPRs, of which there are 32. The instructions are

mode-independent, except that in 32-bit mode, the processor uses only the

low-order 32 bits for determination of a memory address and the carry,

overflow, and record status bits.

v Floating-Point Registers (FPRs) – The 32 FPRs are 64 bits wide. The internal

format of floating-point data is the IEEE 754 double-precision format.

Single-precision results are maintained internally in the double-precision format.

v Link Register (LR) – The 64-bit LR can be used to hold the effective address of a

branch target. Branch instructions with the link bit (LK) set to 1 (that is,

subroutine-call instructions) copy the next instruction address into the LR. A

Move To Special-Purpose Register instruction can copy the contents of a GPR

into the LR.

v Count Register (CTR) – The 64-bit CTR can be used to hold either a loop counter

or the effective address of a branch target. Some conditional-branch instruction

Figure 10. PPE user-register set

20 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

forms decrement the CTR and test it for a zero value. A Move To

Special-Purpose Register instruction can copy the contents of a GPR into the

CTR.

v Fixed-Point Exception Register (XER) – The 64-bit XER contains the carry and

overflow bits and the byte count for the move-assist instructions. Most

arithmetic operations have instruction forms for setting the carry and overflow

bit.

v Condition Register (CR) – Conditional comparisons are performed by first setting

a condition code in the 32-bit CR with a compare instruction or with a recording

instruction. The condition code is then available as a value or can be tested by a

branch instruction to control program flow. The CR consists of eight

independent 4-bit fields grouped together for convenient save or restore during

a context switch. Each field can hold status information from a comparison,

arithmetic, or logical operation. The compiler can schedule CR fields to avoid

data hazards in the same way that it schedules the use of GPRs. Writes to the

CR occur only for instructions that explicitly request them; most operations have

recording and non-recording instruction forms.

v Floating-Point Status and Control Register (FPSCR) – The processor updates the

32-bit FPSCR after every floating-point operation to record information about the

result and any associated exceptions. The status information required by IEEE

754 is included, plus some additional information for exception handling.

v Vector Registers (VRs) – There are 32 128-bit-wide VRs. They serve as source and

destination registers for all vector instructions.

v Vector Status and Control Register (VSCR) – The 32-bit VSCR is read and written

in a manner similar to the FPSCR. It has 2 defined bits, a non-Java™ mode bit

and a saturation bit; the remaining bits are reserved. Special instructions are

provided to move the VSCR to a VR register.

v Vector Save Register (VRSAVE) – The 32-bit VRSAVE register assists user and

privileged software in saving and restoring the architectural state across context

switches.

PPE instruction sets

The PowerPC Processor Element (PPE) supports two instruction sets: the PowerPC

instruction set and the Vector/SIMD Multimedia Extension instruction set.

Although most of the coding for the Cell Broadband Engine will be in a high-level

language like C or C++, an understanding of the PPE architecture and instruction

sets adds considerably to a developer’s ability to produce efficient, optimized code.

This is particularly true because C-language intrinsics are provided for the PPE’s

Vector/SIMD Multimedia Extension instruction set, and these intrinsics map

directly to one or more Vector/SIMD Multimedia Extension assembly-language

instructions.

The PowerPC instruction set uses instructions that are 4 bytes long and

word-aligned. It supports byte, halfword, word, and doubleword operand accesses

between storage and its 32 general-purpose registers (GPRs). The instruction set

also supports word and doubleword operand accesses between storage and a set of

32 floating-point registers (FPRs). Signed integers are represented in

twos-complement form.

The Vector/SIMD Multimedia Extension instruction set uses instructions that, like

PowerPC instructions, are 4 bytes long and word-aligned. However, all of its

operands are 128 bits wide. Most of the Vector/SIMD Multimedia Extension

Chapter 2. The PPE and the programming process 21

operands are vectors, including single-precision floating-point, integer, scalar, and

fixed-point of vector-element sizes of 8,16, and 32 bits.

The sections that follow briefly summarize key points of the instruction sets.

However, for a complete description of the PowerPC instruction sets, refer to these

publications:

v PowerPC Microprocessor Family, Programming Environments Manual for 64-Bit

Microprocessors

v PowerPC Microprocessor Family, Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

PowerPC instructions

Whenever instruction addresses are presented to the processor, the low-order 2 bits

are ignored.

Similarly, whenever the processor develops an instruction address, the low-order 2

bits are zero. The address of either an instruction or a multiple-byte data value is

its lowest-numbered byte. This address points to the most-significant end

(big-endian convention). The little-endian convention is not supported.

Arithmetic for address computation is unsigned and ignores any carry out of bit 0

(the MSb).

For an overview of the big-endian bit and byte numbering used by the PPE, see

“Byte ordering and bit numbering” on page 9.

Addressing modes

All instructions, except branches, generate addresses by incrementing a program

counter. All load and store instructions specify a base register.

The effective address in memory for a data value is calculated relative to the base

register in one of three ways:

v Register + Displacement – The displacement forms of the load and store

instructions calculate an address that is the sum of a displacement specified by

the sign-extended 16-bit immediate field of the instruction plus the contents of

the base register.

v Register + Register – The indexed forms of the load and store instructions

calculate an address that is the sum of the contents of the index register, which

is a GPR, plus the contents of the base register.

v Register – The Load String Immediate and Store String Immediate instructions

use the unmodified contents of the base register to calculate an address.

Loads and stores can specify an update form that reloads the base register with the

computed address, unless the base register is the target register of the load.

Branches are the only instructions that explicitly specify the address of the next

instruction. A branch instruction specifies the effective address of the branch target

in one of the following ways:

v Branch Not Taken – The byte address of the next instruction is the byte address of

the current instruction, plus 4.

v Absolute – The word address of the next instruction is given in an immediate

field of the branch instruction.

22 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

v Relative – The word address of the next instruction is given by the sum of the

immediate field of the branch instruction and the word address of the branch

instruction itself.

v Link Register or Count Register – The byte address of the next instruction is the

effective byte address of the branch target specified in the Link Register or

Count Register, respectively.

Instruction types

The PowerPC Processor Element (PPE)’s PowerPC instructions can have up to three

operands. Most computational instructions specify two source operands and one

destination operand.

The PPE’s PowerPC instructions include the following types:

v Integer Instructions – These include arithmetic, compare, logical, and rotate/shift

instructions. They operate on byte, halfword, word, and doubleword operands.

v Floating-Point Instructions – These include floating-point arithmetic, multiply-add,

compare, and move instructions, as well as instructions that affect the

Floating-Point Status and Control Register (FPSCR). Floating-point instructions

operate on single-precision and double-precision floating-point operands.

v Load and Store Instructions – These include integer and floating-point load and

store instructions, with byte-reverse, multiple, and string options for the integer

loads and stores.

v Memory Synchronization Instructions – These instructions control the order in

which memory operations are completed with respect to asynchronous events,

and the order in which memory operations are seen by other processors or

memory-access mechanisms. The instruction types include load and store with

reservation, synchronization, and enforce in-order execution of I/O. They are

especially useful for multiprocessing.

v Flow Control Instructions – These include branch, Condition-Register logical, trap,

and other instructions that affect the instruction flow.

v Processor Control Instructions – These instructions are used for synchronizing

memory accesses and managing caches, Translation Lookaside Buffers (TLBs),

segment registers, and other privileged processor states. They include

move-to/from special-purpose register instructions.

v Memory and Cache Control Instructions – These instructions control caches, TLBs,

and segment registers.

v External Control Instructions – These instructions allow a user-level program to

communicate with a special-purpose device.

Compatibility with existing PowerPC code

The PowerPC Processor Element (PPE) complies with version 2.0.2 of the PowerPC

architecture, with only minor exceptions.

The following optional user-mode instructions are implemented:

v fsqrt(.) – Floating-point square root

v fsqrts(.) – Floating-point square root single

v fres(.) – Floating-point reciprocal estimate single, A-form

v frsqrte(.) – Floating-point reciprocal square root estimate, A-form

v fsel(.) – Floating-point select

v mtocrf – Move to one condition register field, XFX-form

v mfocrf – Move from one condition register field, XFX-form

The following optional instructions that are defined in the PowerPC Book I are not

implemented. Use of these instructions will cause an illegal-instruction interrupt:

Chapter 2. The PPE and the programming process 23

v mcrxr – Move to condition register from XER

v bccbr – Branch condition to CBR

The following instructions that are not defined in the PowerPC Architecture are

implemented. Since these instructions are not part of the architecture, they should

be considered highly implementation-specific.

v ldbrx – Load doubleword byte reverse indexed, X-form

v sdbrx – Store doubleword byte reverse indexed, X-form

In addition, the little endian option for data ordering is not available. A complete

list of differences can be found in the Cell Broadband Engine, Programming Handbook.

Vector/SIMD Multimedia Extension instructions

The 128-bit Vector/SIMD Multimedia Extension unit (VXU) operates concurrently

with the PPU’s fixed-point integer unit (FXU) and floating-point execution unit

(FPU).

Like PowerPC instructions, the Vector/SIMD Multimedia Extension instructions are

4 bytes long and word-aligned. The Vector/SIMD Multimedia Extension

instructions support simultaneous execution on multiple elements that make up

the 128-bit vector operands. These vector elements may be byte, halfword, or

word.

The Vector/SIMD Multimedia Extension instructions are fully described in the

PowerPC Microprocessor Family, Vector/SIMD Multimedia Extension Technology

Programming Environments manual.

All Vector/SIMD Multimedia Extension instructions are designed to be easily

“pipelined”. Parallel execution with the PPE’s integer and floating-point

instructions is simplified by the fact that Vector/SIMD Multimedia Extension

instructions:

v do not generate exceptions (other than data-storage interrupt exceptions on loads

and stores),

Figure 11. Concurrent execution of integer, floating-point, and vector units

24 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

v do not support unaligned memory accesses or complex functions, and

v share few resources or communication paths with the other PPE execution units.

Addressing modes

The PowerPC Processor Element (PPE) supports not only basic load and store

operations, but also load and store vector left- or right-indexed forms.

All Vector/SIMD Multimedia Extension load and store operations use the register

+ register indexed addressing mode, which forms the sum of the contents of an

index GPR plus the contents of a base-address GPR. This addressing mode is very

useful for accessing arrays.

In addition to the load and store operations, the Vector/SIMD Multimedia

Extension instruction set provides a powerful set of element-manipulation

instructions – for example, shuffle, permute (similar to the SPEs’ shuffle), rotate,

and shift – to manipulate vector elements into the desired alignment and

arrangement after the vectors have been loaded into vector registers.

Instruction types

Most Vector/SIMD Multimedia Extension instructions have three or four 128-bit

vector operands – two or three source operands and one result. Also, most

instructions are SIMD in nature.

The instructions have been chosen for their utility in digital signal processing

(DSP) algorithms, including 3D graphics.

The Vector/SIMD Multimedia Extension instructions include the following types:

v Vector Integer Instructions – These include vector arithmetic, compare, logical,

rotate, and shift instructions. They operate on byte, halfword, and word vector

elements. The instructions use saturation-clamping.

v Vector Floating-Point Instructions – These include floating-point arithmetic,

multiply/add, rounding and conversion, compare, and estimate instructions.

They operate on single-precision floating-point vector elements.

v Vector Load and Store Instructions – These include only basic integer and

floating-point load and store instructions. No update forms of the load and store

instruction are provided. They operate on 128-bit vectors.

v Vector Permutation and Formatting Instructions – These include vector pack,

unpack, merge, splat, permute, select, and shift instructions.

v Processor Control Instructions – These include instructions that read and write the

vector status and control register (VSCR).

v Memory Control Instructions – These include instructions for managing caches

(user-level and supervisor-level). These instructions are “no-ops”.

C/C++ language extensions (intrinsics)

A set of C-language extensions are available for PowerPC Processor Element (PPE)

and Vector/SIMD Multimedia Extension programming.

These extensions include additional vector data types and a large set of scalar and

vector commands (intrinsics). The intrinsics are essentially inline

assembly-language instructions, in the form of function calls, that have syntax

familiar to high-level programmers using the C language.

The intrinsics provide explicit control of the PPE or Vector/SIMD Multimedia

Extension instructions without directly managing registers and scheduling

Chapter 2. The PPE and the programming process 25

instructions, as assembly-language programming requires. A compiler that

supports these C-language extensions will emit code optimized for the PPE and/or

the Vector/SIMD Multimedia Extension architecture.

Scalar intrinsics

A minimal set of specific intrinsincs, to make the underlying PPU instruction set

accessible from the C programming language, have been provided. These intrinsics

are declared in the system header file ppu_intrinsics.h.

 Table 3. PPE-specific scalar intrinsics

Intrinsic Description

__cctph() Change Thread Priority to High

__cctpl() Change Thread Priority to Low

__cctpm() Change Thread Priority to Medium

d = __cntlz(a) Count Leading Doubleword Zeros

d = __cntlzw(a) Count Leading Word Zeros

__db10cyc() Delay 10 Cycles at Dispatch

__db12cyc() Delay 12 Cycles at Dispatch

__db16cyc() Delay 16 Cycles at Dispatch

__db8cyc() Delay 8 Cycles at Dispatch

__dcbf(pointer) Data Cache Block Flush

__dcbst(pointer) Data Cache Block Store

__dcbt(pointer) Data Cache Block Touch

__dcbt_TH1000(eatrunc, d, ug, id) Start Streaming Data

__dcbt_TH1010(g0, s, unitcnt, t, u, id) Stop Streaming Data

__dcbtst(pointer) Data Cache Block Touch for Store

__dcbz(pointer) Data Cache Block Set to Zero

__eieio() Enforce In-Order Execution of I/O

d = __fabs(a) Double Absolute Value

d = __fabsf(a) Float Absolute Value

d = __fcfid(a) Convert Doubleword to Double

d = __fctid(a) Convert Double to Doubleword

d = __fctidz(a) Convert Double to Doubleword with

Round Towards Zero

d = __fctiw(a) Convert Double to Word

d = __fctiwz(a) Convert Double to Word with Round

Toward Zero

d = __fmadd(a,b,c) Double Fused Multiply and Add

d = __fmadds(a,b,c) Float Fused Multiply and Add

d = __fmsub(a,b,c) Double Fused Multiply and Subtract

d = __fmsubs(a,b,c) Float Fused Multiply and Subtract

d = __fmul(a,b) Double Mulitply

d = __fmuls(a,b) Float Multiply

d = __fnabs(a) Double Negative Absolute Value

d = __fnabsf(a) Float Negative Absolute Value

26 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 3. PPE-specific scalar intrinsics (continued)

Intrinsic Description

d = __fnmadd(a,b,c) Double Fused Negative Multiply and

Add

d = __fnmadds(a,b,c) Float Fused Negative Multiply and Add

d = __fnmsub(a,b,c) Double Fused Negative Multiply and

Subtract

d = __fnmsubs(a,b,c) Float Fused Negative Multiply and

Subtract

d = __fres(a) Float Reciprocal Estimate

d = __frsp(a) Round to Single Precision

d = __fsel(a,b,c) Floating Point Select of Double

d = __fsels(a,b,c) Floating Point Select of Float

d = __fsqrt(a) Double Square Root

d = __fsqrts(a) Float Square Root

__icbi(pointer) Instruction Cache Block Invalidate

__isync() Instruction Sync

d = __ldarx(pointer) Load Doubleword with Reserved

d = __ldbrx(pointer) Load Reversed Doubleword

d = __lhbrx(pointer) Load Reversed Halfword

d = __lwarx(pointer) Load Word with Reserved

d = __lwbrx(pointer) Load Reversed Word

__lwsync() Light Weight Sync

d = __mffs() Move from Floating-Point Status and

Control Register

d = __mfspr(spr) Move from Special Purpose Regiser

d = __mftb() Move from Time Base

__mtfsb0(bt) Unset Field of FPSCR

__mtfsb1(bt) Set Field of FPSCR

__mtfsf(flm,b) Set Fields of FPSCR

__mtfsfi(bf,u) Set Field FPSCR from other Field

__mtspr(spr,value) Move to Special Purpose Register

d = __mulhdu(a,b) Multiply Double Unsigned Word, High

Part

d = __mulhd(a,b) Multiply Doubleword, High Part

d = __mulhwu(a,b) Multiply Unsigned Word, High Part

d = __mulhw(a,b) Multiply Word, High Part

__nop() No Operation

__protected_stream_count(count,id) Set the Number of Blocks to Stream

__protected_stream_go() Start All Streams

__protected_stream_set(d,addr,id) Set Up a Stream

__protected_stream_stop(id) Stop a Stream

__protected_stream_stop_all() Stop All Streams

Chapter 2. The PPE and the programming process 27

Table 3. PPE-specific scalar intrinsics (continued)

Intrinsic Description

__protected_unlimited_stream_set(d,addr,id) Set Up an Unlimited Stream

d = __rldcl(a,b,mb) Rotate Left Doubleword then Clear Left

d = __rldcr(a,b,me) Rotate Left Doubleword then Clear Right

d = __rldic(a,sh,mb) Rotate Left Doubleword Immediate then

Clear

d = __rldicl(a,sh,mb) Rotate Left Doubleword Immediate then

Clear Left

d = __rldicr(a,sh,me) Rotate Left Doubleword Immediate then

Clear Right

d = __rldimi(a,b,sh.mb) Rotate Left Doubleword Immediate then

Mask Insert

d = __rlwimi(a,b,sh,mb,me) Rotate Left Word Immediate the Mask

Insert

d = __rlwinm(a,sh,mb,me) Rotate Left Word Immediate then AND

with Mask

d = __rlwnm(a,v,mb,me) Rotate Left Word then AND with Mask

d = __setflm(a) Save and Set the FPSCR

__stdbrx(pointer,b) Store Reversed Doubleword

d = __stdcx(pointer,b) Store Doubleword Conditional

__sthbrx(pointer,b) Store Reversed Halfword

__stwbrx(pointer,b) Store Reversed Word

d = __stwcx(pointer,b) Store Word Conditional

__sync() Sync

Vector data types

The Vector/SIMD Multimedia Extension model adds a set of fundamental data

types, called vector types.

Vector types are shown in Table 4 on page 29. The represented values are in

decimal (base-10) notation. The vector registers are 128 bits and can contain:

v Sixteen 8-bit values, signed or unsigned

v Eight 16-bit values, signed or unsigned

v Four 32-bit values, signed or unsigned

v Four single-precision IEEE-754 floating-point values

The vector types use the prefix vector in front of one of standard C data

types—for example vector signed int and vector unsigned short. A vector type

represents a vector of as many of the specified C data type as will fit in a 128-bit

register. Hence, the vector signed int is a 128-bit operand containing four 32-bit

signed ints. The vector unsigned short is a 128-bit operand containing eight

unsigned values.

Note: Since the token, vector, is a keyword in the Vector/SIMD Multimedia

Extension data types, you are recommended not to use the term elsewhere in the

program (for example, as a variable name).

28 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 4. Vector/SIMD Multimedia Extension data types

Vector Data Type Meaning Values

vector unsigned char Sixteen 8-bit unsigned values 0 ... 255

vector signed char Sixteen 8-bit signed values -128 ... 127

vector bool char Sixteen 8-bit unsigned boolean 0 (false), 255 (true)

vector unsigned short Eight 16-bit unsigned values 0 ... 65535

vector unsigned short int Eight 16-bit unsigned values 0 ... 65535

vector signed short Eight 16-bit signed values -32768 ... 32767

vector signed short int Eight 16-bit signed values -32768 ... 32767

vector bool short Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector bool short int Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector unsigned int Four 32-bit unsigned values 0 ... 2³² - 1

vector signed int Four 32-bit signed values -2³¹ ... 2³¹ - 1

vector bool int Four 32-bit unsigned values 0 (false), 2³¹ - 1 (true)

vector float Four 32-bit single precision IEEE-754 values

vector pixel Eight 16-bit unsigned values 1/5/5/5 pixel

Introducing fundamental vector data types permits the compiler to provide

stronger type-checking and supports overloaded operations on vector types.

Vector intrinsics

Vector/SIMD Multimedia Extension intrinsics are grouped into three classes.

These classes are:

v Specific Intrinsics – Intrinsics that have a one-to-one mapping with a single

assembly-language instruction

v Generic Intrinsics – Intrinsics that map to one or more assembly-language

instructions as a function of the type of input parameters

v Predicates Intrinsics – Intrinsics that compare values and return an integer that

may be used directly as a value or as a condition for branching

The Vector/SIMD Multimedia Extension intrinsics and predicates use the prefix

vec_ in front of an assembly-language or operation mnemonic; predicate intrinsics

use the prefixes vec_all and vec_any. When compiled, the intrinsics generate one

or more Vector/SIMD Multimedia Extension assembly-language instructions.

The specific and generic intrinsics are shown in Table 5. The predicate intrinsics are

shown in Table 6 on page 32.

 Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics

Intrinsic Description

Arithmetic Intrinsics

d = vec_abs(a) Vector Absolute Value

d = vec_abss(a) Vector Absolute Value Saturated

d = vec_add(a,b) Vector Add

d = vec_addc(a,b) Vector Add Carryout Unsigned Word

d = vec_adds(a,b) Vector Add Saturated

Chapter 2. The PPE and the programming process 29

Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued)

Intrinsic Description

d = vec_avg(a,b) Vector Average

d = vec_madd(a,b,c) Vector Multiply Add

d = vec_madds(a,b,c) Vector Multiply Add Saturated

d = vec_max(a,b) Vector Maximum

d = vec_min(a,b) Vector Minimum

d = vec_mladd(a,b,c) Vector Multiply Low and Add Unsigned Half Word

d = vec_mradds(a,b,c) Vector Multiply Round and Add Saturated

d = vec_msum(a,b,c) Vector Multiply Sum

d = vec_msums(a,b,c) Vector Multiply Sum Saturated

d = vec_mule(a,b) Vector Multiply Even

d = vec_mulo(a,b) Vector Multiply Odd

d = vec_nmsub(a,b,c) Vector Negative Multiply Subtract

d = vec_sub(a,b) Vector Subtract

d = vec_subc(a,b) Vector Subtract Carryout

d = vec_subs(a,b) Vector Subtract Saturated

d = vec_sum4s(a,b) Vector Sum Across Partial (1/4) Saturated

d = vec_sum2s(a,b) Vector Sum Across Partial (1/2) Saturated

d = vec_sums(a,b) Vector Sum Saturated

Rounding And Conversion Intrinsics

d = vec_ceil(a) Vector Ceiling

d = vec_ctf(a,b) Vector Convert from Fixed-Point Word

d = vec_cts(a,b) Vector Convert to Signed Fixed-Point Word Saturated

d = vec_ctu(a,b) Vector Convert to Unsigned Fixed-Point Word Saturated

d = vec_floor(a) Vector Floor

d = vec_trunc(a) Vector Truncate

Floating-Point Estimate Intrinsics

d = vec_expte(a) Vector Is 2 Raised to the Exponent Estimate

Floating-Point

d = vec_loge(a) Vector Log2 Estimate Floating-Point

d = vec_re(a) Vector Reciprocal Estimate

d = vec_rsqrte(a) Vector Reciprocal Square Root Estimate

Compare Intrinsics

d = vec_cmpb(a,b) Vector Compare Bounds Floating-Point

d = vec_cmpeq(a,b) Vector Compare Equal

d = vec_cmpge(a,b) Vector Compare Greater Than or Equal

d = vec_cmpgt(a,b) Vector Compare Greater Than

d = vec_cmple(a,b) Vector Compare Less Than or Equal

d = vec_cmplt(a,b) Vector Compare Less Than

Logical Intrinsics

d = vec_and(a,b) Vector Logical AND

30 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued)

Intrinsic Description

d = vec_andc(a,b) Vector Logical AND with Complement

d = vec_nor(a,b) Vector Logical NOR

d = vec_or(a,b) Vector Logical OR

d = vec_xor(a,b) Vector Logical XOR

Rotate and Shift Intrinsics

d = vec_rl(a,b) Vector Rotate Left

d = vec_round(a) Vector Round

d = vec_sl(a,b) Vector Shift Left

d = vec_sld(a,b,c) Vector Shift Left Double

d = vec_sll(a,b) Vector Shift Left Long

d = vec_slo(a,b) Vector Shift Left by Octet

d = vec_sr(a,b) Vector Shift Right

d = vec_sra(a,b) Vector Shift Right Algebraic

d = vec_srl(a,b) Vector Shift Right Long

d = vec_sro(a,b) Vector Shift Right by Octet

Load and Store Intrinsics

d = vec_ld(a,b) Vector Load Indexed

d = vec_lde(a,b) Vector Load Element Indexed

d = vec_ldl(a,b) Vector Load Indexed LRU

d = vec_lvlx(a,b) Load Vector Left Indexed

d = vec_lvlxl(a,b) Load Vector Left Indexed Last

d = vec_lvrx(a,b) Load Vector Right Indexed

d = vec_lvrxl(a,b) Load Vector Right Indexed Last

d = vec_lvsl(a,b) Vector Load for Shift Left

d = vec_lvsr(a,b) Vector Load Shift Right

d = vec_stvlx(a,b) Store Vector Left Indexed

d = vec_stvlxl(a,b) Store Vector Left Indexed Last

d = vec_stvrx(a,b) Store Vector Right Indexed

d = vec_stvrxl(a,b) Store Vector Right Indexed Last

vec_st(a,b,c) Vector Store Indexed

vec_ste(a,b,c) Vector Store Element Indexed

vec_stl(a,b,c) Vector Store Indexed LRU

Pack and Unpack Intrinsics

d = vec_pack(a,b) Vector Pack

d = vec_packpx(a,b) Vector Pack Pixel

d = vec_packs(a,b) Vector Pack Saturated

d = vec_packsu(a,b) Vector Pack Saturated Unsigned

d = vec_unpackh(a) Vector Unpack High Element

d = vec_unpackl(a) Vector Unpack Low Element

Merge Intrinsics

Chapter 2. The PPE and the programming process 31

Table 5. Vector/SIMD Multimedia Extension specific and generic intrinsics (continued)

Intrinsic Description

d = vec_mergeh(a,b) Vector Merge High

d = vec_mergel(a,b) Vector Merge Low

Permute and Select Intrinsics

d = vec_perm(a,b,c) Vector Permute

d = vec_sel(a,b,c) Vector Select

Stream Intrinsics

vec_dss(a) Vector Data Stream Stop

vec_dssall() Vector Stream Stop All

vec_dst(a,b,c) Vector Data Stream Touch

vec_dstst(a,b,c) Vector Data Stream Touch for Store

vec_dststt(a,b,c) Vector Data Stream Touch for Store Transient

vec_dstt(a,b,c) Vector Data Stream Touch Transient

Move Intrinsics

d = vec_mfvscr Vector Move from Vector Status and Control Register

vec_mtvscr(a) Vector Move to Vector Status and Control Register

Replicate Intrinsics

d = vec_splat(a,b) Vector Splat

d = vec_splat_s8(a) Vector Splat Signed Byte

d = vec_splat_s16(a) Vector Splat Signed Half-Word

d = vec_splat_s32(a) Vector Splat Signed Word

d = vec_splat_u8(a) Vector Splat Unsigned Byte

d = vec_splat_u16(a) Vector Splat Unsigned Half-Word

d = vec_splat_u32(a) Vector Splat Unsigned Word

Scalar Intrinsics

d = vec_extract(a,element) Extract Vector Element from Vector

d = vec_insert(a,b,element) Insert Scalar into Specified Vector Element

d = vec_promote(a,element) Promote Scalar to a Vector

d = vec_splats(a) Splat Scalar to Vector

 Table 6. Vector/SIMD Multimedia Extension predicate intrinsics

Predicate Description

All Predicates

d = vec_all_eq(a,b) All Elements Equal

d = vec_all_ge(a,b) All Elements Greater Than or Equal

d = vec_all_gt(a,b) All Elements Greater Than

d = vec_all_in(a,b) All Elements in Bounds

d = vec_all_le(a,b) All Elements Less Than or Equal

d = vec_all_lt(a,b) All Elements Less Than

d = vec_all_nan(a) All Elements Not a Number

d = vec_all_ne(a,b) All Elements Not Equal

32 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 6. Vector/SIMD Multimedia Extension predicate intrinsics (continued)

Predicate Description

d = vec_all_nge(a,b) All Elements Not Greater Than or Equal

d = vec_all_ngt(a,b) All Elements Not Greater Than

d = vec_all_nle(a,b) All Elements Not Less Than or Equal

d = vec_all_nlt(a,b) All Elements Not Less Than

d = vec_all_numeric(a) All Elements Numeric

Any Predicates

d = vec_any_eq(a,b) Any Element Equal

d = vec_any_ge(a,b) Any Element Greater Than or Equal

d = vec_any_gt(a,b) Any Element Greater Than

d = vec_any_le(a,b) Any Element Less Than or Equal

d = vec_any_lt(a,b) Any Element Less Than

d = vec_any_nan(a) Any Element Not a Number

d = vec_any_ne(a,b) Any Element Not Equal

d = vec_any_nge(a,b) Any Element Not Greater Than or Equal

d = vec_any_ngt(a,b) Any Element Not Greater Than

d = vec_any_nle(a,b) Any Element Not Less Than or Equal

d = vec_any_nlt(a,b) Any Element Not Less Than

d = vec_any_numeric(a) Any Element Numeric

d = vec_any_out(a,b) Any Element Out of Bounds

Programming with Vector/SIMD Multimedia Extension

intrinsics

Vector/SIMD Multimedia Extension data types and Vector/SIMD Multimedia

Extension intrinsics can be used in a seamless way throughout a C-language

program.

You do not need to setup, to enter a special mode, or to include a special header

file.

Example: incorporating Vector instructions into a PPE program

The sample program vmx_sample illustrates the ease with which vector instructions

can be incorporated into a PPE program.

The program vmx_sample performs this processing:

1. “typedefs” a union of an array of four ints and a vector of signed ints. This is

only done so we can refer to the values in two different ways. (Vector elements

can also be accessed using the SPU intrinsic, spu_extract. For more information

about SPU intrinsics, see “Intrinsic classes” on page 66.

2. Loads the literal value 2 into each of the four 32-bit fields of vector vConst.

3. Loads four different integer values into the fields of vector v1.

4. Calls the vec_add intrinsic, and the two vectors are added with the result being

assigned to v2.
#include <stdio.h>

// Define a type we can look at either as an array of ints or as a vector.

Chapter 2. The PPE and the programming process 33

typedef union {

 int iVals[4];

 vector signed int myVec;

} vecVar;

int main()

{

 vecVar v1, v2, vConst; // define variables

 // load the literal value 2 into the 4 positions in vConst,

 vConst.myVec = (vector signed int){2, 2, 2, 2};

 // load 4 values into the 4 element of vector v1

 v1.myVec = (vector signed int){10, 20, 30, 40};

 // call vector add function

 v2.myVec = vec_add(v1.myVec, vConst.myVec);

 // see what we got!

 printf("\nResults:\nv2[0] = %d, v2[1] = %d, v2[2] = %d, v2[3] = %d\n\n",

 v2.iVals[0], v2.iVals[1], v2.iVals[2], v2.iVals[3]);

 return 0;

}

See “Developing code for the Cell Broadband Engine” on page 41 for more

information on how to run the example on the simulator.

Figure 12 shows the results of running the sample program.

Example: array-summing

This example illustrates array-summing using a function that sums an input array

of 16-byte values.

The following code contains three versions of a function that sums an input array

of 16-byte values. For this kind of array-summing function, you have several

options:

v You can unroll the scalar code to slightly improve the performance.

v You can use the Vector/SIMD Multimedia Extension to significantly improve the

performance.

v You can eliminate the loop entirely.

The first option performs 16 iterations of the loop. The second option performs

only four iterations of the loop but with four additions in each iteration. The third

option uses Vector/SIMD Multimedia Extension intrinsics to eliminate the loop

entirely.

[user@bringup /]# callthru source vmx_sample > vmx_sample

[user@bringup /]# chmod +x vmx_sample

[user@bringup /]# vmx_sample

Results:

v2[0] = 12, v2[1] = 22, v2[2] = 32, v2[3] = 42

[user@bringup /]# _

Figure 12. Running the Vector/SIMD Multimedia Extension sample program

34 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

// 16 iterations of a loop

int rolled_sum(unsigned char bytes[16])

{

 int i;

 int sum = 0;

 for (i = 0; i < 16; ++i) {

 sum += bytes[i];

 }

 return sum;

}

// 4 iterations of a loop, with 4 additions in each iteration

int unrolled_sum(unsigned char bytes[16])

{

 int i;

 int sum[4] = {0, 0, 0, 0};

 for (i = 0; i < 16; i += 4) {

 sum[0] += bytes[i + 0];

 sum[1] += bytes[i + 1];

 sum[2] += bytes[i + 2];

 sum[3] += bytes[i + 3];

 }

 return sum[0] + sum[1] + sum[2] + sum[3];

}

// Vectorized for Vector/SIMD Multimedia Extension

int vectorized_sum(unsigned char bytes[16])

{

 vector unsigned char vbytes;

 union {

 int i[4];

 vector signed int v;

 } sum;

 vector unsigned int zero = (vector unsigned int){0};

 // Perform a misaligned vector load of the 16 bytes.

 vbytes = vec_perm(vec_ld(0, bytes), vec_ld(16, bytes), vec_lvsl(0, bytes));

 // Sum the 16 bytes of the vector

 sum.v = vec_sums((vector signed int)vec_sum4s(vbytes, zero),

 (vector signed int)zero);

 // Extract the sum and return the result.

 return (sum.i[3]);

}

The PPE and the SPEs

This section describes the relationship between the PowerPC Processor Element (PPE)

and the Synergistic Processor Elements (SPEs).

Storage Domains

Three types of storage domains are defined in the Cell Broadband Engine: one

main-storage domain , eight SPE local store domains , and eight SPE channel domains.

The three types of storage domains are shown in Figure 13 on page 36. The

main-storage domain, which is the entire effective-address space, can be configured

by the PPE operating system to be shared by all processors and memory-mapped

devices in the system (all I/O is memory-mapped).

Chapter 2. The PPE and the programming process 35

However, the local-storage and channel problem-state (user-state) domains are

private to the SPU, LS, and MFC of each SPE.

 An SPE can only fetch instructions from its own LS, and loads and stores can only

access the LS. An SPE or PPE performs data transfers between the SPE’s LS and

main storage primarily using DMA transfers controlled by the MFC DMA

controller for that SPE. Software on the SPE’s SPU interacts with the MFC through

channels, which enqueue DMA commands and provide other facilities, such as

mailboxes, signal notification, and access auxiliary resources.

An SPE program references its own LS using a Local Store Address (LSA). The LS

of each SPE is also assigned a Real Address (RA) range within the system’s

memory map. This allows privileged software to map LS areas into the effective

address (EA) space, where the PPE, other SPEs, and other devices that generate

EAs can access the LS.

Each SPE’s MFC serves as a data-transfer engine. DMA transfer requests contain

both an LSA and an EA. Thus, they can address both an SPE’s LS and main

storage and thereby initiate DMA transfers between the domains. The MFC

accomplishes this by maintaining and processing an MFC command queue. DMA

requests can be sent to an MFC either by software on its associated SPU or on the

PPE, or by any other processing device that has access to the MFC’s MMIO

problem-state registers.

Figure 13. Storage domains defined in the Cell Broadband Engine

36 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The queued requests are converted into DMA transfers. Each MFC can maintain

and process multiple in-progress DMA command requests and DMA transfers. The

MFC can also autonomously manage a sequence of DMA transfers in response to a

DMA-list command from its associated SPU. Each DMA command is tagged with a

5-bit Tag Group ID. Software can use this identifier to check or wait on the

completion of all queued commands in one or more tag groups.

The MFC supports naturally aligned transfer sizes of 1, 2, 4, or 8 bytes, and

multiples of 16-bytes, with a maximum transfer size of 16 KB. Peak performance

can be achieved for transfers when both the EA and LSA are 128-byte aligned and

the size of the transfer is a multiple of 128 bytes.

Each MFC has an associated memory management unit (MMU) that holds and

processes address-translation and access-permission information supplied by the

PPE operating system. This MMU is distinct from the one used by the PPE. To

process an effective address provided by a DMA command, the MMU uses the

same method as the PPE memory-management functions. Thus, DMA transfers are

coherent with respect to system storage. Attributes of system storage are governed

by the page and segment tables of the PowerPC Architecture.

The PPE or other processing devices can initiate MFC commands on a particular

MFC by accessing its MFC Command-Parameter Registers, shown in Table 7. These

registers are mapped to the system’s real-address space. The PPE performs MMIO

reads and writes to access these registers. The registers are contained in each SPE’s

memory region, and DMA command requests are made by writing parameters to

the registers.

 Table 7. MFC command-parameter registers for PPE-initiated DMA transfers

Name Mnemonic

Max.

Entries R/W

Width

(bits)

MFC Local-Storage Address MFC_LSA 1 W 32

MFC Effective Address High MFC_EAH 1 W 32

MFC Effective Address Low MFC_EAL 1 W 32

MFC Transfer Size

MFC Command Tag Identification

MFC_Size

MFC_TagID

1 W 32

MFC Class ID and Command

Opcode

MFC_ClassID_CMD 8 W 32

MFC Command Status MFC_CMDStatus 1 R 32

Note: The MFC_EAH and MFC_EAL can be written in a single 64-bit store. Similarly,

MFC_Size, MFC_TagID, and MFC_ClassID_CMD can also be written in a single 64-bit

store.

Issuing DMA commands from the PPE

To enqueue a DMA command from the PPE, access the MFC Command-Parameter

Registers in this sequence:

1. Write the LS address to the MFC_LSA register.

2. Write the effective address high and low parts to the MFC_EAH and MFC_EAL

registers.

3. Write the transfer size and tag ID to the MFC_Size and MFC_TagID registers.

4. Write the class ID and command opcode to the MFC_ClassID_CMD registers.

Chapter 2. The PPE and the programming process 37

5. Read the MFC_CMDStatus register to determine the success or failure of the

attempt to enqueue a DMA command.

The least-significant 2 bits of the command status value returned from the read of

the MFC_CMDStatus register indicate the success or error of the attempt to enqueue a

DMA. The values of these two bits have the following meanings:

v 0 – Indicates that the enqueue was successful.

v 1 – Indicates that a sequence error occurred while enqueuing the DMA. For

example, an interrupt occurred, then another DMA was started within an

interrupt handler. In this case, the DMA enqueue sequence must be restarted at

step 1.

v 2 – Indicates that the enqueue failed due to insufficient space in the command

queue.

v 3 – Indicates that both errors occurred.

In the case of insufficient space, software could wait for space to become available

before attempting the DMA transfer again, or software could simply continue

attempting to enqueue the DMA until successful.

Creating threads for the SPEs

Programs to be run on an SPE are most often written in C or C++ (or assembly

language) and can use the SPE data types and intrinsics defined in the SPU C/C++

Language Extensions.

The SPU C/C++ Language Extensions are described in “SPU C/C++ language

extensions (intrinsics)” on page 64. The SPE code modules must be written and

compiled separately from the PPE code modules, using different compilers. A PPE

module starts an SPE module running by creating a thread on the SPE, using the

spe_context_create, spe_program_load, and spe_context_run library calls,

provided in the SPE runtime management library.

The spe_context_create call creates a context for the SPE thread which contains

the persistent information about a logical SPE. This information should not be

accessed directly by the application. The signature and parameter synopsis for the

spe_create_thread library call is:

spe_context_ptr_t spe_context_create(unsigned int flags,

 spe_gang_context_ptr_t gang)

v flags – This is a bit-wise OR of modifiers that is applied when the new context

is created. The following values are accepted:

– 0 – No modifiers are applied.

– SPE_EVENTS_ENABLE – Configure the context with event handling enabled.

– SPE_CFG_SIGNOTIFY1_OR – Configure the SPU Signal Notification 1 Register to

be in “logical OR” mode instead of the default “Overwrite” mode.

– SPE_CFG_SIGNOTIFY2_OR – Configure the SPU Signal Notification 2 Register to

be in “logical OR” mode instead of the default “Overwrite” mode.

– SPE_MAP_PS – Request permission for memory-mapped access to the SPE

thread’s problem state area.

– SPE_ISOLATE – Specifies that the SPE will execute in the isolation mode.

– SPE_ISOLATED_EMULATE – Specifies that the SPE will execute in an emulated

isolation mode.
v gang – Collection of contexts in which the context being created should made a

part of.

38 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Before being able to run an SPE context, an SPE program has to be loaded into the

context using the spe_program_load subroutine. The signature and parameter

synopsis for the spe_program_load library call is:

int spe_program_load(spe_context_ptr spe, spe_program_handle_t *program)

v spe – The SPE context in which in specified program is to be loaded.

v program – Indicates the program to be loaded into the SPE context. This is an

opaque pointer to an SPE Executable and Linking Format (ELF) image that has

already been loaded and mapped into system memory. This pointer is normally

provided as a symbol reference to an SPE ELF executable image that has been

embedded into a PPE ELF object and linked with the calling PPE program. This

pointer can also be established dynamically by loading a shared library

containing an embedded SPE ELF executable, using dlopen(2) and dlsym(2), or

by using the spe_image_open function to load and map a raw SPE ELF

executable.

An SPE context is executed on a physical SPE by calling the spe_context_run

function. This subroutine causes the current PPE thread to transition to a SPE

thread by passing its execution control from the PPE to the SPE whose context is

scheduled to run on. The PPE resumes execution when the SPE stops.

Note: In order to achieve multiple threads of execution (PPE and SPE threads),

separate “pthreads” must be created for each thread of execution using

pthread_create. An example is provided in “Producing a simple multi-threaded

CBE program” on page 42.

The signature and parameter synopsis for the spe_context_run library call is:

int spe_context_run(spe_context_ptr_t spe, unsigned int *entry,

 unsigned int runflags, void *argp, void *envp, spe_stop_info_t *stopinfo)

v spe — The context to be run.

v entry — Pointer initial value of the instruction pointer in which the SPE

program should start executing. If the value pointed to by entry is

SPE_DEFAULT_ENTRY, the default entry for the main program obtained from

loaded SPE image will be used. Upon return from the spe_context_run call, the

value pointed to by entry contains the next instruction to be executed upon

resumption of the program.

v runflags — This is a bit-wise OR of modifiers which request specific behavior

when the SPE context is run. Flags include:

– 0 — Default behavior. No modifiers are applied.

– SPE_RUN_USER_REGS — Specifies that the SPE setup registers, r3, r4, and r5, are

initialized with the 48 bytes pointed to by argp.

– SPE_NO_CALLBACKS — Specifies that register SPE library callbacks should not

be automatically executed. This includes “PPE-assisted library calls” that are

provided by the SPE Runtime library.
v argp — An optional pointer to application specific data. It is passed as the

second parameter of the SPU program.

v envp — An optional pointer to environment specific data. It is passed as the

third parameter of the SPU program.

v stopinfo — An optional pointer to a structure of type spe_stop_info_t that

provides information as to the reason why the SPE stopped running. See library

documentation for more details on this structure.

The following code sample shows PPE code creating a SPE context, loading a SPE

program into the context and running the program from the current thread.

Chapter 2. The PPE and the programming process 39

#include <libspe2.h>

extern spe_program_handle_t spe_code;

...

spe_context_ptr_t ctx;

unsigned int entry = SPE_DEFAULT_ENTRY;

if ((ctx = spe_context_create(0, NULL)) == NULL) {

 perror(“Failed creating SPE context);

 exit(1);

}

if (spe_program_load(ctx, &spe_code)) {

 perror(“Failed loading program”);

 exit(1);

}

if (spe_context_run(ctx, &entry, 0, NULL, NULL, NULL) < 0) {

 perror(“Failed running context”);

 exit(1);

}

Communication between the PPE and SPEs

The PPE communicates with the SPEs through privileged-state and problem-state

MMIO registers supported by the MFC of each SPE.

These registers are accessed by the associated SPE through its channel mechanism

(see“Channels” on page 55), which consist of unidirectional registers and queues

and support logic. The three primary communication mechanisms between the PPE

and SPEs are mailboxes, signal notification registers, and DM)

Mailboxes are queues for exchanging 32-bit messages. Two mailboxes (the SPU

Write Outbound Mailbox and the SPU Write Outbound Interrupt Mailbox) are

provided for sending messages from the SPE to the PPE. One mailbox (the SPU

Read Inbound Mailbox) is provided for sending messages to the SPE. Table 8 lists

the mailbox channels and their associated MMIO registers.

Note: Mailboxes can also be used as a communications mechanism between SPEs.

This is accomplished by an SPE DMAing data into the other SPE’s mailbox using

the effective addressed problem state mapping.

 Table 8. Mailbox channels and MMIO registers

Name

Channel MMIO Register

Mnemonic

Max.

entries R/W

Width

(bits) Mnemonic

Max.

entries R/W

Width

(bits)

SPU Write

Outbound Mailbox

SPU_WrOutMbox 1 W 32 SPU_Out_Mbox 1 R 32

SPU Read Inbound

Mailbox

SPU_RdInMbox 4 R 32 SPU_In_Mbox 4 W 32

SPU Write

Outbound

Interrupt Mailbox

SPU_WrOutIntrMbox 1 W 32 SPU_Out_Intr_Mbox 1 R 32

SPU signal-notification channels are inbound (to an SPE) 32-bit registers. They can

be configured for one-to-one signaling or many-to-one signaling. An SPE read of

one of its two signal-notification channels clears the channel. A PPE MMIO read

does not clear the channel. Table 9 on page 41 lists the signal-notification channels

and associated MMIO registers.

40 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 9. Signal notification channels and MMIO registers

Name

Channel MMIO Register

Mnemonic

Max.

entries R/W

Width

(bits) Mnemonic

Max.

entries R/W

Width

(bits)

SPU Signal

Notification 1

SPU_RdSigNotify1 1 R 32 SPU_Sig_Notify_1 1 R/W 32

SPU Signal

Notification 2

SPU_RdSigNotify2 1 R 32 SPU_Sig_Notify_2 1 R/W 32

The PPE is often used as an application controller, managing and distributing work

to the SPEs. A large part of this task is loading main storage with the data to be

processed, and then notifying the SPE by either writing to the SPU Read Inbound

Mailbox or writing to one of the SPE’s signal notification registers.

Mailboxes are also useful when the SPE places computational results in main

storage via DMA. After requesting the DMA transfer, the SPE waits for the DMAs

to complete, and then writes to an SPU Write Outbound Mailbox to notify the PPE

that its computation is complete. The PPE can use either a mailbox or a signal to

let an SPE know that the PPE has placed computational results in main storage via

DMA.

Developing code for the Cell Broadband Engine

There can be several types of programs, including PPE programs, SPE programs,

and Cell Broadband Engine programs (PPE programs with embedded SPE

programs).

The PPE and SPE programs use different compilers. The correct compiler, compiler

flags, and libraries must be used for the intended processor and program type. The

PPE typically sets up, starts, and stops an SPE. Communication between the PPE

and SPEs is an important consideration.

To aid in simplifying the process of producing programs for the Cell Broadband

Engine, the SDK’s Samples (see “The software development kit” on page 16)

provides a build environment based upon the make utility. For additional details

on the SDK’s build environment, consult the file README_build_env.txt located in

/opt/cell/sdk/buildutils.

Programmers can declare the types of programs in the makefile, and the correct

compiler, compiler options, and libraries will be used for the build. The most

important target types are PROGRAM_ppu and PROGRAM_spu, for building PPE

programs and SPE programs, respectively. To use makefile definitions supplied by

the SDK for producing programs, include the following line at the bottom of the

makefile:

include ../../../buildutils/make.footer

Insert as many instances of “../” as necessary to reach the top of the directory tree

where buildutils resides. Alternatively, make.footer can be sourced directly

(useful when working on projects within the Eclipse IDE framework), by defining

CELL_TOP environment variable and sourcing the make.footer as follows:

include $(CELL_TOP)/buildutils/make.footer

Chapter 2. The PPE and the programming process 41

The makefiles in the SDK Samples support both methods of importing the

make.footer.

Figure 14 shows a sample directory structure and makefiles for a system with a

PPE program and an SPE program. This sample project sampleproj has a project

directory and two subdirectories. The ppu directory contains the source code and

makefile for the PPE program. The spu directory has the source code and makefile

for the SPE program. The makefile in the project directory executes the makefiles

in the two subdirectories. This is only one of the possible project directory

structures.

Producing a simple multi-threaded CBE program

To produce a simple program for the CBE, you should follow the steps listed

below (this example is included in the SDK in /opt/cell/sdk/src/tutorial/
simple).

The project is called simple. For this example, the PPE code will be built in the

project directory, instead of a ppu sub-directory.

1. Create a directory named simple.

2. In directory simple, create a file named Makefile using the following code:

Subdirectories

DIRS := spu

Target

PROGRAM_ppu := simple

Local Defines

Figure 14. Sample project directory structure and makefiles

42 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

IMPORTS := spu/lib_simple_spu.a -lspe2 -lpthread

imports the embedded simple_spu library

allows consolidation of spu program into ppe binary

make.footer

make.footer is in the top of the SDK

ifdef CELL_TOP

 include $(CELL_TOP)/buildutils/make.footer

else

 include ../../../../buildutils/make.footer

endif

3. In directory simple, create a file simple.c using the following code:

#include <stdlib.h>

#include <stdio.h>

#include <errno.h>

#include <libspe2.h>

#include <pthread.h>

extern spe_program_handle_t simple_spu;

#define MAX_SPU_THREADS 16

void *ppu_pthread_function(void *arg) {

 spe_context_ptr_t ctx;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 ctx = *((spe_context_ptr_t *)arg);

 if (spe_context_run(ctx,&entry, 0, NULL, NULL, NULL) < 0) {

 perror ("Failed running context");

 exit (1);

 }

 pthread_exit(NULL);

}

int main()

{

 int i,spu_threads;

 spe_context_ptr_t ctxs[MAX_SPU_THREADS];

 pthread_t threads[MAX_SPU_THREADS];

/* Determine the number of SPE threads to create */

spu_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);

if (spu_threads > MAX_SPU_THREADS) spu_threads = MAX_SPU_THREADS;

 /* Create several SPE-threads to execute ’simple_spu’ */

 for(i=0; i<spu_threads; i++) {

 /* Create context */

 if ((ctxs[i] = spe_context_create (0, NULL)) == NULL) {

 perror ("Failed creating context");

 exit (1);

 }

 /* Load program into context */

 if (spe_program_load (ctxs[i],&simple_spu)) {

 perror ("Failed loading program");

 exit (1);

 }

 /* Create thread for each SPE context */

 if (pthread_create (&threads[i], NULL,&ppu_pthread_function,&ctxs[i])) {

 perror ("Failed creating thread");

 exit (1);

 }

Chapter 2. The PPE and the programming process 43

/* Wait for SPU-thread to complete execution. */

 for (i=0; i<spu_threads; i++) {

 if (pthread_join (threads[i], NULL)) {

 perror("Failed pthread_join");

 exit (1);

 }

 }

 printf("\nThe program has successfully executed.\n");

 return (0);

}

4. Create a directory named spu.

5. In the directory spu, create a file named Makefile using the following code:

Target

PROGRAMS_spu := simple_spu

created embedded library

LIBRARY_embed := lib_simple_spu.a

make.footer

make.footer is in the top of the SDK

ifdef CELL_TOP

 include $(CELL_TOP)/buildutils/make.footer

else

 include ../../../../../buildutils/make.footer

endif

6. In the same directory, create a file simple_spu.c using the following code:

#include <stdio.h>

int main(unsigned long long id)

{

 /* The first parameter of an spu program will always be the spe_id of the spe

 * thread that issued it.

 */

 printf("Hello Cell (0x%llx)\n", id);

 return 0;

}

7. Compile the program by entering the following command at the command line

while in the simple directory:

make

This CBE program then creates SPE threads that output “Hello Cell (#)\n” to the

systemsim output window, where # is the spe_id of the SPE thread that issued the

print.

Running the program in the simulator

Now that we have compiled the program, it can now be executed either on a CBE

system or a simulation of a CBE system. In this case, we will use the IBM Full System

Simulator for the Cell Broadband Engine as a simulation of a CBE system by

starting the simulator, importing the program, and executing it.

44 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

To start the IBM Full System Simulator for the Cell Broadband Engine with a

graphics user interface:

1. Create a private, non-root, simulator execution environment.

 mkdir sim

 cd sim

 cp /opt/ibm/systemsim-cell/run/cell/linux/.systemsim.tcl .

 export PATH=/opt/ibm/systemsim-cell/bin:$PATH

2. Start the simulator with a graphical user interface:

 systemsim -g

3. Two new windows will appear on the screen. The first is a

command-line/console window labeled mysim in the window’s title bar. The

second is the simulator graphical user interface (GUI) window. These windows

are shown in Figure 15.

The window labeled mysim is an uart window that, when Linux boots, it

becomes a Linux console window. When the console window first appears, it is

empty and there is no user prompt, because Linux has not yet been booted on

the simulated system.

Figure 15. Windows visible after starting the simulator GUI

Chapter 2. The PPE and the programming process 45

The window in which the simulator was started (systemsim -g) is the simulator

command-line window.

4. Boot the Linux operating system on the simulator by clicking the Go button on

the graphical user interface (GUI). To make the simulator run “quickly”, click

the Fast Mode button prior to Go. This forces the simulator to bypass its

standard analysis and statistic collection features. The console window will

begin to display the Linux booting process. When Linux has finished booting

on the simulator, a command prompt will be visible in the window. Figure 16

shows the window on completion of the boot process.

The simulator is now ready to import the sample program into its environment.

Before doing that, however, you can confirm that the program is not in the

simulator environment, by entering the ls command at the prompt in the

console window, and observing that simple is not listed in the directory listing.

5. Import the program from the base simulator hosting environment into the

simulator environment by entering the following command:

callthru source /tmp/simple > simple

This command tells the simulator environment to “call through” to the

simulator hosting environment’s /tmp directory, retrieve the file called simple,

and copy that file to the simulator file system. If you now enter an ls

command in the console window, you will see simple listed in the current

directory. Figure 17 on page 47 shows the process of loading the program into

the simulation environment.

Alternatively, one can permanently add or delete files to the sysroot disk

image by performing a loop device mount the sysroot disk image and copying

or removing files from the mounted image, prior to booting the simulation

environment. For example, the following sequence:

Figure 16. Console window on completion of Linux boot

46 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

mount -o loop /opt/ibm/systemsim-cell/image/cell/sysroot_disk /mnt

 cp /tmp/simple /mnt/simple

 umount /mnt

copies the simple executable from the host system’s /tmp directory to the

sysroot’s / directory.

Even though the file had execute permissions in the base simulator hosting

environment, the newly imported file in the emulator environment does not.

6. Add execute permissions to the program file simple by issuing the following

command:

 chmod +x simple

7. Execute the program by issuing the following command:

 ./simple

The output of the program will appear in the console window. Figure 18 on page

48 shows the output of running the sample program.

Figure 17. Loading the program into the simulation environment

Chapter 2. The PPE and the programming process 47

Debugging programs

Debugging a program is often the most challenging part of programming,

especially with multithreaded programs. The SDK contains several tools for

debugging, the most important of which are the gdb debugger and the IBM Full

System Simulator for the Cell Broadband Engine.

The gdb debugger is a command-line debugger available as part of the GNU

development environment. Because of the Cell Broadband Engine’s unique

characteristics, gdb has been modified so that there are actually two versions of the

debugger – ppu-gdb for debugging PPE and combined PPE and SPE programs, and

spu-gdb for debugging SPE programs. For additional information on using ppu-gdb

and spu-gdb, consult the Software Development Kit, Programmer’s Guide.

The other tool for debugging a Cell Broadband Engine program is the IBM Full

System Simulator for the Cell Broadband Engine. This simulator lets you view many

aspects of the simulated running program in GUI mode. You can also control many

aspects of the simulator using Tcl commands. The simulator is described more

fully in Chapter 5, “The simulator,” on page 123.

Figure 18. Running the sample program

48 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Chapter 3. Programming the SPEs

The eight identical Synergistic Processor Elements (SPEs) are optimized for

compute-intensive applications in which a program’s data and instruction needs

can be anticipated and transferred into the local store (LS) by DMA while the SPE

computes using previously transferred data and instructions.

The streaming data sets in 3D graphics, media, and broadband communications are

examples of applications that run well on SPEs. However, the SPEs are not

optimized for running programs that have significant branching, such as an

operating system. Each SPE supports only a single program context at any one

time. Typically, the operating system runs on the PPE, and user-mode threads are

execute on the SPEs.

The SPEs achieve high performance, in part, by eliminating the overhead of load

and store address translation, hardware-managed caches, out-of-order instruction

issue, and branch prediction. Instead, the SPEs capitalize on the high

computational efficiencies that can be obtained for streaming-data applications by

providing a large (128-entry by 128-bit) unified register file, dual-instruction issue,

and high DMA bandwidth between the LS and main storage.

Each SPE supports the single-instruction, multiple-data (SIMD) instruction

architecture, described in the SPU Instruction Set Architecture . Although details of

this instruction set are given in the sections that follow, an SPE is normally

programmed in a high-level language like C or C++. The SPU instruction set is

supported by a rich set of language extensions for C/C++, described in the C/C++

Language Extensions for Cell Broadband Engine Architecture specification. These

extensions define SIMD data types and intrinsics (commands, in the form of

function calls) that map to one or more assembly-language instructions, giving

programmers very convenient and productive control over code performance

without the need for assembly-language programming.

SPE configuration

This section describes the main components of a Synergistic Processor Element

(SPE).

The main components are shown in Figure 19 on page 50. Their functions include:

v Synergistic Processor Unit (SPU) — The SPU executes SPU instructions fetched

from its 256-KB LS. The SPU fills its LS with instructions and data using DMA

transfers initiated from SPU or PPE software.

v Memory Flow Controller (MFC) — The MFC provides the interface, by means of

the Element Interconnect bus (EIB), between the SPU and main storage. The

MFC performs DMA transfers between the SPU’s LS and main storage, and it

supports mailbox and signal-notification messaging between the SPE and the

PPE and other devices. The SPU communicates with its MFC through SPU

channels. The PPE and other devices (including other SPEs) communicate with

an MFC through memory-mapped I/O (MMIO) registers associated with the

SPU’s channels.

 49

Synergistic Processor Unit

Each of the eight SPEs is an independent processor with its own program counter,

register file, and 256-KB LS.

An SPE operates directly on instructions and data in its LS. It fills its LS by

requesting DMA transfers from its MFC, which manages the DMA transfers. The

SPU has specialized units for executing load and store, fixed-point, floating-point

unit (single-precision and double-precision), and channel-interface instructions.

The large 128-entry, 128-bit wide register file, and its flat architecture (all operand

types stored in a single register file), allows for instruction-latency hiding without

speculation. The register file is unified—meaning that all data types (integer,

single-precision and double-precision floating-point, scalars, vectors, logicals, bytes,

and others) use the same register file. The register file also stores return addresses,

results of comparisons, and so forth. As a consequence of the large, unified register

file, expensive hardware techniques such as out-of-order processing or deep

speculation are not needed to achieve high performance.

LS addresses can be aliased by PPE privileged software onto the main-storage

(effective-address) space. DMA transfers between the LS and main storage are

coherent in the system. A pointer to a data structure created on the PPE can be

passed to an SPU, and the SPU can use this pointer to issue a DMA command to

Figure 19. SPE architectural block diagram

50 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

bring the data structure into its LS. PPE software can use locking instructions and

mailboxes for synchronization and mutual exclusion.

The SPU architecture has the following restrictions:

v No direct (SPU-program addressable) access to main storage. The SPU accesses

main storage only by using the MFC’s DMA transfers.

v No direct access to system control, such as page-table entries. PPE privileged

software provides the SPU with the address-translation information that its MFC

needs.

v With respect to accesses by its SPU, the LS is unprotected and un-translated

storage.

SPE registers

This section describes the Synergistic Processor Element (SPE) user registers.

The complete set of SPE user registers is shown in Figure 20. All computational

instructions operate only on registers—there are no computational instructions that

modify storage. The SPE registers include:

v General-Purpose Registers (GPRs) — All data types can be stored in the 128-bit

GPRs, of which there are 128.

v Floating-Point Status and Control Register (FPSCR) — The processor updates the

128-bit FPSCR after every floating-point operation to record information about

the result and any associated exceptions.

Floating-point operations

The SPU executes both single-precision and double-precision floating-point

operations. Single-precision instructions are performed in 4-way SIMD fashion,

fully pipelined, whereas double-precision instructions are partially pipelined.

The data formats for single-precision and double-precision instructions are those

defined by IEEE Standard 754, but the results calculated by single-precision

instructions are not fully compliant with IEEE Standard 754.

Figure 20. SPE user-register set

Chapter 3. Programming the SPEs 51

For single-precision operations, the range of normalized numbers is extended

beyond the IEEE standard. The representable, nonzero numbers range from

Xmin = 2¹²⁶ to Xmax = (2 -²³)2¹²⁸. If the exact result overflows (that is, if it is

larger in magnitude than Xmax), the rounded result is set to Xmax with the

appropriate sign. If the exact result underflows (that is, if it is smaller in

magnitude than Xmin), the rounded result is forced to zero. A zero result is always

a positive zero.

Single-precision floating-point operations implement IEEE 754 arithmetic with the

following changes:

v Only one rounding mode is supported: round towards zero, also known as

truncation.

v Denormal operands are treated as zero, and denormal results are forced to zero.

v Numbers with an exponent of all ones are interpreted as normalized numbers

and not as infinity or not-a-number (NaN).

Double-precision operations do not support the IEEE precise trap (exception)

mode. If a double-precision denormal or not-a-number (NaN) result does not

conform to IEEE Standard 754, then the deviation is recorded in a sticky bit in the

FPSCR register, which can be accessed using the fscrrd and fscrwr instructions or

the spu_mffpscr and spu_mtfpscr intrinsics.

Double-precision instructions are performed as two double-precision operations in

2-way SIMD fashion. However, the SPU is capable of performing only one

double-precision operation per cycle. Thus, the SPU executes double-precision

instructions by breaking up the SIMD operands and executing the two operations

in consecutive instruction slots in the pipeline. Although double-precision

instructions have 13-clock-cycle latencies, only the final seven cycles are pipelined.

No other instructions are dual-issued with double-precision instructions, and no

instructions of any kind are issued for six cycles after a double-precision

instruction is issued.

Local Store

The local store (LS) can be regarded as a software-controlled cache that is filled and

emptied by DMA transfers.

Key features of the LS include:

v Holds instructions and data

v 16-bytes-per-cycle load and store bandwidth, quadword aligned only

v 128-bytes-per-cycle DMA-transfer bandwidth

v 128-byte instruction prefetch per cycle

Competition might occur for access to the LS by:

v loads,

v stores,

v DMA reads,

v DMA writes,

v instruction fetches.

The SPU arbitrates access to the LS according the following priorities (with the

highest priority first):

1. DMA reads and writes by the PPE or an I/O device.

2. SPU loads and stores.

3. Instruction prefetch.

52 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 10 summarizes the LS-arbitration priorities and transfer sizes. DMA reads

and writes always have highest priority. Because hardware supports 128-bit DMA

reads and writes, these operations occupy, at most, one of every eight cycles (one

of sixteen for DMA reads, and one of sixteen for DMA writes) to the LS. Thus,

except for highly optimized code, the impact of DMA reads and writes on LS

availability for loads, stores, and instruction fetches can be ignored.

 Table 10. LS-Access Arbitration Priority and Transfer Size

Transaction

Transfer

Size

(Bytes) Priority

Maximum Local

Store Occupancy

(SPU Cycle) Access Path

MMIO ≤ 16 1-Highest 1/8 Line Interface

DMA ≤ 128 1

DMA-List

Transfer-Element Fetch

128 1 1/4 Quadword

Interface

ECC Scrub 16 2 1/10

SPU Load/Store 16 3 1

Hint Fetch 128 3 1 Line Interface

Inline Fetch 128 4-Lowest 1/16 for inline

code

After DMA reads and writes, the next-highest user-initiated priority is given to

load and store instructions. The rationale for doing so is that load and store

instructions usually help a program’s progress, whereas instruction fetches are

often speculative. The SPE supports only 16-byte load and store operations that are

16-byte-aligned. It uses a second instruction (byte shuffle) to place bytes in a

different order if, for example, the program requires only a 4-byte quantity or a

quantity with a different data alignment. To store something that is not aligned,

use a read-modify-write operation.

The lowest priority for LS access is given to instruction fetches, of which there are

three types: flush-initiated fetches, inline prefetches, and hint fetches. Instruction

fetches load 32 instructions per SPU request by accessing all banks of the LS

simultaneously. Because the LS is single-ported, it is important that DMA and

instruction-fetch activity transfer as much useful data as possible in each LS

request.

Pipelines and dual-issue rules

The SPU has two pipelines, named even (pipeline 0) and odd (pipeline 1). Into

these pipelines, the SPU can issue can issue and complete up to two instructions

per cycle, one in each of the pipelines.

Whether an instruction goes to the even or odd pipeline depends on its instruction

type, which is related to the execution unit that performs the function. Each

execution unit is assigned to one of the two pipelines. Table 11 summarizes the

instruction types, latencies, and pipeline assignments.

 Table 11. SPU Instruction Latency and Pipeline, by Instruction Class

Instruction

Class Description

Latency (clock

cycles) Pipeline

LS Load and store 6 Odd

HB Branch hints 15 Odd

Chapter 3. Programming the SPEs 53

Table 11. SPU Instruction Latency and Pipeline, by Instruction Class (continued)

Instruction

Class Description

Latency (clock

cycles) Pipeline

BR Branch resolution 4 Odd

CH Channel interface, special-purpose

registers

6 Odd

SP Single-precision floating-point 6 Even

DP Double-precision floating-point 13² Even

FI Floating-point integer 7 Even

SH Shuffle 4 Odd

FX Simple fixed-point 2 Even

WS Word rotate and shift 4 Even

BO Byte operations 4 Even

NOP No operation (execute) - Even

LNOP No operation (load) - Odd

Note:

1. Inline or correctly hinted branches have zero-cycle delay. The mispredicted

branch penalty is 18-19 clock cycles.

2. Six cycles of a double-precision floating-point operation are instruction-issue

stalls. No instructions of any kind are issued for six cycles after a

double-precision floating point instruction is issued.

The SPU issues all instructions in program order according to the pipeline

assignment. Each instruction is part of a doubleword-aligned instruction pair called

a fetch group.

A fetch group can have one or two valid instructions, but it must be aligned to

doubleword boundaries. This means that the first instruction in the fetch group is

from an even word address, and the second instruction from an odd word address.

The SPU processes fetch groups one at a time, continuing to the next fetch group

when the current instruction group becomes empty. An instruction becomes

issueable when register dependencies are satisfied and there is no structural hazard

(resource conflict) with prior instructions or DMA or error-correcting code (ECC)

activity.

Dual-issue occurs when a fetch group has two issueable instructions in which the

first instruction can be executed on the even pipeline and the second instruction

can be executed on the odd pipeline. If a fetch group cannot be dual-issued, but

the first instruction can be issued, the first instruction is issued to the proper

execution pipeline and the second instruction is held until it can be issued. A new

fetch group is loaded after both instructions of the current fetch group are issued.

Memory flow controller

The primary functions of the Memory Flow Controller (MFC) are to connect the

SPU to the EIB and support DMA transfers between main storage and the LS.

Figure 19 on page 50 shows the functions of the MFC.

54 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The MFC maintains and processes queues of DMA commands from its SPU or

from the PPE or other devices. The MFC’s DMA controller (DMAC) executes the

DMA commands. This allows the SPU to continue execution in parallel with the

MFC’s DMA transfers.

The DMA and other MFC commands, and the command queues, are described in

“MFC commands” on page 76.

To make DMA transfers between main storage and the LS possible, privileged

software on the PPE provides the LS and MFC resources, such as memory-mapped

I/O (MMIO) registers, with effective-address aliases in main storage. This enables

software on the PPE or other SPUs and devices to access the MFC resources and

control the SPU. Privileged software on the PPE also provides address-translation

information to the MFC for use in DMA transfers. DMA transfers are coherent with

respect to system storage. Attributes of system storage (address translation and

protection) are governed by the page and segment tables of the PowerPC

Architecture.

The MFC supports channels and associated MMIO registers for the purposes of

enqueueing and monitoring DMA commands, monitoring SPU events, performing

interprocessor-communication via mailboxes and signal-notification, accessing

auxiliary resources such as the decrementer (timer), and other functions.

In addition to supporting DMA transfers, channels, and MMIO registers, the MFC

also supports bus-bandwidth reservation features and synchronizes operations

between the SPU and other processing units in the system.

Channels

Channels are unidirectional message-passing interfaces that support 32-bit messages

and commands. Many of the channels provide communications between the SPE

and its MFC, which in turn, mediates communication with the PPE and other

devices.

Table 12 lists the channels and their attributes. Reserved and privileged channels

are omitted.

Software on the SPU uses special channel instructions (shown in Table 13 on page

57) to read and write channel registers and queues.

Software on the PPE and other devices use load and store instructions to read and

write to MFC’s MMIO registers that are associated with the SPU’s channels.

 Table 12. SPE Channels

Channel Name Mnemonic

Size

(bits) R/W Blocking

SPU Events

0 SPU Read Event Status SPU_RdEventStat 32 R Yes

1 SPU Write Event Mask SPU_WrEventMask 32 W No

2 SPU Write Event Acknowledgment SPU_WrEventAck 32 W No

SPU Signal Notification

3 SPU Signal Notification 1 SPU_RdSigNotify1 32 R Yes

4 SPU Signal Notification 2 SPU_RdSigNotify2 32 R Yes

SPU Decrementer

Chapter 3. Programming the SPEs 55

Table 12. SPE Channels (continued)

Channel Name Mnemonic

Size

(bits) R/W Blocking

7 SPU Write Decrementer SPU_WrDec 32 W No

8 SPU Read Decrementer SPU_RdDec 32 R No

MFC Multisource Synchronization

9 MFC Write Multisource Synchronization

Request

MFC_WrMSSyncReq 32 W Yes

SPU and MFC Read Mask

11 SPU Read Event Mask SPU_RdEventMask 32 R No

12 MFC Read Tag-Group Query Mask MFC_RdTagMask 32 R No

SPU State Management

13 SPU Read Machine Status SPU_RdMachStat 32 R No

14 SPU Write State Save-and-Restore SPU_WrSRR0 32 W No

15 SPU Read State Save-and-Restore SPU_RdSRR0 32 R No

MFC Command Parameters

16 MFC Local Store Address MFC_LSA 32 W No

17 MFC Effective Address High MFC_EAH 32 W No

18 MFC Effective Address Low or List

Address

MFC_EAL 32 W No

19 MFC Transfer Size or List Size MFC_Size 16 W No

20 MFC Command Tag Identification MFC_TagID 16 W No

21 MFC Command Opcode or ClassID MFC_Cmd 32 W Yes

MFC Tag Status

22 MFC Write Tag-Group Query Mask MFC_WrTagMask 32 W No

23 MFC Write Tag Status Update Request MFC_WrTagUpdate 32 W Yes

24 MFC Read Tag-Group Status MFC_RdTagStat 32 R Yes

25 MFC Read List Stall-and-Notify Tag Status MFC_RdListStallStat 32 R Yes

26 MFC Write List Stall-and-Notify Tag

Acknowledgement

MFC_WrListStallAck 32 W No

27 MFC Read Atomic Command Status MFC_RdAtomicStat 32 R Yes

SPU Mailboxes

28 SPU Write Outbound Mailbox SPU_WrOutMbox 32 W Yes

29 SPU Read Inbound Mailbox SPU_RdInMbox 32 R Yes

30 SPU Write Outbound Interrupt Mailbox SPU_WrOutIntrMbox 32 W Yes

Each channel has a corresponding count that indicates the remaining capacity (the

maximum number of outstanding transfers) in that channel. This count is

decremented when a channel instruction is issued to the channel, and the count

increments when an action associated with that channel completes. Each channel is

implemented with either blocking or non-blocking semantics.

Blocking channels cause the SPE to stall (suspend execution in a low-power state)

when the SPE reads or writes a channel with a count of zero.

56 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Key features of the SPE channel operations include:

v All transactions on the channel interface are unidirectional.

v Each channel transaction is independent of any other transaction.

v Sequential read and write transactions are supported.

v External access to control MMIO registers has higher priority than channel

operations.

v Channel operations are done in program order.

v Channel read operations to reserved channels return zeros.

v Channel write operations to reserved channels have no effect.

v Reading of channel counts on reserved channels returns zero.

Channel instructions

The SPU Instruction Set Architecture defines three channel instructions: rdch, wrch,

and rchcnt.

A summary of the SPU Instruction Set Architecture is shown in “SPU instruction

set” on page 60. The rdch, wrch, and rchcnt channel instructions are shown in

Table 13.

Software running on an SPE uses the channel instructions to write parameters and

enqueue the MFC commands, as described in “MFC commands” on page 76.

Table 13 includes both the SPU assembly-language instructions and their

corresponding C-language intrinsics.

The intrinsics are described in “SPU C/C++ language extensions (intrinsics)” on

page 64.

 Table 13. SPE Channel Instructions

Instruction

Assembler

Instruction

C-Language

Intrinsic Description

Read Channel rdch spu_readch

spu_readchqw

Causes data to be read from the

addressed channel and stored into

the selected General-Purpose

Register (GPR).

Write Channel wrch spu_writech

spu_writechqw

Causes data to be read from the

selected GPR and stored in the

addressed channel

Read Channel

Count

rchcnt spu_readchcnt Causes the count associated with

the addressed channel to be stored

in the selected GPR.

If the write channel is nonblocking, a wrch instruction can be issued regardless of

the value of the channel count for that channel. If the write channel is blocking ,

then a wrch instruction that is issued when the count for that channel is equal to

zero will stall the SPE. Stalling on a wrch instruction can be useful because it saves

power, but to avoid stalling, software should first read the channel count to ensure

that it is not zero before issuing a wrch instruction.

The method used to determine the channel count is dependent on the program.

The program can poll the channel count for that register, using the rchcnt

Chapter 3. Programming the SPEs 57

instruction, or the program can issue a wrch instruction. If the program issues a

wrch instruction, the SPE stalls, waiting until an acknowledgment is received from

the write channel.

When an SPE program needs to receive information, it uses a rdch instruction.

Usually, this information is held in an SPE register. The information can be loaded

into this register through the channel interface using a read-data-load transaction.

v If the read channel is nonblocking, then a rdch instruction can be issued

regardless of the value of the channel count for that channel.

v In the SPE, if the channel is a blocking channel, the SPE does not read from this

register until the channel count for that register indicates that the data is valid

(that is, when the count is greater than zero).

v If the count is zero, then there is no data in the channel and the SPE stalls until

actions associated with that channel occur.

These actions can include the updating of the MFC_RdTagStat channel (see Table 12

on page 55), the PPE writing data to the corresponding MMIO register (such as a

mailbox channel), or other actions. The method used to determine the count

depends on the program. The program can:

v poll the channel count for that register using the rchcnt instruction, or

v issue the rdch instruction.

If the program issues a rdch instruction, the SPE stalls, waiting until valid data is

loaded.

The channel instructions are architected as 128 bits wide, but in the Cell Broadband

Engine, channel instructions set use only the 32 bits from the preferred slot (the

left-most word, word element 0) in the register.

Mailboxes

Mailboxes are queues that support exchanges of 32-bit messages between an SPE

and other devices. Each mailbox queue has an SPE channel assignment as well as a

corresponding MMIO register assignment.

Two 1-entry mailbox queues are provided for sending messages from the SPE:

v SPU Write Outbound Mailbox

v SPU Write Outbound Interrupt Mailbox

One 4-entry mailbox queue is provided for sending messages to the SPE:

v SPU Read Inbound Mailbox

Each mailbox has an SPE channel assignment (see Table 12 on page 55) as well as a

corresponding MMIO register. To access the mailbox, an SPE program uses rdch

and wrch instructions (see Table 13 on page 57). The PPE and other processors use

load and store instructions to access the corresponding MMIO addresses.

Data written by an SPE program to one of these mailboxes using a wrch instruction

is available to any processor or device that reads the corresponding MMIO register.

Data written by a device to the SPU Read Inbound Mailbox using an MMIO write

is available to an SPE program by reading that mailbox using a rdch or rchcnt

instruction. An MMIO read from either of the SPU Write Outbound Mailboxes, or

a write to the SPU Read Inbound Mailbox, can be programmed to set an SPE

event. The event can in turn cause an SPE interrupt. A wrch instruction to the SPU

Write Outbound Interrupt Mailbox can also be programmed to cause an interrupt

to a processor or other device.

58 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Each time a PPE program writes to the 4-entry SPU Read Inbound Mailbox queue,

the channel count for that channel increments. Each time a SPU program reads the

mailbox queue, the channel count decrements. The mailbox is a FIFO queue; the

SPE program reads the oldest data first. If the PPE program writes more than four

times before the SPE program reads the data, then the channel count stays at four,

and the fourth location contains the last data written by the PPE. For example, if

the PPE program writes five times before the SPE program reads the data, then the

data read is the first, second, third, and fifth data elements. The fourth data

element has been overwritten.

Mailbox operations are blocking operations: a write to a outbound mailbox register

that is already full stalls the SPE until a slot is created in the mailbox by a PPE

read. Similarly, a SPE read from an empty inbound mailbox is stalled until the PPE

(or an SPE) writes to the mailbox. If the channel capacity count is zero for a

channel that is configured as a blocking channel, then a channel instruction issued

to that channel causes the SPE to stall and to stop issuing instructions until the

channel is read. To prevent stalling in this case, the SPE program needs to read the

count register associated with the particular mailbox and decide whether or not to

read from or write to the mailbox.

There are at least three ways to deal with anticipated mailbox messages:

v The SPE software reads the channel (rdch), which will block until something

arrives.

v The SPE software reads from the channel’s count (rchcnt), which will return the

count (zero or one); the software can then decide what to do.

v The SPE software sets up its interrupt facility to respond to mailbox events.

Although the mailboxes are primarily intended for communication between the

PPE and the SPEs, they can also be used for communication between an SPE and

other SPEs, processors, or devices. For this to happen, however, privileged

software needs to allow one SPE to access the mailbox register in another SPE. If

software does not allow this, then only system memory communications are

available for SPE-to-SPE communications.

Signal notification

Signal-notification channels, or signals , are inbound (to an SPE) registers. They can

be used by other SPEs, the PPE, or other devices to send information, such as a

buffer-completion synchronization flag, to an SPE.

Each SPE has two 32-bit signal-notification registers, each of which has a

corresponding memory-mapped I/O (MMIO) register into which the

signal-notification data is written by the sending processor. Unlike mailbox

messaging, signal senders use one of three special MFC send-signal commands to

send a signal:

v sndsig

v sndsigf

v sndsigb

These are described in “MFC commands” on page 76.

An SPE can only read its local signal-notification channels. The PPE or other

processors can write or read the corresponding MMIO register. This allows the

target SPE to do polling, blocking, or set up an interrupt as ways of responding to

signals. An SPE read of one of its two signal-notification channels clears the

channel atomically. An MMIO read does not clear a channel. An SPE read from the

signaling channel will be stalled when no signal is pending at the time of the read.

Chapter 3. Programming the SPEs 59

A signal-notification channel can be configured by software to be in overwrite mode

or OR mode . In overwrite mode (also called one-to-one signaling), sending a signal

(writing to the MMIO address) overwrites previous contents. In OR mode (also

called many-to-one signaling), sending a signal ORs the new 1 bits into the current

contents. In the case of one-to-one signaling, there is usually no substantial

difference in performance between signaling and using a mailbox.

The differences between mailboxes and signal-notification channels include:

v Capacity — Signal-notification channels are registers. Mailboxes are queues.

v Direction — Each SPE supports signal-notification channels that are only inbound

(to the SPE). Their mailboxes support both outbound and inbound

communication. However, an SPE can send signals to another SPE using MFC

send-signal commands.

v Interrupts — One of the mailboxes interrupts the PPE. Signal-notification

channels have no such automatic feature.

v Many-to-One — Signal-notification channels (but not mailboxes) can be

configured as many-to-one (OR mode) or as one-to-one (overwrite mode).

v Unique Commands — Signal-notification channels have specific MFC send-signal

commands (sndsig, sndsigf, and sndsigb) for writing to them (see “MFC

commands” on page 76).

v Reset — Reading a signal-notification register automatically resets (clears) its bits.

v Count — The channel counts have different meaning. Mailbox channel counts

indicate the number of available (unoccupied) entries in the mailbox queue. The

signal-notification channel count indicates whether there are any pending

(unserviced) signals.

v Number — Each SPE has two signal-notification channels versus three mailboxes.

SPU instruction set

The SPU Instruction Set Architecture (ISA) fully documents the instructions

supported by the SPEs. This section summarizes the ISA.

Programmers writing in a high-level language like C or C++ can use the intrinsics

described in “SPU C/C++ language extensions (intrinsics)” on page 64 to improve

their control over the SPE hardware. Because the functions performed by these

intrinsics are closely related to the assembly-language instructions of the SPU

Instruction Set Architecture , this overview may be helpful in understanding the

utility of the intrinsics.

The SPU ISA operates primarily on SIMD vector operands, both fixed-point and

floating-point, with support for some scalar operands. The PPE and the SPE both

execute SIMD instructions, but the two processors execute different instruction sets,

and programs for the PPE and SPEs must be compiled by different compilers.

Data layout in registers

The SPE supports big-endian data ordering, an ordering in which the

lowest-address byte and lowest-numbered bit are the most-significant (high) byte

and bit, respectively.

Bits in registers are numbered in ascending order from left to right, with bit 0

representing the most-significant bit (MSb) and bit 127 the least-significant bit

(LSb) as shown in the figure below. The SPE architecture does not define or use

60 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

little endian data ordering.

The SPU hardware defines the following data types:

v byte — 8 bits

v halfword — 16 bits

v word — 32 bits

v doubleword — 64 bits

v quadword — 128 bits

These data types are indicated by shading in Figure 22. The left-most word (bytes

0, 1, 2, and 3) of a register is called the preferred scalar slot (also shown in

Figure 22).

When instructions use or produce scalar operands or addresses, the values are in

the preferred slot. A set of store assist instructions is available to help store bytes,

halfwords, words, and doublewords.

The SPE programming model defines the vector data types shown in Table 14 for

the C programming language. These data types are all 128 bits long and contain

from 1 to 16 elements per vector.

 Table 14. Vector Data Types

Vector Data Type Content

vector unsigned char Sixteen 8-bit unsigned chars

vector signed char Sixteen 8-bit signed chars

vector unsigned short Eight 16-bit unsigned halfwords

vector signed short Eight 16-bit signed halfwords

vector unsigned int Four 32-bit unsigned words

Figure 21. Big-endian ordering supported by the SPE

Figure 22. Register layout of data types and preferred (scalar) slot

Chapter 3. Programming the SPEs 61

Table 14. Vector Data Types (continued)

Vector Data Type Content

vector signed int Four 32-bit signed words

vector unsigned long long Two 64-bit unsigned doublewords

vector signed long long Two 64-bit signed doublewords

vector float Four 32-bit single-precision floats

vector double Two 64-bit double precision floats

qword quadword (16-byte)

Instruction types

There are 204 instructions in the SPU Instruction Set Architecture , and they are

grouped into 11 classes according to their functionality.

These instruction classes are shown in Table 15.

 Table 15. SPU Instruction Types

Type Number

Memory Load and Store 16

Constant Formation 6

Integer and Logical Operations 59

Shift and Rotate 31

Compare, Branch, and Halt 40

Hint-for-Branch 3

Floating-Point 28

Control 8

SPU Channel 3

SPU Interrupt Facility 7

Synchronization and Ordering 3

Figure 23 on page 63 shows one example of an SPU SIMD instruction — the

floating-point add instruction, fa. This instruction simultaneously adds four pairs

of floating-point vector elements, stored in registers ra and rb, and produces four

floating-point results, written to register rt.

62 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Depending on the programmer’s performance requirements and code size

restraints, advantages can be gained by properly grouping data in an SIMD vector.

Figure 24 shows a natural way of using SIMD vectors to store the homogenous

data values (x, y, z, w) for the three vertices (a, b, c) of a triangle in a 3D-graphics

application. This arrangement is called an array of structures (AOS), because the

data values for each vertex are organized in a single structure, and the set of all

such structures (vertices) is an array.

The data-packing approach that is shown in Figure 24 often produces small code

sizes, but it typically executes poorly and generally requires significant

loop-unrolling to improve its efficiency. If the vertices contain fewer components

than the SIMD vector can hold (for example, three components instead of four),

SIMD efficiencies are compromised.

Another method of organizing data in SIMD vectors is a structure of arrays (SOA).

Here, each corresponding data value for each vertex is stored in a corresponding

location in a set of vectors. Think of the data as if it were scalar, and the vectors

are populated with independent data across the vector. This is different from the

previous example, where the four values of each vertex are stored in one vector.

Figure 25 on page 64 shows the use of SIMD vectors to represent the x, y, z vertices

for four triangles. Not only are the data types the same across the vector, but now

their data interpretation is the same. Depending on the algorithm, software might

Figure 23. SIMD floating-point Add instruction function

Figure 24. Array-of-structures data organization for one triangle

Chapter 3. Programming the SPEs 63

execute more efficiently with this SIMD data organization than with the

organization shown in Figure 24 on page 63.

For further details about the SPU instructions, refer to these documents:

v The SPU Instruction Set Architecture,

v The SPU Assembly Language Specification.

SPU C/C++ language extensions (intrinsics)

A large set of SPU C/C++ language extensions (intrinsics) make the underlying SPU

Instruction Set Architecture and hardware features conveniently available to C

programmers. These intrinsics can be used in place of assembly-language code

when writing in the C or C++ languages.

The intrinsics are essentially in-line assembly-language instructions in the form of

C-language function calls. They provide the programmer with explicit control of

the SPE SIMD instructions without directly managing registers. A well-written

compiler that supports these intrinsics will emit efficient code for the SPE

architecture. The techniques used by compilers to generate efficient code include:

v Register coloring

v Instruction scheduling (dual-issue optimization)

v Data loads and stores

v Loop blocking, fusion, unrolling

v Correct up-stream placement of branch hints

v Literal vector construction

For example, an SPU compiler provides the intrinsic t = spu_add(a, b) as a

substitute for the assembly-language instruction fa rt,ra,rb . The compiler will

generate a floating-point add instruction (fa rt, ra, rb) for the SPU intrinsic

Figure 25. Structure-of-arrays data organization for four triangles

64 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

t = spu_add(a, b), assuming t , a , and b are vector float variables. The system

header file (spu_intrinsics.h) defines the SPU language extension intrinsics.

The intrinsics are defined fully in the C/C++ Language Extensions for Cell Broadband

Engine Architecture specification. The PPU and the SPU instruction sets have

similar, but distinct, SIMD intrinsics. It is important to understand the mapping

between the PPU and SPU SIMD intrinsics when developing applications on the

PPE that will eventually be ported to the SPEs.

Assembly language versus intrinsics comparison: an example

The ease of implementing a DMA transfer using intrinsics versus

assembly-language instructions is illustrated in the example-implementation of the

dma_transfer subroutine that is provided in this section.

The dma_transfer subroutine issues a DMA command with transfer size bytes

from the LS address lsa, to or from the 64-bit effective address specified by eah |

eal. The DMA command specified by the dma parameter is tagged using the

specified tag_id parameter.

extern void dma_transfer(volatile void *lsa, // local store address

 unsigned int eah, // high 32-bit effective address

 unsigned int eal, // low 32-bit effective address

 unsigned int size, // transfer size in bytes

 unsigned int tag_id, // tag identifier (0-31)

 unsigned int cmd); // DMA command

The Application Binary Interface (ABI)-compliant assembly-language implementation

of the subroutine would be:

 .text

 .global dma_transfer

 dma_transfer:

 wrch $MFC_LSA, $3

 wrch $MFC_EAH, $4

 wrch $MFC_EAL, $5

 wrch $MFC_Size, $6

 wrch $MFC_TagID, $7

 wrch $MFC_Cmd, $8

 bi $0

A comparable C implementation using the SPU intrinsic, spu_writech, for the

write-channel (wrch) instruction would be:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,

 unsigned int size, unsigned int tag_id, unsigned int cmd)

{

 spu_writech(MFC_LSA, (unsigned int)lsa);

 spu_writech(MFC_EAH, eah);

 spu_writech(MFC_EAL, eal);

 spu_writech(MFC_Size, size);

 spu_writech(MFC_TagID, tag_id);

 spu_writech(MFC_Cmd, cmd);

}

This particular function could be more simply written using the spu_mfcdma64

composite intrinsic, as:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,

Chapter 3. Programming the SPEs 65

unsigned int size, unsigned int tag_id, unsigned int cmd)

{

 spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);

}

Intrinsic classes

SPU intrinsics are grouped into the three classes that are described in this section.

v Specific Intrinsics — Intrinsics that have a one-to-one mapping with a single

assembly-language instruction. Programmers rarely need these intrinsics for

implementing inline assembly code because the Joint Software Reference

Environment (JSRE) has adopted gcc-style inline assembly.

v Generic Intrinsics — Intrinsics that map to one or more assembly-language

instructions as a function of the type of input parameters.

v Composite Intrinsics — Convenience intrinsics constructed from a sequence of

specific or generic intrinsics.

Intrinsics are not provided for all assembly-language instructions. Some

assembly-language instructions (for example, branches, branch hints, and interrupt

return) are naturally accessible through the C/C++ language semantics. Many SPU

intrinsics are different than PPE intrinsics (see “Differences between PPE and SPE

SIMD support” on page 72).

Specific intrinsics

Specific intrinsics have a one-to-one mapping with a single assembly-language

instruction.

All specific intrinsics are named using the SPU assembly instruction prefixed by

the string, si_. For example, the specific intrinsic that implements the stop

assembly instruction is named si_stop.

Specific intrinsics are provided for all instructions except branch, branch-hint, and

interrupt-return instructions. All specific intrinsics are also available in the form of

generic intrinsics, except for the specific intrinsics shown in Table 16. The specific

intrinsics shown in this table fall into three categories:

v Instructions generated using basic variable-referencing (that is, using vector and

scalar loads and stores),

v Instructions used for immediate vector construction,

v Instructions that have limited usefulness and are not expected to be used except

in rare conditions.

 Table 16. Specific intrinsics not available as generic intrinsics

Intrinsic Description

Generate Controls for Sub-Quadword Insertion Intrinsics

d = si_cbd(a, imm) Generate controls for byte insertion (d form)

d = si_cbx(a, b) Generate controls for byte insertion (x form)

d = si_cdd(a, imm) Generate controls for doubleword insertion (d form)

d = si_cdx(a, b) Generate controls for doubleword insertion (x form)

d = si_chd(a, imm) Generate controls for halfword insertion (d form)

d = si_chx(a, b) Generate controls for halfword insertion (x form)

d = si_cwd(a, imm) Generate controls for word insertion (d form)

d = si_cwx(a, b) Generate controls for word insertion (x form)

66 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 16. Specific intrinsics not available as generic intrinsics (continued)

Intrinsic Description

Constant Formation Intrinsics

d = si_il(imm) Immediate load word

d = si_ila(imm) Immediate load address

d = si_ilh(imm) Immediate load halfword

d = si_ilhu(imm) Immediate load halfword upper

d = si_iohl(a, imm) Immediate or halfword lower

No Operation Intrinsics

si_lnop(No operation (load)

si_nop() No operation (execute)

Memory Load and Store Intrinsics

d = si_lqa(imm) Load quadword (a form)

d = si_lqd(a, imm) Load quadword (d form)

d = si_lqr(imm) Load quadword instruction relative

d = si_lqx(a, b) Load quadword (x form)

si_stqa(a, imm) Store quadword (a form)

si_stqd(a, b, imm) Store quadword (d form)

si_stqr(a, imm) Store quadword instruction relative

si_stqx(a, b, c) Store quadword (x form)

Control Intrinsics

si_stopd(a, b, c) Stop and signal with dependencies

Specific intrinsics accept only the following types of arguments:

v Immediate literals, as an explicit constant expression or as a symbolic address.

v Enumerations.

v Quadword arguments (variables of type qword).

Arguments of other types must be cast to the qword data type. When using specific

intrinsics, it might be necessary to cast from scalar types to the qword data type, or

from the qword data type to scalar types. Similar to casting between vector data

types, specific cast intrinsics have no effect on an argument that is stored in a

register. All specific casting intrinsics are of the following form:

d = casting_intrinsic(a)

For example, to add 3 to the integer i:

int i;

i = si_to_int (si_ai (si_from_int(i), 3));

Table 17 lists the specific casting intrinsics.

 Table 17. Specific Casting Intrinsics

Intrinsic Description

si_to_char Cast byte element 3 of qword to char.

si_to_uchar Cast byte element 3 of qword to unsigned char.

si_to_short Cast halfword element 1 of qword to short.

Chapter 3. Programming the SPEs 67

Table 17. Specific Casting Intrinsics (continued)

Intrinsic Description

si_to_ushort Cast halfword element 1 of qword to unsigned short.

si_to_int Cast word element 0 of qword to int.

si_to_uint Cast word element 0 of qword to unsigned int.

si_to_ptr Cast word element 0 of qword to a void pointer.

si_to_llong Cast doubleword element 0 of qword to long long.

si_to_ullong Cast doubleword element 0 of qword to unsigned long

long.

si_to_float Cast word element 0 of qword to float.

si_to_double Cast doubleword element 0 of qword to double.

si_from_char Cast char to byte element 3 of qword.

si_from_uchar Cast unsigned char to byte element 3 of qword.

si_from_short Cast short to halfword element 1 of qword.

si_from_ushort Cast unsigned short to halfword element 1 of qword.

si_from_int Cast int to word element 0 of qword.

si_from_uint Cast unsigned int to word element 0 of qword.

si_from_ptr Cast void pointer to word element 0 of qword.

si_from_llong Cast long long to doubleword element 0 of qword.

si_from_ullong Cast unsigned long long to doubleword element 0 of

qword.

si_from_float Cast float to word element 0 of qword.

si_from_double Cast double to doubleword element 0 of qword.

Generic intrinsics

Generic intrinsics map to one or more assembly-language instructions, as a

function of the type of its input parameters. Generic intrinsics are often

implemented as compiler built-ins.

All of the generic intrinsics are prefixed by the string spu_. For example, the

intrinsic that implements the stop assembly instruction is named spu_stop.

Generic intrinsics are provided for all SPU instructions, except for the following:

v branch

v branch hint

v interrupt return

v generate control for insertion (used for scalar stores)

v constant formation

v no-op

v memory load and store

v stop and signal with dependencies (stopd)

Many generic intrinsics accept scalars as one of their operands. These correspond

to intrinsics that map to instructions with immediate values.

68 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 18 lists the generic intrinsics.

 Table 18. Generic SPU Intrinsics

Intrinsic Description

Constant Formation Intrinsics

d = spu_splats(a) Replicate scalar a into all elements of vector d

Conversion Intrinsics

d = spu_convtf(a, scale) Convert integer vector to float vector

d = spu_convts(a, scale) Convert float vector to signed int vector

d = spu_convtu(a, scale) Convert float vector to unsigned float vector

d = spu_extend(a) Sign extend vector

d = spu_rountf(a) Round double vector to float vector

Arithmetic Intrinsics

d = spu_add(a, b) Vector add

d = spu_addx(a, b, c) Vector add extended

d = spu_genb(a, b) Vector generate borrow

d = spu_genbx(a, b, c) Vector generate borrow extended

d = spu_genc(a, b) Vector generate carry

d = spu_gencx(a, b, c) Vector generate carry extended

d = spu_madd(a, b, c) Vector multiply and add

d = spu_mhhadd(a, b, c) Vector multiply high high and add

d = spu_msub(a, b, c) Vector multiply and subtract

d = spu_mul(a, b) Vector multiply

d = spu_mulh(a, b) Vector multiply high

d = spu_mulhh(a, b) Vector multiply high high

d = spu_mulo(a, b) Vector multiply odd

d = spu_mulsr(a, b) Vector multiply and shift right

d = spu_nmadd(a, b, c) Negative vector multiply and add

d = spu_nmsub(a, b, c) Negative vector multiply and subtract

d = spu_re(a) Vector floating-point reciprocal estimate

d = spu_rsqrte(a) Vector floating-point reciprocal square root estimate

d = spu_sub(a, b) Vector subtract

d = spu_subx(a, b, c) Vector subtract extended

Byte Operation Intrinsics

d = spu_absd(a, b) Vector absolute difference

d = spu_avg(a, b) Vector average

d = spu_sumb(a, b) Vector sum bytes into shorts

Compare, Branch, and Halt Intrinsics

d = spu_bisled(func) Branch indirect and set link if external data

d = spu_cmpabseq(a, b) Vector compare absolute equal

d = spu_cmpabsgt(a, b) Vector compare absolute greater than

d = spu_cmpeq(a, b) Vector compare equal

d = spu_cmpgt(a, b) Vector compare greater than

Chapter 3. Programming the SPEs 69

Table 18. Generic SPU Intrinsics (continued)

Intrinsic Description

(void) spu_hcmpeq(a, b) Halt if compare equal

(void) spu_hcmpgt(a, b) Halt if compare greater than

d = spu_testsv(a, values) Element-wise test for special value

Bit and Mask Intrinsics

d = spu_cntb(a) Vector count ones for bytes

d = spu_cntlz(a) Vector count leading zeros

d = spu_gather(a) Gather bits from elements

d = spu_maskb(a) Form select byte mask

d = spu_maskh(a) Form select halfword mask

d = spu_maskw(a) Form select word mask

d = spu_sel(a, b, pattern) Select bits

d = spu_shuffle(a, b, pattern) Shuffle bytes of a vector

Logical Intrinsics

d = spu_and(a, b) Vector bit-wise AND

d = spu_andc(a, b) Vector bit-wise AND with complement

d = spu_eqv(a, b) Vector bit-wise equivalent

d = spu_nand(a, b) Vector bit-wise complement of AND

d = spu_nor(a, b) Vector bit-wise complement of OR

d = spu_or(a, b) Vector bit-wise OR

d = spu_orc(a, b) Vector bit-wise OR with complement

d = spu_orx(a) Bit-wise OR word elements

d = spu_xor(a, b) Vector bit-wise exclusive OR

Rotate Intrinsics

d = spu_rl(a, count) Element-wise bit rotate left

d = spu_rlmask(a, count) Element-wise bit rotate left and mask

d = spu_rlmaska(a, count) Element-wise bit algebraic rotate and mask

d = spu_rlmaskqw(a, count) Bit rotate and mask quadword

d = spu_rlmaskqwbyte(a, count) Byte rotate and mask quadword

d = spu_rlmaskqwbytebc(a, count) Byte rotate and mask quadword using bit rotate

count

d = spu_rlqw(a, count) Bit rotate quadword left

d = spu_rlqwbyte(a, count) Byte rotate quadword left

d = spu_rlqwbytebc(a, count) Byte rotate quadword left using bit rotate count

Shift Intrinsics

d = spu_sl(a, count) Element-wise bit shift left

d = spu_slqw(a, count) Bit shift quadword left

d = spu_slqwbyte(a, count) Byte shift quadword left

d = spu_slqwbytebc(a, count) Byte shift quadword left using bit shift count

Control Intrinsics

(void) spu_idisable() Disable interrupts

70 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 18. Generic SPU Intrinsics (continued)

Intrinsic Description

(void) spu_ienable() Enable interrupts

(void) spu_mffpscr() Move from floating-point status and control register

(void) spu_mfspr(register) Move from special-purpose register

(void) spu_mtfpscr(a) Move to floating-point status and control register

(void) spu_mtspr(register, a) Move to special-purpose register

(void) spu_dsync() Synchronize data

(void) spu_stop(type) Stop and signal

(void) spu_sync() Synchronize

Scalar Intrinsics

d = spu_extract(a, element) Extract vector element from vector

d = spu_insert(a, b, element) Insert scalar into specified vector element

d = spu_promote(a, element) Promote scalar to vector

Channel Control Intrinsics

d = spu_readch(channel) Read word channel

d = spu_readchqw(channel) Read quadword channel

d = spu_readchcnt(channel) Read channel count

(void) spu_writech(channel, a) Write word channel

(void) spu_writechqw(channel, a) Write quadword channel

Composite SPU intrinsics

Composite intrinsics are constructed from a sequence of specific or generic

intrinsics.

All of the composite intrinsics are prefixed by the string spu_. Table 19 lists the

composite intrinsics.

 Table 19. Composite SPU intrinsics

Intrinsic Description

spu_mfcdma32(ls, ea, size, tagid,

cmd)

Initiate DMA to or from 32-bit effective address

spu_mfcdma64(ls, eahi, ealow, size,

tagid, cmd)

Initiate DMA to or from 64-bit effective address

spu_mfcstat(type) Read MFC tag status

For further information about the SPU intrinsics, refer to the C/C++ Language

Extensions for Cell Broadband Engine Architecture document.

Promoting scalar data types to vector data types

The SPU loads and stores one quadword at-a-time. When instructions use or

produce scalar operands (including addresses), the value is kept in the preferred

scalar slot of a SIMD register.

Scalar (sub quadword) loads and stores require several instructions to format the

data for use on the SIMD architecture of the SPE.

Chapter 3. Programming the SPEs 71

Scalar loads must be rotated into the preferred slot. Scalar stores require a read,

scalar insert, and write operation. These extra formatting instructions reduce

performance.

Vector operations on scalar data are not efficient. The following strategies can be

used to make operations on scalar data more efficient:

v Change the scalars to quadword vectors. By eliminating the three extra

instructions associated with loading and storing scalars, code size and execution

time can be reduced.

v Cluster scalars into groups, and load multiple scalars at a time using a

quadword memory access. Manually extract or insert the scalars as needed. This

will eliminate redundant loads and stores.

SPU intrinsics are provided in the C/C++ Language Extensions to efficiently

promote scalars to vectors, or vectors to scalars. These intrinsics are listed in

Table 20.

 Table 20. Intrinsics for Changing Scalar and Vector Data Types

Instruction Description

d = spu_insert Insert a scalar into a specified vector element.

d = spu_promote Promote a scalar to a vector.

d = spu_extract Extract a vector element from its vector.

Differences between PPE and SPE SIMD support

This section describes the architectural and language-extension differences between

PPE and SPE SIMD support.

Architectural differences between PPE and SPE SIMD support

The PPE processes SIMD operations in the VXU within its PPU. The operations are

those of the Vector/SIMD Multimedia Extension instruction set.

The SPEs process SIMD operations in their SPU. The operations are those of the

SPU instruction set.

The major differences between the PPE and SPE architectures are summarized in

Table 21.

 Table 21. PPE and SPE Architectural Comparison

Feature PPE SPE

Number of SIMD registers 32 (128-bit) 128 (128-bit)

Organization of register files separate fixed-point,

floating-point, and vector

registers

unified

Load latency variable (cache) fixed

Addressability 2⁶⁴ bytes

 256-KB local store

2⁶⁴ bytes via DMA

Instruction set more orthogonal optimized for

single-precision float

Single-precision IEEE 754-1985 extended range

72 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 21. PPE and SPE Architectural Comparison (continued)

Feature PPE SPE

Doubleword no doubleword SIMD double-precision

floating-point SIMD

Language-extension differences between PPE and SPE SIMD

support

The SPE’s SPU instruction set is similar to that of the PPE’s Vector/SIMD Multimedia

Extension instruction set, in that both operate on 128-bit SIMD vectors.

However, from a programmer’s perspective, these instruction sets are quite

different, and their respective language extensions have different intrinsics and

data types.

Table 22 specifies the supported vector data types for each of the SIMD engines

(PPE and SPE) in the Cell Broadband Engine, where:

v an “x” signifies support

v a “—” signifies no support

 Table 22. PPE versus SPU Vector Data Types

Vector Data Type PPE SPU

vector unsigned char x x

vector signed char x x

vector bool char x —

vector unsigned short x x

vector signed short x x

vector bool short x —

vector pixel x —

vector unsigned int x x

vector signed int x x

vector bool int x —

vector float x x

vector unsigned long long — x

vector signed long long — x

vector double — x

The key differences are:

v Only the Vector/SIMD Multimedia Extension instruction set supports pixel

vectors.

v Only the SPU instruction set supports doubleword vectors.

The SPUs quadword data type is excluded from the list because it is a

type-agnostic register reference instead of a specific vector data type. The

quadword data type is used exclusively as an operand in specific intrinsics — those

which have a one-to-one mapping with a single assembly-language instruction. For

details, see “Intrinsic classes” on page 66.

Chapter 3. Programming the SPEs 73

Also, the Vector/SIMD Multimedia Extension instruction set provides these

operations that are not directly supported by a single instruction in the SPU

instruction set:

v Saturating math

v Sum-across

v Log2

and 2x

v Ceiling and floor

v Complete byte instructions

Likewise, the SPU instruction set provides these operations that are not directly

supported by a single instruction in the Vector/SIMD Multimedia Extension

instruction set:

v Immediate operands

v Double-precision floating-point

v Sum of absolute difference

v Count ones in bytes

v Count leading zeros

v Equivalence

v Nand

v Or complement

v Extend sign

v Gather bits

v Form select mask

v Integer multiply and accumulate

v Multiply subtract

v Multiply float

v Shuffle byte special conditions

v Carry and borrow generate

v Sum bytes across

v Extended shift range

These differences between the Vector/SIMD Multimedia Extension and SPU

instruction sets must be kept in mind when porting code from the PPE to the SPE.

Ported programs need to consider not only equivalent instructions but also code

performance. See “Porting SIMD code from the PPE to the SPEs” on page 92 for

more on porting code.

To improve code portability between PPE and SPU programs, spu_intrinsics.h

provides single-token typedefs for vector keyword data types. These typedefs are

shown in Table 23.

These single-token types serve as class names for extending generic intrinsics for

mapping to-and-from Vector/SIMD Multimedia Extension intrinsics and SPU

intrinsics.

 Table 23. Single-Token Vector Keyword Data Types

Vector Keyword Data Type Single-Token Typedef

vector unsigned char vec_uchar16

vector signed char vec_char16

74 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 23. Single-Token Vector Keyword Data Types (continued)

Vector Keyword Data Type Single-Token Typedef

vector unsigned short vec_ushort8

vector signed short vec_short8

vector unsigned int vec_unit4

vector signed int vec_int4

vector unsigned long long vec_ullong2

vector signed long long vec_llong2

vector float vec_float4

vector double vec_double2

Compiler directives

Like compiler intrinsics, compiler directives are crucial programming elements.

The restrict qualifier is well-known in many C/C++ implementations, and it is

part of the SPU language extension. When the restrict keyword is used to qualify

a pointer, it specifies that all accesses to the object pointed to are done through the

pointer. For example:

 void *memcpy(void * restrict s1, void * restrict s2, size_t n);

By specifying s1 and s2 as pointers that are restricted, the programmer is

specifying that the source and destination objects (for the memory copy) do not

overlap.

Another directive is __builtin_expect . Since branch mispredicts are relatively

expensive, __builtin_expect provides a way for the programmer to direct branch

prediction. This example:

 int __builtin_expect(int exp, int value)

returns the result of evaluating exp , and means that the programmer expects exp

to equal value . The value can be a constant for compile-time prediction, or a

variable used for run-time prediction.

Two more directives are the aligned attribute, and the _align_hint directive. The

aligned attribute is used to ensure proper DMA alignment, for efficient data

transfer. The syntax is the same as in many implementations of gcc:

 float factor __attribute__((aligned (16)); //aligns “factor” to a quadword

The _align_hint directive helps compilers “auto-vectorize”. Although it looks like

an intrinsic, it is more properly described as a compiler directive, since no code is

generated as a result of using the directive. The example:

 _align_hint(ptr, base, offset)

informs the compiler that the pointer, ptr , points to data with a base alignment of

base , with a byte offset from the base alignment of offset . The base alignment

must be a power of two. Giving 0 as the base alignment implies that the pointer

has no known alignment. The offset must be less than the base, or, zero. The

_align_hint directive should not be used with pointers that are not naturally

aligned.

Chapter 3. Programming the SPEs 75

MFC commands

The MFC supports a set of MFC commands. These commands provide the main

mechanism that enables code executing in an SPU to access main storage and

maintain synchronization with other processors and devices in the system.

The MFC is described in “Memory flow controller” on page 54. MFC commands

can be issued either by code running on the MFC’s associated SPU or by code

running on the PPE or other device, as follows:

v Code running on the SPU issues an MFC command by executing a series of

writes using channel instructions, which are described in Table 13 on page 57.

v Code running on the PPE or other devices issues an MFC command by

performing a series of stores and loads to memory-mapped I/O (MMIO) registers in

the MFC.

The commands are queued in one of two independent MFC command queues:

v MFC SPU Command Queue — For channel-initiated commands by the associated

SPU

v MFC Proxy Command Queue — For MMIO-initiated commands by the PPE or

other device

MFC commands that transfer data are referred to as DMA commands. The

data-transfer direction for MFC DMA commands is always referenced from the

perspective of an SPE. Therefore, commands that transfer data into an SPE (from

main storage to local store), are considered get commands, and transfers of data

out of an SPE (from local store to main storage) are considered put commands.

The MFC DMA commands are shown in Table 24. This table also indicates whether

the commands are supported for SPEs (by means of a corresponding channel) and

for the PPE (by means of a corresponding MMIO register), or both.

The suffixes associated with the MFC DMA commands are shown in Table 25 on

page 78.

The MFC synchronization commands are shown in Table 26 on page 79.

The MFC atomic commands are shown in Table 27 on page 79.

 Table 24. MFC DMA Command

Mnemonic

Supported

By Description

Put Commands

put PPE, SPE Moves data from local store to the effective address.

puts PPE Moves data from local store to the effective address and

starts the SPU after the DMA operation completes.

putf PPE, SPE Moves data from local store to the effective address with

fence (this command is locally ordered with respect to all

previously issued commands within the same tag group

and command queue).

putb PPE, SPE Moves data from local store to the effective address with

barrier (this command and all subsequent commands with

the same tag ID as this command are locally ordered with

respect to all previously issued commands within the same

tag group and command queue).

76 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 24. MFC DMA Command (continued)

Mnemonic

Supported

By Description

putfs PPE Moves data from local store to the effective address with

fence (this command is locally ordered with respect to all

previously issued commands within the same tag group

and command queue) and starts the SPU after the DMA

operation completes.

putbs PPE Moves data from local store to the effective address with

barrier (this command and all subsequent commands with

the same tag ID as this command are locally ordered with

respect to all previously issued commands within the same

tag group and command queue) and starts the SPU after

the DMA operation completes.

putl SPE Moves data from local store to the effective address using

an MFC list.

putlf SPE Moves data from local store to the effective address using

an MFC list with fence (this command is locally ordered

with respect to all previously issued commands within the

same tag group and command queue).

putlb SPE Moves data from local store to the effective address using

an MFC list with barrier (this command and all subsequent

commands with the same tag ID as this command are

locally ordered with respect to all previously issued

commands within the same tag group and command

queue).

Get Commands

get PPE, SPE Moves data from the effective address to local store.

gets PPE Moves data from the effective address to local store, and

starts the SPU after the DMA operation completes.

getf PPE, SPE Moves data from the effective address to local store with

fence (this command is locally ordered with respect to all

previously issued commands within the same tag group

and command queue).

getb PPE, SPE Moves data from the effective address to local store with

barrier (this command and all subsequent commands with

the same tag ID as this command are locally ordered with

respect to all previously issued commands within the same

tag group and command queue).

getfs PPE Moves data from the effective address to local store with

fence (this command is locally ordered with respect to all

previously issued commands within the same tag group),

and starts the SPU after the DMA operation completes.

getbs PPE Moves data from the effective address to local store with

barrier (this command and all subsequent commands with

the same tag ID as this command are locally ordered with

respect to all previously issued commands within the same

tag group and command queue), and starts the SPU after

the DMA operation completes.

getl SPE Moves data from the effective address to local store using

an MFC list.

Chapter 3. Programming the SPEs 77

Table 24. MFC DMA Command (continued)

Mnemonic

Supported

By Description

getlf SPE Moves data from the effective address to local store using

an MFC list with fence (this command is locally ordered

with respect to all previously issued commands within the

same tag group and command queue).

getlb SPE Moves data from the effective address to local store using

an MFC list with barrier (this command and all subsequent

commands with the same tag ID as this command are

locally ordered with respect to all previously issued

commands within the same tag group and command

queue).

The suffixes in Table 25 are associated with the MFC DMA commands, and extend

or refine the function of a command. For example, a put command moves data

from local store to the effective address. A puts command moves data from local

store to the effective address and starts the SPU after the DMA operation

completes.

v Commands with an s suffix can only be issued to the MFC Proxy command

queue.

v Commands with a 1 suffix and all the MFC atomic commands can only be

issued by the SPE (to the MFC SPU command queue).

v All other commands described in this section can be issued by either the SPE or

the PPE.

Commands issued by the PPE are issued on behalf of the SPE and are sent to the

MFC Proxy command queue.

 Table 25. MFC Command Suffixes

Suffix Description

s Starts the execution of the SPU at the current location indicated by the SPU Next

Program Counter Register after the data has been transferred into or out of the

local store.

f Tag-specific fence. Commands with a tag-specific fence are locally ordered with

respect to all previously-issued commands within the same tag group and

command queue.

b Tag-specific barrier. Commands with a tag-specific barrier are locally ordered with

respect to all previously-issued commands within the same tag group and

command queue and all subsequently-issued commands to the same command

queue with the same tag.

l List command. Executes a list of DMA transfer elements located in local store. The

maximum number of elements is 2,048, and each element describes a transfer of

up to 16 KB.

78 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 26. MFC Synchronization Commands

Command

Supported

By Description

barrier PPE, SPE Barrier type ordering. Ensures ordering of all preceding,

nonimmediate DMA commands with respect to all

commands following the barrier command within the same

command queue. The barrier command has no effect on the

immediate DMA commands: getllar, putllc , and putlluc.

mfceieio PPE, SPE Controls the ordering of get commands with respect to put

commands, and of get commands with respect to get

commands accessing storage that is caching inhibited and

guarded. Also controls the ordering of put commands with

respect to put commands accessing storage that is memory

coherence required and not caching inhibited.

mfcsync PPE, SPE Controls the ordering of DMA put and get operations

within the specified tag group with respect to other

processing units and mechanisms in the system.

sndsig PPE, SPE Update SPU Signal Notification Registers in an I/O device

or another SPE.

sndsigb PPE, SPE Update SPU Signal Notification Registers in an I/O device

or another SPE with barrier.

sndsigf PPE, SPE Update SPU Signal Notification Registers in an I/O device

or another SPE with fence.

 Table 27. MFC Atomic Commands

Command

Supported

By Description

getllar SPE Get lock line and create a reservation (executed

immediately).

putllc SPE Put lock line conditional on a reservation (executed

immediately).

putlluc SPE Put lock line unconditional (executed immediately).

putqlluc SPE Put lock line unconditional (queued form).

DMA-command tag groups

All DMA commands except getllar, putllc, and putlluc can be tagged with a

5-bit Tag Group ID.

By assigning a DMA command or group of commands to different tag groups, the

status of the entire tag group can be determined within a single command queue

(the MFC SPU Command Queue or the MFC Proxy Command Queue).

Software can use this identifier to check or wait on the completion of all queued

commands in one or more tag groups. Tagging is optional but can be useful when

using barriers to control the ordering of MFC commands within a single command

queue.

DMA commands within a tag group can be synchronized with a fence or barrier

option by appending an f or b, respectively, to the command mnemonic. Execution

of a fenced command option is delayed until all previously issued commands

within the same tag group have been performed. Execution of a barrier command

Chapter 3. Programming the SPEs 79

option and all subsequent commands is delayed until all previously issued

commands in the same tag group have been performed.

Synchronizing DMA transfers

MFC commands can be used to control the order in which DMA storage accesses

are performed.

The MFC synchronization commands are shown in Table 26 on page 79. There are:

v four atomic commands (getllar, putllc, putlluc, and putqlluc),

v three send-signal commands (sndsig, sndsigf, and sndsigb),

v three barrier commands (barrier , mfcsync , and mfceieio).

MFC input and output macros

The C/C++ Language Extensions for Cell Broadband Engine architecture

specification also defines a set of optional convenience macros to assist in accessing

the SPU and MFC facilities available through the channel interface.

These macros, specified in spu_mfcio.h , can either be implemented as macros or

as built-in functions within the compiler.

 Table 28. MFC Input and Output Macros

Macro Description

Effective Address Utilities

mfc_ea2h(ea) Extract higher 32-bits from effective address

mfc_ea2l(ea) Extract lower 32-bits from effective address

mfc_hl2ea(high, low) Concatenate higher and lower 32-bits of an

effective address

mfc_ceil128(value) Round up value to the next multiple of 128

DMA Commands

mfc_put(ls, ea, size, tag, tid, rid) Move data from local storage to effective

address

mfc_putb(ls, ea, size, tag, tid, rid) Move data from local storage to effective

address with barrier

mfc_putf(ls, ea, size, tag, tid, rid) Move data from local storage to effective

address with fence

mfc_get(ls, ea, size, tag, tid, rid) Move data from effective address to local

storage

mfc_getb(ls, ea, size, tag, tid, rid) Move data from effective address to local

storage with barrier

mfc_getf(ls, ea, size, tag, tid, rid) Move data from effective address to local

storage with fence

List DMA Commands

mfc_putl(ls, ea, list, list_size, tag, tid, rid) Move data from local storage to effective

address using MFC list

mfc_putlb(ls, ea, list, list_size, tag, tid, rid) Move data from local storage to effective

address using MFC list with barrier

mfc_putlf(ls, ea, list, list_size, tag, tid, rid) Move data from local storage to effective

address listing MFC list with fence

80 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 28. MFC Input and Output Macros (continued)

Macro Description

mfc_getl(ls, ea, list, list_size, tag, tid, rid) Move data from effective address to local

storage using MFC list

mfc_getlb(ls, ea, list, list_size, tag, tid, rid) Move data from effective address to local

storage using MFC list with barrier

mfc_getlf(ls, ea, list, list_size, tag, tid, rid) Move data from effective address to local

storage using MFC list with fence

Atomic Update Commands

mfc_getllar(ls, ea, tid, rid) Get lock line and create reservation

mfc_putllc(ls, ea, tid, rid) Put lock line if reservation for effective

address exists

mfc_putlluc(ls, ea, tid, rid) Put lock line unconditional

mfc_putqlluc(ls, ea, tag, tid, rid) Put queued lock line unconditional

Synchronization Commands

mfc_sndsig(ls, ea, tag, tid, rid) Send signal

mfc_sndsigb(ls, ea, tag, tid, rid) Send signal with barrier

mfc_sndsigf(ls, ea, tag, tid, rid) Send signal with fence

mfc_barrier(tag) Enqueue mfc_barrier command into DMA

queue

mfc_eieio(tag, tid, rid) Enqueue mfc_eieio command into DMA

queue

mfc_sync(tag) Enqueue mfc_sync command into DMA

queue

DMA Status

mfc_stat_ cmd_queue() Check number of available entries in MFC

DMA queue

mfc_write_tag_mask(mask) Set tag mask to select tag groups to be

included in query operation

mfc_read_tag_mask() Read tag mask indicating groups to be

included in query operation

mfc_write_tag_update(ts) Request the tag status to be updated

mfc_write_tag_update_immediate() Request that tag status be updated

immediately

mfc_write_tag_update_any() Request that tag status be updated when any

tag groups complete

mfc_write_tag_update_all() Request that tag status be updated when all

tag groups complete

mfc_stat_tag_update() Check availability of tag Update Request

Status channel

mfc_read_tag_status() Wait for an updated tag status

mfc_read_tag_status_immediate() Wait for the updated tag status of any

enabled group

mfc_read_tag_status_any() Wait for no outstanding operations for any

enabled groups

mfc_read_tag_status_all() Wait for no outstanding operations for all

enabled groups

Chapter 3. Programming the SPEs 81

Table 28. MFC Input and Output Macros (continued)

Macro Description

mfc_stat_tag_status() Check availability of MFC_RdTagStat channel

mfc_read_list_stall_status() Read list DMA stall-and-notify status

mfc_stat_list_stall_status() Check availability of List DMA

stall-and-notify status

mfc_write_list_stall_ack(tag) Acknowledge tag group containing stalled

DMA list commands

mfc_read_atomic_status() Check availability of atomic command status

Multisource Synchronization Request

mfc_write_multi_src_sync_request() Request multisource synchronization

mfc_stat_multi_src_sync_request() Check status of multisource synchronization

request

SPU Signal Notification

spu_read_signal1() Atomically read and clear Signal Notification

1 channel

spu_stat_signal1() Check if pending signals exist on Signal

Notification 1 channel

spu_read_signal2() Atomically read and clear Signal Notification

2 channel

spu_stat_signal2() Check if pending signals exist on Signal

Notification 2 channel

SPU Mailboxes

spu_read_in_mbox() Read next data entry in the SPU Inbound

Mailbox

spu_stat_in_mbox() Get the number of data entries in the SPU

Inbound Mailbox

spu_write_out_mbox(data) Send data to the SPU Outbound Mailbox

spu_stat_out_mbox() Get the available capacity of the SPU

Outbound Mailbox

spu_write_out_intr_mbox(data) Send data to the SPU Outbound Interrupt

Mailbox

spu_stat_out_intr_mbox() Get the available capacity of the SPU

Outbound Interrupt Mailbox

SPU Decrementer

spu_read_decrementer() Read the current value of the decrementer

spu_write_decrementer(count) Load a value into the decrementer

SPU Events

spu_read_event_status() Read the event status or stall until status is

available

spu_stat_event_status() Check availability of event status

spu_write_event_mask(mask) Select events to be monitored by event status

spu_write_event_ack(ack) Acknowledge events

spu_read_event_mask() Read Event Status Mask

SPU State Mangement

spu_read_machine_status() Read current SPU machine status

82 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 28. MFC Input and Output Macros (continued)

Macro Description

spu_write_srr0(srr0) Write to the SPU Save Restore Register 0

spu_read_srr0() Read the SPU Save Restore Register 0

To facilitate cooperative use of MFC tag ID’s amongst multiple autonomous

software components, a tag manager is provided. The functions provided by the tag

manager are specified in Table 29.

 Table 29. MFC Tag Manager Functions

Function Description

mfc_tag_reserve() Reserve a single tag for exclusive use

mfc_tag_release() Release a single tag from exclusive use

mfc_multi_tag_reserve() Reserve a sequential group of tags for

exclusive use

mfc_multi_tag_release() Release a sequential group of tags from

exclusive use

Coding methods and examples

The sections included here describe some coding methods, with examples in SPU

assembly language, C language, SPU C-language intrinsics, and MFC commands,

or in a combination thereof.

These instruction and command sets are summarized in:

v SPU assembly language — (see “SPU instruction set” on page 60)

v SPU C-language intrinsics — (see “SPU C/C++ language extensions (intrinsics)”

on page 64)

v MFC commands — (see “MFC commands” on page 76)

DMA transfers

DMA commands transfer data between the LS and main storage.

Main storage is addressed by an effective address (EA) operand in a DMA

command. The LS is addressed by the local store address (LSA) operand in a DMA

command. The size of a single DMA transfer is limited to 16 KB:

v put commands move data from LS to main storage.

v get commands move data from main storage to LS.

The LS data is accessed sequentially with a minimum step of one quadword.

Software on an SPE accesses its MFC’s DMA-transfer facilities through the

channels listed in “Channels” on page 55. To enqueue a DMA command, SPE

software writes the MFC Command Parameter Channel Registers with the wrch

instruction (described in “Channel instructions” on page 57) in the following

sequence:

1. Write the EA-high (EAH) to the MFC_EAH channel.

2. Write the EA-low (EAL) to the MFC_EAL channel.

3. Write the transfer size to the MFC_Size channel.

Chapter 3. Programming the SPEs 83

4. Write the tag ID to the MFC_TagID channel.

5. Write the class ID and command opcode to the MFC_Cmd channel.

The following examples shows how to initiate a DMA transfer from an SPE.

extern void dma_transfer(volatile void *lsa, // local store address

 unsigned int eah, // high 32-bit effective address

 unsigned int eal, // low 32-bit effective address

 unsigned int size, // transfer size in bytes

 unsigned int tag_id, // tag identifier (0-31)

An ABI-compliant assembly-language implementation of the subroutine is:

 .text

 .global dma_transfer

dma_transfer:

 wrch $MFC_LSA, $3

 wrch $MFC_EAH, $4

 wrch $MFC_EAL, $5

 wrch $MFC_Size, $6

 wrch $MFC_TagID, $7

 wrch $MFC_Cmd, $8

 bi $0

A comparable C implementation using the SPU composite intrinsic spu_mfcdma64

is:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,

 unsigned int size, unsigned int tag_id, unsigned int cmd)

{

 spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);

}

The performance of a DMA data transfer is best when the source and destination

addresses are aligned on a cache line boundary are are at least a cache line sized.

Quadword-offset-aligned data transfers generate full cache-line bus requests for

every unrolling, except possibly the first and last unrolling.

Transfers that start or end in the middle of a cache line transfer a partial cache line

(less than 8 quadwords) in the first or last bus request, respectively.

DMA-list transfers

A DMA list is a sequence of transfer elements (or list elements) that, together with

an initiating DMA-list command, specifies a sequence of DMA transfers between a

single area of LS and possibly discontinuous areas in main storage.

Such DMA lists are stored in an SPE’s LS, and the sequence of transfers is initiated

with a DMA-list command, such as getl or putl.

DMA-list commands can only be issued by programs running on an SPE, but the

PPE or other devices can create and store the lists in an SPE’s LS. DMA lists can be

used to implement scatter-gather functions between main storage and the LS.

Creating the DMA list

Each transfer element in the DMA list contains a transfer size, the low half of an

effective address, and a stall-and-notify bit that can be used to suspend list

execution after transferring a list element whose stall-and-notify bit is set.

84 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Each DMA transfer specified in a list can transfer up to 16 KB of data, and the list

can have up to 2,048 (2 K) transfer elements.

Software creates the list and stores it in the LS. Lists must be stored in the LS on

an 8-byte boundary. The form of a transfer element is {LTS, EAL}.

v The first word (LTS) is the list transfer size, the most-significant bit of which

serves as an optional stall-and-notify flag.

v The second word (EAL) is the low-order 32-bits of an EA.

Transfer elements are processed sequentially, in the order they are stored. If the

stall-and-notify flag is set for a transfer element, the MFC will stop processing

the DMA list after performing the transfer for that element until the SPE program

clears the DMA List Command Stall-And-Notify Event from the SPU Read Event

Status Channel. This gives programs an opportunity to modify subsequent transfer

elements before they are processed by the MFC.

Initiating the transfers specified in the DMA list

After the list is stored in the LS, the execution of the list is initiated by a DMA-list

command, such as getl or putl, from the SPE whose LS contains the list.

DMA-list commands, such as single-transfer DMA commands, require that

parameters are written to the MFC Command Parameter channels in the way

described in “DMA transfers” on page 83. However, a DMA-list command requires

two different types of parameters than those required by a single-transfer DMA

command:

v MFC_EAL : This parameter must be written with the starting local store address

(LSA) of the list , rather then with the EAL. (The EAL is specified in each transfer

element.)

v MFC_Size : This parameter must be written with the size of the list , rather then

the transfer size. (The transfer size is specified in each transfer element.) The list

size is equal to the number of transfer elements, multiplied by the size of the

transfer-element structure (8 bytes).

The starting LSA and the EA-high (EAH) are specified only once, in the DMA-list

command that initiates the transfers. The LSA is internally incremented based on

the amount of data transferred by each transfer element. However, if the starting

LSA for each transfer element in a list does not begin on a 16-byte boundary, then

hardware automatically increments the LSA to the next 16-byte boundary.

The EAL for each transfer element is in the 4-GB area defined by EAH.

DMA-list transfers: programming example

The C-language sample program included here creates a DMA list and, in the last

line, uses an spu_mfcdma32 intrinsic to issue a single DMA-list command (getl) to

transfer a main-storage region into LS.

/* dma_list_sample.c - SPU MFC-DMA list sample code.

 *

 * This sample defines a transfer-element data structure, which

 * contains the element’s transfer size and low-order 32 bytes of the effective

 * address. Also defined in the structure, but not used by this sample,

 * is the DMA-list stall-and-notify bit, which can be used to indicate

 * that the MFC should suspend list execution after transferring a list

 * element whose stall-and-notify bit is set.

 */

#include <spu_mfcio.h>

Chapter 3. Programming the SPEs 85

struct dma_list_elem {

 union {

 unsigned int all32;

 struct {

 unsigned nbytes: 31;

 unsigned stall: 1;

 } bits;

 } size;

 unsigned int ea_low;

};

struct dma_list_elem list[16] __attribute__ ((aligned (8)));

void get_large_region(void *dst, unsigned int ea_low, unsigned int nbytes)

{

 unsigned int i = 0;

 unsigned int tagid = 0;

 unsigned int listsize;

 /* get_large_region

 * Use a single DMA list command request to transfer

 * a "large" memory region into LS. The total size to

 * be copied may be larger than the MFC’s single element

 * transfer limit of 16kb.

 */

 if (!nbytes)

 return;

 while (nbytes > 0) {

 unsigned int sz;

 sz = (nbytes < 16384) ? nbytes : 16384;

 list[i].size.all32 = sz;

 list[i].ea_low = ea_low;

 nbytes -= sz;

 ea_low += sz;

 i++;

 }

/* Specify the list size and initiate the list transfer

 */

 listsize = i * sizeof(struct dma_list_elem);

 spu_mfcdma32(dst, (unsigned int) &list[0], listsize, tagid, MFC_GETL_CMD);

}

Moving double-buffered data

SPE programs use DMA transfers to move data and instructions between main

storage and the local store (LS) in the SPE.

Consider an SPE program that requires large amounts of data from main storage.

The following is a simple scheme to achieve that data transfer:

1. Start a DMA data transfer from main storage to buffer B in the LS.

2. Wait for the transfer to complete.

3. Use the data in buffer B.

4. Repeat.

This method wastes a great deal of time waiting for DMA transfers to complete.

We can speed up the process significantly by allocating two buffers, B0

and B1

, and

86 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

overlapping computation on one buffer with data transfer in the other. This

technique is called double buffering. Figure 26 shows a flow diagram for this double

buffering scheme.

Double buffering is a form of multibuffering, which is the method of using multiple

buffers in a circular queue to overlap processing and data transfer.

The following C-language example illustrates double buffering:

/* Example C code demonstrating double buffering using

 * buffers B[0] and B[1]. In this example, an array of data

 * starting at the effective address eahi|ealow is DMAed

 * into the SPU’s local store in 4-KB chunks and processed

 * by the use_data subroutine.

 */

#include <spu_intrinsics.h>

#include "spu_mfcio.h"

#define BUFFER_SIZE 4096

volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128)));

void double_buffer_example(unsigned int eahi, unsigned int ealow, int buffers)

{

 int next_idx, buf_idx = 0;

 // Initiate DMA transfer

 spu_mfcdma64(B[buf_idx], eahi, ealow, BUFFER_SIZE, buf_idx, MFC_GET_CMD);

 ealow += BUFFER_SIZE;

 while (--buffers) {

 next_idx = buf_idx ^ 1;

 // Initiate next DMA transfer

 spu_mfcdma64(B[next_idx], eahi, ealow, BUFFER_SIZE, next_idx, MFC_GET_CMD);

 ealow += BUFFER_SIZE;

 // Wait for previous transfer to complete

 spu_writech(MFC_WrTagMask, 1 << buf_idx);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 // Use the data from the previous transfer

 use_data(B[buf_idx]);

Figure 26. DMA transfers using a double-buffering method

Chapter 3. Programming the SPEs 87

buf_idx = next_idx;

 }

 // Wait for last transfer to complete

 spu_writech(MFC_WrTagMask, 1 << buf_idx);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 // Use the data from the last transfer

 use_data(B[buf_idx]);

}

Note: The above example is hardcoded to use tag ids 0 and 1. Applications are

encouraged to use the tag manager functions to reserve tag ids for cooperative

allocations of tags between independent software components.

To use double buffering effectively, follow these rules for DMA transfers on the

SPE:

v Use multiple LS buffers.

v Use unique DMA tag IDs, one for each LS buffer or logical group of LS buffers.

v Use fenced command options to order the DMA transfers within a tag group.

v Use barrier command options to order DMA transfers within the MFC’s DMA

controller.

The purpose of double buffering is to maximize the time spent in the compute

phase of a program and minimize the time spent waiting for DMA transfers to

complete. Let τt

represent the time required to transfer a buffer B, and let τc

represent the time required to compute on data contained in that buffer. In general,

the higher the ratio τt/τc, the more performance benefit an application will realize

from a double-buffering scheme.

Vectorizing a loop

A compiler that automatically merges scalar data into a parallel-packed SIMD data

structure is called an auto-vectorizing compiler. Such compilers must handle all the

high-level language constructs, and therefore do not always produce optimal code.

A simple example of vectorizing a loop is shown below. The original loop

multiplies two arrays, term by term. The arrays are assumed to remain scalar

outside of the subroutine vmult.

/* Scalar version */

int mult(float *array1, float *array2, float *out, int arraySize) {

 int i;

 for (i = 0; i < arraySize; i++) {

 out[i] = array1[i] * array2[i];

 }

 return 0;

}

/* Vectorized version */

int vmult(float *array1, float *array2, float *out, int arraySize) {

 /* This code assumes that the arrays are quadword-aligned. */

 /* This code assumes that the arraySize is divisible by 4. */

 int i, arraySizebyfour;

 arraySizebyfour = arraySize >> 2; /* arraySize/4 vectors */

 vector float *varray1 = (vector float *) (array1);

 vector float *varray2 = (vector float *) (array2);

 vector float *vout = (vector float *) (out);

 for (i = 0; i < arraySizebyfour; i++) {

88 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

/*spu_mul is an intrinsic that multiplies vectors */

 vout[i] = spu_mul(varray1[i], varray2[i]);

 }

 return 0;

}

Reducing the impact of branches

The SPU hardware assumes linear instruction flow, and produces no stall penalties

from sequential instruction execution. A branch instruction has the potential of

disrupting the assumed sequential flow.

Correctly predicted branches execute in one cycle, but a mispredicted branch

(conditional or unconditional) incurs a penalty of approximately 18-19 cycles.

Considering the typical SPU instruction latency of two-to-seven cycles,

mispredicted branches can seriously degrade program performance. Branches also

create scheduling barriers, reducing the opportunity of for dual issue and covering

up dependency stalls.

The most effective means of reducing the impact of branches is to eliminate them

using three primary methods — inlining, unrolling, and predication. The next

effective means of reducing the impact of branches is to use the branch-hint

instructions.

If a branch hint is provided, software speculates that the instruction branches to

the target path. If a hint is not provided, software speculates that the branch is not

taken (that is, instruction execution continues sequentially). If either speculation is

incorrect, there is a large penalty (flush and refetch).

Function-inlining and loop-unrolling

Function-inlining and loop-unrolling are two techniques often used to increase the

size of basic blocks (sequences of consecutive instructions without branches), which

increases scheduling opportunities.

Function-inlining eliminates the two branches associated with function-call linkage.

These include the branch and set link for function-call entry, and the branch

indirect for function-call return.

Loop-unrolling eliminates branches by decreasing the number of loop iterations.

Loop unrolling can be manual, compiler directed, or compiler automated. Typically,

branches associated with looping are inexpensive because they are highly

predictable. However, if a loop can be fully unrolled, then all branches can be

eliminated—including the final nonpredicted branch.

Care should be taken when exploiting function inlining and loop unrolling.

Over-aggressive use of these techniques can result in code that is too large to fit in

the LS.

Predication using select-bits instruction

The select-bits (selb) instruction is the key to eliminating branches for simple

control-flow statements (for example, if and if-then-else constructs). An

if-then-else statement can be made branchless by computing the results of both

the then and else clauses and using select bits (selb) to choose the result as a

function of the conditional.

If computing both the results costs less than a mispredicted branch, then there are

additional savings.

Chapter 3. Programming the SPEs 89

For example, consider the following simple if-then-else statement:

unsigned int a, b, c;

 ...

if (a > b) d += a;

else d += 1;

This code sequence, when directly converted to an SPU instruction sequence

without branch optimizations, would look like:

 clgt cc, a, b

 brz cc, else

then:

 a d, d, a

 br done

else:

 ai d, d, 1

done:

Using the select bits instruction, this simple conditional becomes:

 clgt cc, a, b /* compute the greater-than condition */

 a d_plus_a, d, a /* add d + a */

 ai d_plus_1, d, 1 /* add d + 1 */

 selb d, d_plus_1, d_plus_a, cc /* select proper result */

This example shows:

v Both branches were eliminated, and the correct result was placed in d .

v New registers were needed to maintain potential values of d (d_plus_a and

d_plus_1). This does not put significant pressure on the register file because the

register file is so large and the life of these variables is very short.

v The rewritten code sequence is smaller.

v The latency of the operations permits the scheduler to cover most of the cost of

computing both conditions. Further scheduling these instructions with those

before and after this code sequence will likely improve performance even

further.

Here is another example of using the select bit — this time with C intrinsics. This

code fragment shows how to use SPU intrinsics, including spu_cmpgt , spu_add ,

and spu_sel , to eliminate conditional branches.

The following sequence generates four instructions, assuming a, b, c are already in

registers (because we are promoting and extracting to and from the preferred

integer element, the spu_promote and spu_extract intrinsics produce no additional

instructions):

 unsigned int a,b,c;

 vector unsigned int vc1, vab, va, vb, vc;

 va = spu_promote(a, 0);

 vb = spu_promote(b, 0);

 vc = spu_promote(c, 0);

 vc1 = spu_add(vc, 1);

 vab = spu_add(va, vb);

 vc = spu_sel(vab, vc1, spu_cmpgt(va, vb));

 c = spu_extract(vc, 0);

Reducing branch mispredicts with branch hint

General-purpose processors have typically addressed branch prediction by

supporting hardware look-asides with branch history tables (BHT), branch target

address caches (BTAC), or branch target instruction caches (BTIC).

90 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The SPU addresses branch prediction through a set of hint for branch (HBR)

instructions that facilitate efficient branch processing by allowing programs to

avoid the penalty of taken branches.

v If a branch hint is provided, software speculates that the instruction branches to

the target path.

v If a hint is not provided, software speculates that the instruction does not branch

to a new location (that is, it stays inline).

v If speculation is incorrect, the speculated branch is flushed and refetched.

It is possible to sequence multiple hints in advance of multiple branches. As with

all programmer-provided hints, care must be exercised when using branch hints

because, if the information provided is incorrect, performance might degrade.

Branch-hint instructions can provide three kinds of advance knowledge about

future branches:

v Address of the branch target (that is, where will the branch take the flow of

control)

v Address of the actual branch instruction (known as the hint-trigger address)

v Prefetch schedule (when to initiate prefetching instructions at the branch target)

Branch-hint instructions load a branch-target buffer (BTB) in the SPU. When the

BTB is loaded with a branch target, the hint-trigger address and branch address are

also loaded into the BTB. After loading, the BTB monitors the instruction stream as

it goes into the issue stage of the pipeline. When the address of the instruction

going into issue matches the hint trigger address, the hint is triggered, and the

SPU speculates to the target address in the hint buffer.

Branch-hint instructions have no program-visible effects. They provide a hint to the

SPE architecture about a future branch instruction, with the intention that the

information be used to improve performance by prefetching the branch target. The

SPE branch-hint instructions are shown in Table 30. There are immediate and

indirect forms for this instruction class. The location of the branch is always

specified by an immediate operand in the instruction.

 Table 30. Branch-Hint Instructions

Instruction Description

hbr s11, ra Hint for branch (r-form). Hint that the instruction addressed by

the sum of the address of the current instruction and the signed

extended, 11-bit value s11 will branch to the address contained in

word element 0 of register ra. This form is used to hint function

returns, pointer function calls, and other situations that give rise

to indirect branches.

hbra s11, s18 Hint for branch (a-form). Hint that the instruction addressed by

the sum of the address of the current instruction and the signed

extended, 11-bit value s11 will branch to the address specified by

the sign extended, 18-bit value s18.

hbrr s11, s18 Hint for branch relative. Hint that the instruction addressed by the

sum of the address of the current instruction and the signed

extended, 11-bit value s11 will branch to the address specified by

the sum of the address of the current instruction and sign

extended, 18-bit value s18.

The following rules apply to the hint for branch (HBR) instructions:

Chapter 3. Programming the SPEs 91

v An HBR instruction should be placed at least 11 cycles followed by four

instruction pairs before the branch instructions being hinted by the HBR

instruction. In other words, an HBR instruction must be followed by at least 11

cycles of instructions, followed by eight instructions aligned on an even address

boundary. More separation between the hint and branch improves the

performance of applications on future SPU implementations.

v If an HBR instruction is placed too close to the branch, then a hint stall will

result. This results in the branch instruction stalling until the timing requirement

of the HBR instruction is satisfied.

v If an HBR instruction is placed closer to the hint-trigger address than four

instruction pairs plus one cycle, then the hint stall does not occur and the HBR

is not used.

v Only one HBR instruction can be active at a time. Issuing another HBR cancels

the current one.

v An HBR instruction can be moved outside of a loop and will be effective on

each loop iteration as long as another HBR instruction is not executed.

v The HBR instruction must be placed within 255 instructions of the branch

instruction.

v The HBR instruction only affects performance.

The HBR instructions can be used to support multiple strategies of branch

prediction. These include:

v Static Branch Prediction — Prediction based upon branch type or displacement,

and prediction based upon profiling or linguistic hints.

v Dynamic Branch Prediction — Software caching of branch-target addresses, and

using control flow to record branching history.

A common approach to generating static branch prediction is to use expert

knowledge that is obtained either by feedback-directed optimization techniques or

using linguistic hints supplied by the programmer.

The document C/C++ Language Extensions for Cell Broadband Engine Architecture

defines a mechanism for directing branch prediction. The __builtin_expect

directive allows programmers to predict conditional program statements. The

following example demonstrates how a programmer can predict that a conditional

statement is false (a is not larger than b).

 if(__builtin_expect((a>b),0))

 c += a;

 else

 d += 1;

Not only can the __builtin_expect directive be used for static branch prediction, it

can be used for dynamic branch prediction.

Porting SIMD code from the PPE to the SPEs

For some, it is easier to write SIMD programs by writing them first for the PPE,

and then porting them to the SPEs. This approach postpones some SPE-related

considerations of dealing with the local store (LS) size, data movements, and

debug until after the port. The approach can also allow partitioning of the work

into simpler (perhaps more digestible) steps on the SPEs.

After the Vector/SIMD Multimedia Extension code is working properly on the

PPE, a strategy for parallelizing the algorithm across multiple SPEs can be

92 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

developed. This is often, but not always, a data-partitioning method. The effort

might involve converting from Vector/SIMD Multimedia Extension intrinsics to

SPU intrinsics, adding data-transfer and synchronization constructs, and tuning for

performance. It might be useful to test the impact of various techniques, such as

DMA double buffering, loop unrolling, branch elimination, alternative intrinsics,

number of SPEs, and so forth. Debugging tools such as the static timing-analysis

tool and the IBM Full System Simulator for the Cell Broadband Engine are available

to assist this effort, as described in “Performance analysis” on page 106.

Alternatively, experienced Cell Broadband Engine programmers may prefer to skip

the Vector/SIMD Multimedia Extension coding phase and go directly to SPU

programming. In some cases, SIMD programming can be easier on an SPE than the

PPE because of the SPE’s unified register file.

The earlier chapters in this tutorial describe the Vector/SIMD Multimedia

Extension and SPU programming environments and some of their differences.

Armed with knowledge of these differences, one can devise a strategy for

developing code that is portable between the PPE and the SPEs. The strategy one

should employ depends upon the type of instructions to be executed, the variety of

vector data types, and the performance objectives. Solutions span the range of

simple macro translation to full functional mapping.

Code-mapping considerations

There are several challenges associated with mapping code designed for one

instruction set and compiled for another instruction set. These including

performance, unmappable constructs, limited size of LS, and equivalent precision,

as described in this section.

Code-mapping performance considerations

Simple remapping of low-level intrinsics can result in less-than-optimal

performance, depending upon the intrinsics used.

Understanding the dynamic range of the remapping’s operands can reduce the

performance impact of simple remapping.

Unmappable constructs considerations

Differences in the processing of intrinsics make simple translation of certain

intrinsics unmappable.

The unmappable SPU intrinsics include:

v stop and stopd

v conditional halt

v interrupt enable and disable

v move to and from status control and special-purpose registers

v channel instructions

v branch on external data

Limited size of LS considerations

Vector/SIMD Multimedia Extension programs mapped to SPU programs might not

fit within the LS of the SPE, either because the program is initially too big or

because mapping expands the code.

Chapter 3. Programming the SPEs 93

Equivalent precision considerations

The SPU instruction set does not fully implement the IEEE 754 single-precision

floating-point standard (default rounding mode is round to zero , denormals are

treated as zero, and there are no infinities or NaNs).

Therefore, floating-point results on an SPE may differ slightly from floating-point

results using the PPE’s PowerPC instruction set. In addition, all estimation

intrinsics (for example, ceiling, floor, reciprocal estimate, reciprocal square root

estimate, exponent estimate, and log estimate) do not have equivalent accuracy on

the SPU and PPE PowerPC instruction sets.

However, the instructions in the PPE’s Vector/SIMD Multimedia Extension have a

graphics rounding mode that allows programs written with Vector/SIMD Multimedia

Extension instructions to produce floating-point results that are equivalent in

precision to those written in the SPU instruction set. In this Vector/SIMD

Multimedia Extension mode, as in the SPU environment, the default rounding

mode is round to zero, denormals are treated as zero, and there are no infinities or

NaNs.

Details on the graphics rounding mode can be found in Cell Broadband Engine,

Programming Handbook.

Simple macro translation

For many programs, it is possible to use a simple macro translation strategy for

developing code that is portable between the Vector/SIMD Multimedia Extension

and SPU instruction sets.

The keys to simple macro translation are:

v Use a Compatible Vector-Literal Construction Format — The PPE Vector/SIMD

Multimedia Extension and the SPE’s SPU instruction set specifies two styles of

constructing literal vectors: curly brace and parenthesis. Some compilers support

both styles. A set of construction macros can be used to insulate programs from

any differences in the tools.

v Use Single-Token Vector Data Types — The C/C++ Language Extensions for Cell

Broadband Engine Architecture document specifies a set of single-token vector data

types. Because these are single-token, the data types can be easily redefined by a

preprocessor to the desired target processor. Additional single-token data types

must be standardized for the unique Vector/SIMD Multimedia Extension data

types. Table 31 lists the data types. See also:

– Table 22 on page 73.

– Table 23 on page 74.

 Table 31. Vector/SIMD Multimedia Extension Single-Token Data Types

Vector Data Type Single-Token Data Type

vector bool char vec_bchar16

vector bool short vec_bshort8

vector bool int vec_bint4

vector pixel vec_pixel8

v Use Intrinsics that Map One-to-One — Regardless of the technique used to provide

portability, performance will be optimized if the operations map one-to-one

between Vector/SIMD Multimedia Extension intrinsics and SPU intrinsics.

94 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The SPU intrinsics that map one-to-one with Vector/SIMD Multimedia Extension

(except for the specific intrinsics described in “Specific intrinsics” on page 66)

are shown in Table 32.

The Vector/SIMD Multimedia Extension intrinsics that map one-to-one with SPU

are shown in Table 33.

 Table 32. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping

SPU Intrinsic

Vector/SIMD

Multimedia

Extension Intrinsic For Data Types

spu_add vec_add vector operands only, no scalar operands

spu_and vec_and vector operands only, no scalar operands

spu_andc vec_andc all

spu_avg vec_avg all

spu_cmpeq vec_cmpeq vector operands only, no scalar operands

spu_cmpgt vec_cmpgt vector operands only, no scalar operands

spu_convtf vec_ctf limited scale range (5 bits)

spu_convts vec_cts limited scale range (5 bits)

spu_convtu vec_ctu limited scale range (5 bits)

spu_extract vec_extract all

spu_genc vec_addc all

spu_insert vec_insert all

spu_madd vec_madd float only

spu_mulhh vec_mule all

spu_mulo vec_mulo halfword vector operands only, no scalar

operands

spu_nmsub vec_nmsub float only

spu_nor vec_nor all

spu_or vec_or vector operands only, no scalar operands

spu_promote vec_promote all

spu_re vec_re all

spu_rl vec_rl vector operands only, no scalar operands

spu_rsqrte vec_rsqrte all

spu_sel vec_sel all

spu_splats vec_splats all

spu_sub vec_sub vector operands only, no scalar operands

spu_genb vec_subc vector operands only, no scalar operands

spu_xor vec_xor vector operands only, no scalar operands

 Table 33. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping

Vector/SIMD

Multimedia Extension

Intrinsic SPU Intrinsic For Data Types

vec_add spu_add halfwords, words, and floats only (not

bytes)

Chapter 3. Programming the SPEs 95

Table 33. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU

Mapping (continued)

Vector/SIMD

Multimedia Extension

Intrinsic SPU Intrinsic For Data Types

vec_addc spu_genc all

vec_and spu_and all

vec_andc spu_andc all

vec_avg spu_avg unsigned chars only

vec_cmpeq spu_cmpeq all

vec_cmpgt spu_cmpgt all

vec_ctf spu_convtf all

vec_cts spu_convts all

vec_ctu spu_convtu all

vec_extract spu_extract all

vec_insert spu_insert all

vec_madd spu_madd all

vec_mulo spu_mulo halfwords only (not bytes)

vec_nmsub spu_nmsub all

vec_nor spu_nor all

vec_or spu_or all

vec_promote spu_promote all

vec_re spu_re all

vec_rl spu_rl halfwords and words only (not bytes)

vec_rsqrte spu_rsqrte all

vec_sel spu_sel all

vec_splats spu_splats all

vec_sub spu_sub halfwords, words, and floats only

vec_subc spu_genb all

vec_xor spu_xor all

Note: The toolchain contains headers files of overloaded C++ functions that can

used to assist in mapping or porting of Vector/SIMD Multimedia Extension

intrinsics to SPU intrinsics, and vice-versa.

Example 1: Euler particle-system simulation

This programming example illustrates many of the concepts discussed earlier in

this chapter.

It can be found in the SDK under:

 /opt/cell/sdk/src/tutorial/euler

This example — a simple Euler-based particle-system simulation — illustrates the

following steps involved in coding for the Cell Broadband Engine:

1. Transform scaler code to vector code (SIMDize) for execution on the PPE’s VXU.

96 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

2. Port the code for execution on the SPE’s SPU unit.

3. Parallelize the code for execution across multiple SPEs.

A subsequent step — tuning the code for performance on the SPE — is covered in

“Performance analysis” on page 106. The above steps are only one example of

coding for the Cell Broadband Engine. The steps can be reordered or combined,

depending upon the skill and comfort level of the programmer.

This example shows a particle-system simulation using numerical integration

techniques to animate a large set of particles. Numerical integration is

implemented using Euler’s method of integration. It computes the next value of a

function of time, F(t), by incrementing the current value of the function by the

product of the time step and the derivative of the function:

 F(t + dt) = F(t) + dt*F’(t);

Our simple particle system consists of:

v An array of 3-D positions for each particle (pos[])

v An array of 3-D velocities for each particle (vel[])

v An array of masses for each particle (mass[])

v A force vector that varies over time (force)

This programming example is intended to illustrate programming concepts for the

Cell Broadband Engine, and is not meant to be a physically realistic simulation.

For example, it does not consider:

v how the time-variant force function and the time step, dt, is computed (instead,

the example treats them as constants).

v particle collisions.

In addition, we assume that all 3-D vectors (x,y,z) are expressed as 4-D

homogeneous coordinates (x,y,z,1).

Initial scalar code

The following code shows a C implementation of the Euler algorithm,

implemented for a uniprocessor using scalar data. There are no intrinsics calls in

this listing.

#define END_OF_TIME 10

#define PARTICLES 100000

typedef struct {

 float x, y, z, w;

} vec4D;

vec4D pos[PARTICLES]; // particle positions

vec4D vel[PARTICLES]; // particle velocities

vec4D force; // current force being applied to the particles

float inv_mass[PARTICLES]; // inverse mass of the particles

float dt = 1.0f; // step in time

int main()

{

 int i;

 float time;

 float dt_inv_mass;

 // For each step in time

 for (time=0; time<END_OF_TIME; time += dt) {

 // For each particle

 for (i=0; i<PARTICLES; i++) {

Chapter 3. Programming the SPEs 97

// Compute the new position and velocity as acted upon by the force f.

 pos[i].x = vel[i].x * dt + pos[i].x;

 pos[i].y = vel[i].y * dt + pos[i].y;

 pos[i].z = vel[i].z * dt + pos[i].z;

 dt_inv_mass = dt * inv_mass[i];

 vel[i].x = dt_inv_mass * force.x + vel[i].x;

 vel[i].y = dt_inv_mass * force.y + vel[i].y;

 vel[i].z = dt_inv_mass * force.z + vel[i].z;

 }

 }

 return (0);

}

Step 1: SIMDize the code for execution on the PPE

There are multiple strategies for SIMDizing code for execution either on the PPE’s

VXU or on an SPE’s SPU unit. The technique chosen depends upon the type of

data being operated on and the interdependencies of the data computations.

There are several strategies to consider:

v Let the Compiler Do It — This will work effectively for some code samples (like

this simple example), but it tends to be unsuccessful for more complicated code.

Results will vary depending upon the algorithm, the language the code is

expressed in, coding style, and capabilities of the compiler.

v Array-of-Structures (AOS) Form — This is the most common technique when the

input data is naturally expressed as a vector (also call vector-across form). 3-D

graphic applications express geometry as 3-component or 4-component vectors.

These components naturally fit within a 4-component, single-precision

floating-point vector. See also Figure 24 on page 63.

v Structure-of-Arrays (SOA) Form — In this form, you collect the individual

elements of the natural vectors into separate arrays (also called parallel-array

form). The code is then written as if it were to execute scalar instructions, but it

will be executing SIMD instructions. This results in code that computes four

single-precision floats results simultaneously. See also Figure 25 on page 64.

v Hybrid Forms — Often it is important that the input vector format remain

unchanged. But SOA solutions are easier to code and more efficient than the

AOS solutions. In this case, one can:

v Input the data in its natural, AOS form.

v Transform each data element on the fly into SOA form, using either the vec_perm

(Vector/SIMD Multimedia Extension) or the spu_shuffle (SPU) intrinsic.

v Perform computation using the SOA technique.

v Translate each output back into its natural, AOS form.

Assuming the compiler auto-SIMDization is either unavailable or ineffective, you

must adjust the data structures for efficient SIMD access. This decision cannot be

made without also considering the SPE data-accessing method and the

data-parallelization method. In addition, data should be aligned or padded for

efficient quadword accesses, using the aligned attribute.

Step 1a: SIMDize in Array-of-Structures Form for Vector/SIMD Multimedia

Extension

The following example shows how to SIMDize in the AOS form. Vector/SIMD

Multimedia Extension intrinsics are used, and they can be identified by their prefix

98 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

vec_. The algorithm assumes that the number of particles is a multiple of four.

Special code must be included to handle the last number of particles that is not a

multiple of four.

#define END_OF_TIME 10

#define PARTICLES 100000

typedef struct {

 float x, y, z, w;

} vec4D;

vec4D pos[PARTICLES] __attribute__ ((aligned (16)));

vec4D vel[PARTICLES] __attribute__ ((aligned (16)));

vec4D force __attribute__ ((aligned (16)));

float inv_mass[PARTICLES] __attribute__ ((aligned (16)));

float dt __attribute__ ((aligned (16))) = 1.0f;

int main()

{

 int i;

 float time;

 float dt_inv_mass __attribute__ ((aligned (16)));

 vector float dt_v, dt_inv_mass_v;

 vector float *pos_v, *vel_v, force_v;

 vector float zero = (vector float){0.0f, 0.0f, 0.0f, 0.0f};

 pos_v = (vector float *)pos;

 vel_v = (vector float *)vel;

 force_v = *((vector float *)&force);

 // Replicate the variable time step across elements 0-2 of

 // a floating point vector. Force the last element (3) to zero.

 dt_v = vec_sld(vec_splat(vec_lde(0, &dt), 0), zero, 4);

 // For each step in time

 for (time=0; time<END_OF_TIME; time += dt) {

 // For each particle

 for (i=0; i<PARTICLES; i++) {

 // Compute the new position and velocity as acted upon by the force f.

 pos_v[i] = vec_madd(vel_v[i], dt_v, pos_v[i]);

 dt_inv_mass = dt * inv_mass[i];

 dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0);

 vel_v[i] = vec_madd(dt_inv_mass_v, force_v, vel_v[i]);

 }

 }

 return (0);

}

Step 1b: : SIMDize in Structure-of-Arrays Form for Vector/SIMD Multimedia

Extension

The following example shows how to SIMDize in the SOA form. As in Step 1a, the

algorithm assumes that the number of particles is a multiple of 4.

#define END_OF_TIME 10

#define PARTICLES 100000

typedef struct {

 float x, y, z, w;

} vec4D;

// Separate arrays for each component of the vector.

vector float pos_x[PARTICLES/4], pos_y[PARTICLES/4], pos_z[PARTICLES/4];

vector float vel_x[PARTICLES/4], vel_y[PARTICLES/4], vel_z[PARTICLES/4];

vec4D force __attribute__ ((aligned (16)));

float inv_mass[PARTICLES] __attribute__ ((aligned (16)));

Chapter 3. Programming the SPEs 99

float dt = 1.0f;

int main()

{

 int i;

 float time;

 float dt_inv_mass __attribute__ ((aligned (16)));

 vector float force_v, force_x, force_y, force_z;

 vector float dt_v, dt_inv_mass_v;

 // Create a replicated vector for each component of the force vector.

 force_v = *(vector float *)(&force);

 force_x = vec_splat(force_v, 0);

 force_y = vec_splat(force_v, 1);

 force_z = vec_splat(force_v, 2);

 // Replicate the variable time step across all elements.

 dt_v = vec_splat(vec_lde(0, &dt), 0);

 // For each step in time

 for (time=0; time<END_OF_TIME; time += dt) {

 // For each particle

 for (i=0; i<PARTICLES/4; i++) {

 // Compute the new position and velocity as acted upon by the force f.

 pos_x[i] = vec_madd(vel_x[i], dt_v, pos_x[i]);

 pos_y[i] = vec_madd(vel_y[i], dt_v, pos_y[i]);

 pos_z[i] = vec_madd(vel_z[i], dt_v, pos_z[i]);

 dt_inv_mass = dt * inv_mass[i];

 dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0);

 vel_x[i] = vec_madd(dt_inv_mass_v, force_x, vel_x[i]);

 vel_y[i] = vec_madd(dt_inv_mass_v, force_y, vel_y[i]);

 vel_z[i] = vec_madd(dt_inv_mass_v, force_z, vel_z[i]);

 }

 }

 return (0);

}

Step 2: Port the PPE code for execution on the SPE

This step entails: (1) creating an SPE thread of execution on the PPE, (2) migrating

the computation loops from Vector/SIMD Multimedia Extension intrinsics to SPU

intrinsic, and finally (3) adding DMA transfers to move data in and out of the

SPE’s local store (LS).

We assume that the particle data structures cannot be restructured into SOA form.

Therefore, we use Step 1a from the previous section (the AOS form). SPU intrinsics

are used, and they can be identified by their prefix spu_.

Moving the code from the PPE to the SPE requires:

v Creating a control-structure, called parameter context, that defines the

parameters to be computed on the SPE. This includes pointers to the particle

array data, current force information, and so forth. The pointer to the context

control-structure defined in the PPE is passed to the SPE thread by using the

parameter passing mechanism in spe_create_thread. Alternatively, this

information could have been passed via the mailbox.

v Porting the computation for execution on the SPE. The complexity of this

operation depends upon the types of data and types of intrinsics used. For this

case, some of the intrinsics only require a simple name translation (for example,

vec_madd to spu_madd). The translation of the scalar values is a little more

extensive.

100 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

v Adding an additional looping construct to partition the data arrays into smaller

blocks. This is required because all the data does not fit within the SPE’s local

store.

v Adding DMA transfers to move data in and out of the SPE’s local store.

particle.h:

#define END_OF_TIME 10

#define PARTICLES 100000

typedef struct {

 float x, y, z, w;

} vec4D;

typedef struct {

 int particles; // number of particles to process

 vector float *pos_v; // pointer to array of position vectors

 vector float *vel_v; // pointer to array of velocity vectors

 float *inv_mass; // pointer to array of mass vectors

 vector float force_v; // force vector

 float dt; // current step in time

} context;

PPE Makefile:

Subdirectories

DIRS := spu

Target

PROGRAM_ppu := euler_spe

Local Defines

IMPORTS := spu/lib_particle_spu.a -lspe2 -lpthread

make.footer

ifdef CELL_TOP

 include $(CELL_TOP)/buildutils/make.footer

else

 include ../../../../../buildutils/make.footer

endif

PPE Code:

#include <stdio.h>

#include <stdlib.h>

#include <libspe2.h>

#include <pthread.h>

#include "particle.h"

vec4D pos[PARTICLES] __attribute__ ((aligned (16)));

vec4D vel[PARTICLES] __attribute__ ((aligned (16)));

vec4D force __attribute__ ((aligned (16)));

float inv_mass[PARTICLES] __attribute__ ((aligned (16)));

float dt = 1.0f;

Chapter 3. Programming the SPEs 101

extern spe_program_handle_t particle;

typedef struct ppu_pthread_data {

 spe_context_ptr_t spe_ctx;

 pthread_t pthread;

 unsigned int entry;

 void *argp;

} ppu_pthread_data_t;

void *ppu_pthread_function(void *arg) {

 ppu_pthread_data_t *datap = (ppu_pthread_data_t *)arg;

 if (spe_context_run(datap->spe_ctx, &datap->entry, 0,

 datap->argp, NULL, NULL) < 0) {

 perror ("Failed running context\n");

 exit (1);

 }

 pthread_exit(NULL);

}

int main()

{

 ppu_pthread_data_t data;

 parm_context ctx __attribute__ ((aligned (16)));

 ctx.particles = PARTICLES;

 ctx.pos_v = (vector float *)pos;

 ctx.vel_v = (vector float *)vel;

 ctx.force_v = *((vector float *)&force);

 ctx.inv_mass = inv_mass;

 ctx.dt = dt;

 /* Create a SPE context */

 if ((data.spe_ctx = spe_context_create (0, NULL)) == NULL) {

 perror ("Failed creating context");

 exit (1);

 }

 /* Load SPE program into the SPE context*/

 if (spe_program_load (data.spe_ctx, &particle)) {

 perror ("Failed loading program");

 exit (1);

 }

 /* Initialize context run data */

 data.entry = SPE_DEFAULT_ENTRY;

 data.argp = &ctx;

 /* Create pthread for each of the SPE contexts */

 if (pthread_create (&data.pthread, NULL, &ppu_pthread_function, &data)) {

 perror ("Failed creating thread");

 exit (1);

 }

 /* Wait for the threads to complete */

 if (pthread_join (data.pthread, NULL)) {

 perror ("Failed joining thread\n");

 exit (1);

 }

 return (0);

}

SPE Makefile:

Target

PROGRAM_spu := particle

LIBRARY_embed := lib_particle_spu.a

102 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Local Defines

INCLUDE := -I ..

make.footer

ifdef CELL_TOP

 include $(CELL_TOP)/buildutils/make.footer

else

 include ../../../../../../buildutils/make.footer

endif

SPE Code:

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#include "particle.h"

#define PARTICLES_PER_BLOCK 1024

// Local store structures and buffers.

volatile context ctx;

volatile vector float pos[PARTICLES_PER_BLOCK];

volatile vector float vel[PARTICLES_PER_BLOCK];

volatile float inv_mass[PARTICLES_PER_BLOCK];

int main(unsigned long long spe_id, unsigned long long parm)

{

 int i, j;

 int left, cnt;

 float time;

 unsigned int tag_id;

 vector float dt_v, dt_inv_mass_v;

 /* Reserve a tag ID */

 tag_id = mfc_tag_reserve();

 spu_writech(MFC_WrTagMask, -1);

 // Input parameter parm is a pointer to the particle context.

 // Fetch the context, waiting for it to complete.

 spu_mfcdma32((void *)(&ctx), (unsigned int)parm, sizeof(context),

 tag_id, MFC_GET_CMD);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 dt_v = spu_splats(ctx.dt);

 // For each step in time

 for (time=0; time<END_OF_TIME; time += ctx.dt) {

 // For each block of particles

 for (i=0; i<ctx.particles; i+=PARTICLES_PER_BLOCK) {

 // Determine the number of particles in this block.

 left = ctx.particles - i;

 cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

 // Fetch the data - position, velocity, inverse_mass. Wait for DMA to

 // complete before performing computation.

 spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt *

 sizeof(vector float), tag_id, MFC_GET_CMD);

 spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt *

 sizeof(vector float), tag_id, MFC_GET_CMD);

 spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx.inv_mass+i), cnt *

Chapter 3. Programming the SPEs 103

sizeof(float), tag_id, MFC_GET_CMD);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 // Compute the step in time for the block of particles

 for (j=0; j<cnt; j++) {

 pos[j] = spu_madd(vel[j], dt_v, pos[j]);

 dt_inv_mass_v = spu_mul(dt_v, spu_splats(inv_mass[j]));

 vel[j] = spu_madd(dt_inv_mass_v, ctx.force_v, vel[j]);

 }

 // Put the position and velocity data back into main storage

 spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt *

 sizeof(vector float), tag_id, MFC_PUT_CMD);

 spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt *

 sizeof(vector float), tag_id, MFC_PUT_CMD);

 }

 }

 // Wait for final DMAs to complete before terminating SPE thread.

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 return (0);

}

Step 3: Parallelize code for execution across multiple SPEs

The most common and practical method of parallelizing computation across

multiple SPEs is to partition the data. This works well for applications with little

or no data dependency.

In our example, we can partition the Euler integration of the particle equally

among the available SPEs. If there are four available SPEs, then the first quarter of

the particles is processed by the first SPE, the second quarter of the particles is

processed by the second SPE, and so forth.

The SPE code for this step is the same as that in Step 2, so only the PPE code is

shown below.

PPE Code:

#include <stdio.h>

#include <stdlib.h>

#include <libspe2.h>

#include <pthread.h>

#include "particle.h"

#define MAX_SPE_THREADS 16

vec4D pos[PARTICLES] __attribute__ ((aligned (16)));

vec4D vel[PARTICLES] __attribute__ ((aligned (16)));

vec4D force __attribute__ ((aligned (16)));

float inv_mass[PARTICLES] __attribute__ ((aligned (16)));

float dt = 1.0f;

extern spe_program_handle_t particle;

typedef struct ppu_pthread_data {

 spe_context_ptr_t spe_ctx;

 pthread_t pthread;

 unsigned int entry;

 void *argp;

} ppu_pthread_data_t;

void *ppu_pthread_function(void *arg) {

 ppu_pthread_data_t *datap = (ppu_pthread_data_t *)arg;

 if (spe_context_run(datap->spe_ctx, &datap->entry, 0, datap->argp, NULL,

 NULL) < 0) {

104 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

perror ("Failed running context\n");

 exit (1);

 }

 pthread_exit(NULL);

}

int main()

{

 int i, offset, count, spe_threads;

 ppu_pthread_data_t datas[MAX_SPE_THREADS];

 parm_context ctxs[MAX_SPE_THREADS] __attribute__ ((aligned (16)));

/* Determine the number of SPE threads to create */

 spe_threads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);

 if (spe_threads > MAX_SPE_THREADS) spe_threads = MAX_SPE_THREADS;

/* Create multiple SPE threads */

 for (i=0, offset=0; i<spe_threads; i++, offset+=count) {

 /* Construct a parameter context for each SPE. Make sure

 * that each SPEs (excluding the last) particle count is a multiple

 * of 4 so that inv_mass context pointer is always quadword aligned.

 */

 count = (PARTICLES / spe_threads + 3) & ~3;

 ctxs[i].particles = (i==(SPE_THREADS-1)) ? PARTICLES - offset : count;

 ctxs[i].pos_v = (vector float *)&pos[offset];

 ctxs[i].vel_v = (vector float *)&vel[offset];

 ctxs[i].force_v = *((vector float *)&force);

 ctxs[i].inv_mass = &inv_mass[offset];

 ctxs[i].dt = dt;

 /* Create SPE context */

 if ((datas[i].spe_ctx = spe_context_create (0, NULL)) == NULL) {

 perror ("Failed creating context");

 exit (1);

 }

 /* Load SPE program into the SPE context */

 if (spe_program_load (datas[i].spe_ctx, &particle)) {

 perror ("Failed loading program");

 exit (1);

 }

 /* Initialize context run data */

 datas[i].entry = SPE_DEFAULT_ENTRY;

 datas[i].argp = &ctxs[i];

 /* Create pthread for each of the SPE conexts */

 if (pthread_create (&datas[i].pthread, NULL, &ppu_pthread_function,

 &datas[i])){

 perror ("Failed creating thread");

 }

 }

 /* Wait for all the SPE threads to complete.*/

 for (i=0; i<spe_threads; i++) {

 if (pthread_join (datas[i].pthread, NULL)) {

 perror ("Failed joining thread");

 exit (1);

 }

 }

 return (0);

}

Now that the program has been migrated to the SPEs, you can analyze and tune

its performance. This is discussed in “Performance analysis” on page 106.

Chapter 3. Programming the SPEs 105

Performance analysis

After a Cell Broadband Engine program executes without errors on the PPE and

the SPEs, optimization through parameter-tuning can begin.

Programmers typically tune for performance using algorithmic methods. This is

important for SPE programming also. But equally important for SPE programming

is performance tuning through the elimination of stalls. There are two forms of

stalls to consider:

v instruction dependency stalls, and

v data stalls.

Instruction stalls can be analyzed statically or dynamically.

Performance issues

Two software tools are available in the SDK to assist in measuring the performance

of programs: the spu-timing static timing analyzer, and the IBM Full System

Simulator for the Cell Broadband Engine.

The spu-timing analyzer performs a static timing analysis of a program by

annotating its assembly instructions with the instruction-pipeline state. This

analysis is useful for coarsely spotting dual-issue rates (odd and even pipeline use)

and assessing what program sections may be experiencing instruction-dependency

and data-dependency stalls. It is useful, for example, for determining whether or

not dependencies might be mitigated by unrolling, or whether reordering of

instructions or better placement of no-ops will improve the dual-issue behavior in

a loop. However, static analysis outputs typically do not provide numerical

performance information about program execution. Thus, it cannot report anything

definitive about cycle counts, branches taken or not taken, branches hinted or not

hinted, DMA transfers, and so forth.

The IBM Full System Simulator for the Cell Broadband Engine performs a dynamic

analysis of program execution. It is available in the SDK. Any part of a program,

from a single line to the entire program, can be studied. Performance numbers are

provided for:

v Instruction histograms (for example, branch, hint, and prefetch)

v Cycles per instruction (CPI)

v Single-issue and dual-issue rates

v Stall statistics

v Register use

The output of the IBM Full System Simulator for the Cell Broadband Engine can be

a text listing or a graphic plot.

Example 1: Tuning SPE performance with static and dynamic

timing analysis

Static analysis of SPE threads

The listing below shows an spu-timing static timing analysis for the inner loop of

the SPE code.

The SPE code is shown in “Step 2: Port the PPE code for execution on the SPE” on

page 100, the Euler Particle-System Simulation example. This listing shows

significant dependency stalls (indicated by the “-”) and poor dual-issue rates. The

106 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

inner loop has an instruction mix of eight even-pipeline (pipe 0) instructions and

ten odd-pipeline (pipe 1) instructions. Therefore, any program changes that

minimize data dependencies will improve dual-issue rates and lower the cycle per

instruction (CPI).

 .L19:

0D 78 a $49,$8,$10

1D 012 789 lqx $51,$6,$9

0D 89 ila $47,66051

1D 0123 89 lqx $52,$6,$11

0 0 9 ai $7,$7,-1

0 ----456789 fma $50,$51,$12,$52

1 -----012345 stqx $50,$6,$11

1 123456 lqx $48,$8,$10

0D 23 ai $8,$8,4

1D 234567 lqa $44,ctx+16

1 345678 lqx $43,$6,$9

1 ---7890 rotqby $46,$48,$49

1 ---1234 shufb $45,$46,$46,$47

0 ---567890 fm $42,$12,$45

0d -----123456 fma $41,$42,$44,$43

1d ------789012 stqx $41,$6,$9

0D 89 ai $6,$6,16

 .L39:

1D 8901 brnz $7,.L19

The character columns in the above static-analysis listing have the following

meanings:

v Column 1 — The first column shows the pipeline that issued an instruction.

Pipeline 0 is represented by 0 in the first column and pipeline 1 is represented

by 1.

v Column 2 — The second column can contain a D, d, or “nothing”. A D signifies a

successful dual-issue was accomplished by the two instructions listed in

row-pairs. A d signifies a dual-issue was possible, but did not occur due to

dependencies; for example, operands being in flight. If there is no entry in the

second column, dual-issue could not be performed because the issue rules were

not satisfied (for example, an even-pipeline instruction was fetched from an odd

LS address or an odd-pipeline instruction was fetched from an even LS address).

See “Pipelines and dual-issue rules” on page 53.

v Column 3 — The third column is always blank.

v Columns 4 through 53 — The next 50 columns represent clock cycles and are

repeated as 0123456789 five times. A digit is displayed in these columns

whenever the instruction executes during that clock cycle. Therefore, an

<n>-cycle instruction will display <n> digits. Dependency stalls are flagged by a

dash (“-”).

v Columns 54 and beyond — The remaining entries on the row are the

assembly-language instructions or assembler-line addresses (for example, .L19)

of the program’s assembly code.

Static-analysis timing files can be quickly interpreted by:

v Scanning the columns of digits. Small slopes (more horizontal) are bad. Large

slopes (more vertical) are good.

v Looking for instructions with dependencies (those with dashes in the listing).

v Looking for instructions with poor dual-issue rates — either a d or “nothing” in

column 2.

This information can be used to understand what areas of code are scheduled well

and which are poorly scheduled.

Chapter 3. Programming the SPEs 107

About SPU_TIMING:

If you are using a Bash shell, you can set SPU_TIMING as a shell variable by using

the command export SPU_TIMING=1. You can also set SPU_TIMING in the makefile

and build the .s file by using the following statement:

 SPU_TIMING=1 make foo.s

This creates the timing file for file foo.c . It sets the SPU_TIMING variable only in

the sub-shell of the makefile. It generates foo.s and then invokes spu-timing on

foo.s to produce a foo.s.timing file.

Another way to invoke the performance tool is by entering one of the following

statements in the command prompt:

 SPU_TIMING=1 make foo.s

Dynamic analysis of SPE threads

The listing below shows a dynamic timing analysis on the same SPE inner loop

using the IBM Full System Simulator for the Cell Broadband Engine.

The results confirm the view of program execution from the static timing analysis:

v It shows poor dual-issue rates (7%) and large dependency stalls (65%), resulting

in a overall CPI of 2.39.

v Most workloads should be capable of achieving a CPI of 0.7 to 0.9, roughly 3

times better than this.

v The number of used registers is 73, a 57.03% utilization of the full 128 register

set.
 SPU DD1.0

 Total Cycle count 43120454

 Total Instruction count 18068949

 Total CPI 2.39

 Performance Cycle count 43120454

 Performance Instruction count 18068949 (18062968)

 Performance CPI 2.39 (2.39)

 Branch instructions 1001990

 Branch taken 1000007

 Branch not taken 1983

 Hint instructions 1973

 Hint hit 1000001

 Contention at LS between Load/Store and Prefetch 2000986

 Single cycle 12049144 (27.9%)

 Dual cycle 3006912 (7.0%)

 Nop cycle 4003 (0.0%)

 Stall due to branch miss 17977 (0.0%)

 Stall due to prefetch miss 0 (0.0%)

 Stall due to dependency 28042299 (65.0%)

 Stall due to fp resource conflict 0 (0.0%)

 Stall due to waiting for hint target 110 (0.0%)

 Stall due to dp pipeline 0 (0.0%)

 Channel stall cycle 0 (0.0%)

 SPU Initialization cycle 9 (0.0%)

 Total cycle 43120454 (100.0%)

 Stall cycles due to dependency on each pipelines

108 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

FX2 5909

 SHUF 6011772

 FX3 1960

 LS 7022608

 BR 0

 SPR 0

 LNOP 0

 NOP 0

 FXB 0

 FP6 15000050

 FP7 0

 FPD 0

 The number of used registers are 73; the used ratio is 57.03

Optimizations

To eliminate stalls and improve the CPI — and ultimately the performance — the

compiler needs more instructions to schedule, so that the program does not stall.

The SPE’s large register file allows the compiler or the programmer to unroll loops.

In our example program, there are no inter-loop dependencies (loop-carried

dependencies), and our dynamic analysis shows that the register usage is fairly

small, so moderately aggressive unrolling will not produce register spilling (that is,

registers having to be written into temporary stack storage).

Most compilers can automatically unroll loops. Sometimes this is effective. But

because automatic loop unrolling is not always effective, or because the

programmer wants explicit control to manage the limited local store, this example

shows how to manually unroll the loop.

The first pass of optimizations include:

v Unroll the loop to provide additional instructions for interleaving.

v Load DMA-buffer contents into local nonvolatile registers to eliminate volatile

migration constraints.

v Eliminate scalar loads (the inv_mass variable).

v Eliminate extra multiplies of dt*inv_mass and splat the products after the SIMD

multiply, instead of before the multiply.

v Interleave DMA transfers with computation by multibuffering the inputs and

outputs to eliminate (or reduce) DMA stalls. These stalls are not reflected in the

static and dynamic analyses. In the process of adding double buffering, the inner

loop is moved into a function, so that the code need not be repeated.

The following SPE code results from these optimizations. Among the changes are

the addition of a GET instruction with a barrier suffix (B), accomplished by the

spu_mfcdma32() intrinsic with the MFC_GETB_CMD parameter. This GET is the barrier

form of MFC_GET_CMD. The barrier form is used to ensure that previously computed

results are put before the get for the next buffer’s data.

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#include "particle.h"

#define PARTICLES_PER_BLOCK 1024

// Local store structures and buffers.

volatile context ctx;

volatile vector float pos[2][PARTICLES_PER_BLOCK];

volatile vector float vel[2][PARTICLES_PER_BLOCK];

volatile vector float inv_mass[2][PARTICLES_PER_BLOCK/4];

Chapter 3. Programming the SPEs 109

void process_buffer(int buffer, int cnt, vector float dt_v)

{

 int i;

 volatile vector float *p_inv_mass_v;

 vector float force_v, inv_mass_v;

 vector float pos0, pos1, pos2, pos3;

 vector float vel0, vel1, vel2, vel3;

 vector float dt_inv_mass_v, dt_inv_mass_v_0, dt_inv_mass_v_1,

 dt_inv_mass_v_2, dt_inv_mass_v_3;

 vector unsigned char splat_word_0 =

 (vector unsigned char){0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};

 vector unsigned char splat_word_1 =

 (vector unsigned char){4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7};

 vector unsigned char splat_word_2 =

 (vector unsigned char){8, 9,10,11, 8, 9,10,11, 8, 9,10,11, 8, 9,10,11};

 vector unsigned char splat_word_3 =

 (vector unsigned char){12,13,14,15,12,13,14,15,12,13,14,15,12,13,14,15};

 p_inv_mass_v = (volatile vector float *)&inv_mass[buffer][0];

 force_v = ctx.force_v;

 // Compute the step in time for the block of particles, four

 // particle at a time.

 for (i=0; i<cnt; i+=4) {

 inv_mass_v = *p_inv_mass_v++;

 pos0 = pos[buffer][i+0];

 pos1 = pos[buffer][i+1];

 pos2 = pos[buffer][i+2];

 pos3 = pos[buffer][i+3];

 vel0 = vel[buffer][i+0];

 vel1 = vel[buffer][i+1];

 vel2 = vel[buffer][i+2];

 vel3 = vel[buffer][i+3];

 dt_inv_mass_v = spu_mul(dt_v, inv_mass_v);

 pos0 = spu_madd(vel0, dt_v, pos0);

 pos1 = spu_madd(vel1, dt_v, pos1);

 pos2 = spu_madd(vel2, dt_v, pos2);

 pos3 = spu_madd(vel3, dt_v, pos3);

 dt_inv_mass_v_0 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_0);

 dt_inv_mass_v_1 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_1);

 dt_inv_mass_v_2 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_2);

 dt_inv_mass_v_3 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_3);

 vel0 = spu_madd(dt_inv_mass_v_0, force_v, vel0);

 vel1 = spu_madd(dt_inv_mass_v_1, force_v, vel1);

 vel2 = spu_madd(dt_inv_mass_v_2, force_v, vel2);

 vel3 = spu_madd(dt_inv_mass_v_3, force_v, vel3);

 pos[buffer][i+0] = pos0;

 pos[buffer][i+1] = pos1;

 pos[buffer][i+2] = pos2;

 pos[buffer][i+3] = pos3;

 vel[buffer][i+0] = vel0;

 vel[buffer][i+1] = vel1;

 vel[buffer][i+2] = vel2;

 vel[buffer][i+3] = vel3;

 }

}

int main(unsigned long long spe_id, unsigned long long argv)

110 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

{

 int buffer, next_buffer;

 int cnt, next_cnt, left;

 float time, dt;

 vector float dt_v;

 volatile vector float *ctx_pos_v, *ctx_vel_v;

 volatile vector float *next_ctx_pos_v, *next_ctx_vel_v;

 volatile float *ctx_inv_mass, *next_ctx_inv_mass;

 unsigned int tags[2];

 // Reserve a pair of DMA tag IDs

 tags[0] = mfc_tag_reserve();

 tags[1] = mfc_tag_reserve();

 // Input parameter argv is a pointer to the particle context.

 // Fetch the context, waiting for it to complete.

 spu_writech(MFC_WrTagMask, 1 << tags[0]);

 spu_mfcdma32((void *)(&ctx), (unsigned int)argv, sizeof(context), tags[0],

 MFC_GET_CMD);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 dt = ctx.dt;

 dt_v = spu_splats(dt);

 // For each step in time

 for (time=0; time<END_OF_TIME; time += dt) {

 // For each double buffered block of particles

 left = ctx.particles;

 cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

 ctx_pos_v = ctx.pos_v;

 ctx_vel_v = ctx.vel_v;

 ctx_inv_mass = ctx.inv_mass;

 // Prefetch first buffer of input data

 buffer = 0;

 spu_mfcdma32((void *)(pos), (unsigned int)(ctx_pos_v), cnt *

 sizeof(vector float), tags[0], MFC_GETB_CMD);

 spu_mfcdma32((void *)(vel), (unsigned int)(ctx_vel_v), cnt *

 sizeof(vector float), tags[0], MFC_GET_CMD);

 spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx_inv_mass), cnt *

 sizeof(float), tags[0], MFC_GET_CMD);

 while (cnt < left) {

 left -= cnt;

 next_ctx_pos_v = ctx_pos_v + cnt;

 next_ctx_vel_v = ctx_vel_v + cnt;

 next_ctx_inv_mass = ctx_inv_mass + cnt;

 next_cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

 // Prefetch next buffer so the data is available for computation on next

 // loop iteration.

 // The first DMA is barriered so that we don’t GET data before the

 // previous iteration’s data is PUT.

 next_buffer = buffer^1;

 spu_mfcdma32((void *)(&pos[next_buffer][0]), (unsigned int)(next_ctx_pos_v),

 next_cnt * sizeof(vector float), tags[next_buffer], MFC_GETB_CMD);

 spu_mfcdma32((void *)(&vel[next_buffer][0]), (unsigned int)(next_ctx_vel_v),

 next_cnt * sizeof(vector float), tags[next_buffer], MFC_GET_CMD);

 spu_mfcdma32((void *)(&inv_mass[next_buffer][0]), (unsigned int)

 (next_ctx_inv_mass), next_cnt * sizeof(float), tags[next_buffer],

 MFC_GET_CMD);

 // Wait for previously prefetched data

Chapter 3. Programming the SPEs 111

spu_writech(MFC_WrTagMask, 1 << tags[buffer]);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 process_buffer(buffer, cnt, dt_v);

 // Put the buffer’s position and velocity data back into main storage

 spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt *

 sizeof(vector float), tags[buffer], MFC_PUT_CMD);

 spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt *

 sizeof(vector float), tags[buffer], MFC_PUT_CMD);

 ctx_pos_v = next_ctx_pos_v;

 ctx_vel_v = next_ctx_vel_v;

 ctx_inv_mass = next_ctx_inv_mass;

 buffer = next_buffer;

 cnt = next_cnt;

 }

 // Wait for previously prefetched data

 spu_writech(MFC_WrTagMask, 1 << tags[buffer]);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 process_buffer(buffer, cnt, dt_v);

 // Put the buffer’s position and velocity data back into main storage

 spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt *

 sizeof(vector float), tags[buffer], MFC_PUT_CMD);

 spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt *

 sizeof(vector float), tags[buffer], MFC_PUT_CMD);

 // Wait for DMAs to complete before starting the next step in time.

 spu_writech(MFC_WrTagMask, 1 << tags[buffer]);

 (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

 }

 return (0);

}

Static analysis of optimization

The listing below shows a spu_timing static timing analysis for the optimized SPE

thread (process _buffer subroutine only).

.type process_buffer, @function

 process_buffer:

0D 0123 shli $2,$3,10

1D 012345 lqa $19,ctx+16

0D 12 ori $6,$3,0

1D 1234 shlqbyi $24,$4,0

0D 23 cgti $3,$4,0

1D 2345 shlqbyi $18,$5,0

0D 34 ila $4,inv_mass

1D 3456 fsmbi $21,0

0 45 ilhu $27,1029

0 56 ilhu $26,2057

0 67 ilhu $25,3085

0 78 ila $28,66051

0 89 a $20,$2,$4

0 90 iohl $27,1543

0D 01 iohl $26,2571

1D 0 lnop

0D 12 iohl $25,3599

1D 1234 brz $3,.L7

0 2345 shli $17,$6,14

0 34 ila $23,pos

0D 45 ila $22,vel

1D 456789 hbra .L10,.L5

112 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

1 5 lnop

0 6 nop $127

 .L5:

0D 78 ila $43,pos

1D 789012 lqd $41,0($20)

0D 89 ila $42,vel

1D 890123 lqx $40,$17,$23

0 90 a $6,$17,$43

0 01 a $7,$17,$42

0D 12 ai $21,$21,4

1D 123456 lqd $39,16($6)

0D 23 ai $20,$20,16

1D 234567 lqd $38,32($6)

0D 345678 fm $36,$18,$41

1D 345678 lqd $37,48($6)

0D 45 cgt $16,$24,$21

1D 456789 lqx $13,$17,$22

1 567890 lqd $34,16($7)

1 678901 lqd $14,32($7)

1 789012 lqd $15,48($7)

1 -9012 shufb $35,$36,$36,$28

0D 012345 fma $32,$13,$18,$40

1D 0123 shufb $33,$36,$36,$27

0D 123456 fma $10,$34,$18,$39

1D 1234 shufb $31,$36,$36,$26

0D 234567 fma $11,$14,$18,$38

1D 2345 shufb $30,$36,$36,$25

0 345678 fma $8,$15,$18,$37

0 456789 fma $29,$35,$19,$13

0D 567890 fma $5,$33,$19,$34

1D 5 lnop

0D 678901 fma $12,$31,$19,$14

1D 678901 stqx $32,$17,$23

0D 789012 fma $9,$30,$19,$15

1D 789012 stqd $10,16($6)

1 890123 stqd $11,32($6)

1 901234 stqd $8,48($6)

0D 0 nop $127

1D 012345 stqx $29,$17,$22

0D 12 ai $17,$17,64

1D 123456 stqd $5,16($7)

1 234567 stqd $12,32($7)

1 345678 stqd $9,48($7)

0D 4 nop $127

 .L10:

1D 4567 brnz $16,.L5

 .L7:

0D 5 nop $127

1D 5678 bi $lr

Dynamic analysis of optimizations

The listing below shows a dynamic timing analysis on the IBM Full System

Simulator for the Cell Broadband Engine for the optimized SPE thread (process buffer

only). It shows that 78 registers are used, so the used percentage is 60.94.

 SPU DD1.0

 Total Cycle count 7134843

 Total Instruction count 10602009

 Total CPI 0.67

 Performance Cycle count 7134843

 Performance Instruction count 10602009 (9839265)

 Performance CPI 0.67 (0.73)

 Branch instructions 253940

 Branch taken 251967

Chapter 3. Programming the SPEs 113

Branch not taken 1973

 Hint instructions 2952

 Hint hit 250980

 Contention at LS between Load/Store and Prefetch 6871

 Single cycle 3815689 (53.5%)

 Dual cycle 3011788 (42.2%)

 Nop cycle 5898 (0.1%)

 Stall due to branch miss 34655 (0.5%)

 Stall due to prefetch miss 0 (0.0%)

 Stall due to dependency 266732 (3.7%)

 Stall due to fp resource conflict 0 (0.0%)

 Stall due to waiting for hint target 72 (0.0%)

 Stall due to dp pipeline 0 (0.0%)

 Channel stall cycle 0 (0.0%)

 SPU Initialization cycle 9 (0.0%)

 Total cycle 7134843 (100.0%)

 Stall cycles due to dependency on each pipelines

 FX2 8808

 SHUF 1971

 FX3 5870

 LS 32

 BR 0

 SPR 1

 LNOP 0

 NOP 0

 FXB 0

 FP6 250050

 FP7 0

 FPD 0

 The number of used registers are 78, the used ratio is 60.94

The above static and dynamic timing analysis of the optimized SPE code reveals:

v Significant increase in dual-issue rate and reduction in dependency stalls. The

static analysis shows that the process_buffer inner loop still contains a

single-cycle stall and some instructions that are not dual-issued. Further

performance improvements could likely be achieved by either more loop

unrolling or software loop-pipelining.

v The number of instructions has decreased by 41% from the initial instruction

count.

v The CPI has dropped from 2.39 to a more typical 0.73.

v The performance of the SPE code, measured in total cycle count, has gone from

approximately 43 M cycles to 7 M cycles, an improvement of more than 6x. This

improvement does not take into account the DMA latency-hiding (stall

elimination) provided by double buffering.

For details about performance simulation, including examples of coding for

simulations, see Chapter 5, “The simulator,” on page 123. The IBM Full System

Simulator for the Cell Broadband Engine described in that chapter supports

performance simulation for a full system, including the MFCs, caches, bus, and

memory controller.)

114 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

General SPE programming tips

This section contains a short summary of general tips for optimizing the

performance of SPE programs.

v Local Store

– Design for the LS size. The LS holds up to 256 KB for the program, stack,

local data structures, and DMA buffers. One can do a lot with 256 KB, but be

aware of this size.

– Use overlays (runtime download program kernels) to build complex function

servers in the LS (see “SPE overlays” on page 121).
v DMA Transfers

– Use SPE-initiated DMA transfers rather than PPE-initiated DMA transfers.

There are more SPEs than the one PPE, and the PPE can enqueue only eight

DMA requests whereas each SPE can enqueue 16.

– Overlap DMA with computation by double buffering or multibuffering (see

“Moving double-buffered data” on page 86). Multibuffer code or (typically)

data.

– Use double buffering to hide memory latency.

– Use fence command options to order DMA transfers within a tag group.

– Use barrier command options to order DMA transfers within the queue.
v Loops

– Unroll loops to reduce dependencies and increase dual-issue rates. This

exploits the large SPU register file.

– Compiler auto-unrolling is not perfect, but pretty good.
v SIMD Strategy

– Choose an SIMD strategy appropriate for your algorithm. For example:

– Evaluate array-of-structure (AOS) organization. For graphics vertices, this

organization (also called or vector-across) can have more-efficient code size

and simpler DMA needs, but less-efficient computation unless the code is

unrolled.

– Evaluate structure-of-arrays (SOA) organization. For graphics vertices, this

organization (also called parallel-array) can be easier to SIMDize, but the data

must be maintained in separate arrays or the SPU must shuffle AOS data into

an SOA form.

– Consider the effects of unrolling when choosing an SIMD strategy.
v Load/Store

– Scalar loads and stores are slow, with long latency.

– SPUs only support quadword loads and stores.

– Consider making scalars into quadword integer vectors.

– Load or store scalar arrays as quadwords, and perform your own extraction

and insertion to eliminate load and store instructions.
v Branches

– Eliminate nonpredicted branches.

– Use feedback-directed optimization.

– Use the __builtin_expect language directive when you can explicitly direct

branch prediction.
v Multiplies

Chapter 3. Programming the SPEs 115

– Avoid integer multiplies on operands greater than 16 bits in size. The SPU

supports only a “16-bit x16-bit multiply”. A “32-bit multiply” requires five

instructions (three 16-bit multiplies and two adds).

– Keep array elements sized to a power-of-2 to avoid multiplies when indexing.

– Cast operands to unsigned short prior to multiplying. Constants are of type

int and also require casting. Use a macro to explicitly perform 16-bit

multiplies. This can avoid inadvertent introduction of signed extends and

masks due to casting.
v Pointers

– Use the PPE’s load/store with update instructions. These allow sequential

indexing through an array without the need of additional instructions to

increment the array pointer.

– For the SPEs (which do not support load/store with update instructions),

use the d-form instructions to specify an immediate offset from a base array

pointer.
v Dual-Issue

– Choose intrinsics carefully to maximize dual-issue rates or reduce latencies.

– Dual issue will occur if a pipe-0 instruction is even-addressed, a pipe-1

instruction is odd-addressed, and there are no dependencies (operands are

available).

– Code generators use nops to align instructions for dual-issue.

– Use software pipeline loops to improve dual-issue rates.

116 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Chapter 4. Programming models

On any processor, coding optimizations are achieved by exploiting the unique

features of the hardware. In the case of the Cell Broadband Engine, the large

number of SPEs, their large register file, and their ability to hide main-storage

latency with concurrent computation and DMA transfers support many interesting

programming models.

With the computational efficiency of the SPEs, software developers can create

programs that manage dataflow as opposed to leaving dataflow to a compiler or to

later optimizations.

Many of the unique features of the SPE are handled by the compiler, although

programmers looking for the best performance can take advantage of the features

independently of the compiler. It is almost never necessary to program the SPE in

assembly language. C intrinsics provide a convenient way to program the efficient

movement and buffering of data.

“Application partitioning” on page 13 introduced some concepts for application

programming.

This chapter introduces these seven types of programming models:

v Function-Offload Model,

v Device-Extension Model,

v Computation-Acceleration Model,

v Streaming Model,

v Shared-Memory Multiprocessor Model,

v Asymmetric-Thread Runtime Model,

v User-Mode Thread Model.

Function-Offload Model

In the Function-Offload Model, the SPEs are used as accelerators for

performance-critical procedures.

This model is the quickest way to effectively use the Cell Broadband Engine with

an existing application. In this model, the main application runs on the PPE and

calls selected procedures to run on one or more SPEs.

The Function-Offload Model is sometimes called the Remote Procedure Call (RPC)

Model. The model allows a PPE program to call a procedure located on an SPE as

if it were calling a local procedure on the PPE. This provides an easy way for

programmers to use the asynchronous parallelism of the SPEs without having to

understand the low-level workings of the MFC DMA layer.

In this model, you identify which procedures should execute on the PPE and

which should execute on the SPEs. The PPE and SPE source modules must be

compiled separately, by different compilers.

 117

Remote procedure call

The Function Offload or Remote Procedure Call (RPC) Model is implemented

using stubs as proxies.

A method stub , or simply stub , is a small piece of code used to stand in for some

other code. The stub or proxy acts as a local surrogate for the remote procedure,

hiding the details of server communication. The main code on the PPE contains a

stub for each remote procedure on the SPEs. Each procedure on an SPE has a stub

that takes care of running the procedure and communicating with the PPE.

When the program on the PPE calls a remote procedure, it actually calls that

procedure’s stub located on the PPE. The stub code initializes the SPE with the

necessary data and code, packs the procedure’s parameters, and sends a mailbox

message to the SPE to start its stub procedure.

The SPE stub retrieves the parameters and executes the procedure locally on the

SPE. The PPE program then retrieves the output parameters. Figure 27 shows an

example of a program using this method.

Device-Extension Model

The Device Extension Model is a special case of the Function-Offload Model in

which the SPEs act like I/O devices.

SPEs can also act as intelligent front ends to an I/O device. Mailboxes can be used

as command and response FIFOs between the PPE and SPEs.

The SPEs can interact with I/O devices because:

v all I/O devices are memory-mapped, and

v the SPEs DMA transfers support transfer sizes of a single byte.

I/O devices can use an SPE’s signal-notification facility (described in “Signal

notification” on page 59) to tell the SPE when commands complete.

When SPEs are used in the Device-Extension Model, they usually run privileged

software that is part of the operating system. As such, this code is trusted and may

be given access to privileged registers for a physical device. For example, a secure

file system may be treated as a device. The operating system’s device driver can be

written to use the SPE for encryption and decryption and for responding to

disk-controller requests on all file reads and writes to this virtual device.

Figure 27. Example of the Function-Offload (or RPC) Model

118 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Computation-Acceleration Model

The Computation-Acceleration Model is an SPE-centric model that provides a

smaller-grained and more integrated use of SPEs.

The model speeds up applications that use computation-intensive mathematical

functions without requiring significant rewrite of the applications. Most

computation-intensive sections of the application run on SPEs. The PPE acts as a

control and system-service facility.

Multiple SPEs work in parallel. The work is partitioned manually by the

programmer, or automatically by the compilers. The SPEs must efficiently schedule

MFC DMA commands that move instructions and data.

This model either uses shared memory to communicate among SPEs, or it uses a

message-passing model.

Streaming model

In the Streaming Model, each SPE, in either a serial or parallel pipeline, computes

data that streams through.

The PPE acts as a stream controller, and the SPEs act as stream-data processors.

For the SPEs, on-chip load and store bandwidth exceeds off-chip DMA-transfer

bandwidth by an order of magnitude. If each SPE has an equivalent amount of

work, this model can be an efficient way to use the Cell Broadband Engine because

data remains inside the Cell Broadband Engine as long as possible.

The PPE and SPEs support message-passing between the PPE, the processing SPE,

and other SPEs.

Although the SDK does not include a formal streaming language, most of the

programs written for the Cell Broadband Engine are likely to use the streaming

model to some extent. For example, the Euler particle-system simulation (described

in “Example 1: Euler particle-system simulation” on page 96) implements the

streaming model. This particle-system simulation contains a computational kernel

that streams packets of data through the kernel for each step in time.

Shared-Memory Multiprocessor Model

The Cell Broadband Engine can be programmed as a shared-memory

multiprocessor, using two different instruction sets. The SPEs and the PPE fully

interoperate in a cache-coherent Shared-Memory Multiprocessor Model.

All DMA operations in the SPEs are cache-coherent. Shared-memory load

instructions are replaced by DMA operations from shared memory to local store

(LS), followed by a load from LS to the register file. The DMA operations use an

effective address that is common to the PPE and all the SPEs. Shared-memory store

instructions are replaced by a store from the register file to the LS, followed by a

DMA operation from LS to shared memory.

The SPE’s DMA lock-line commands provide the equivalent of the PowerPC

Architecture atomic-update primitives (load with reservation and store

conditional).

Chapter 4. Programming models 119

A compiler or interpreter could manage part of the LS as a local cache for

instructions and data obtained from shared memory.

Asymmetric-Thread Runtime Model

Threads can be scheduled to run on either the PPE or on the SPEs, and threads

interact with one another in the same way they do in a conventional symmetric

multiprocessor. The Asymmetric-Thread Runtime Model extends thread task models

and lightweight task models to include the different instruction sets supported by

the PPE and SPE.

Scheduling policies are applied to the PPE and SPE threads to optimize

performance. Although preemptive task-switching is supported on SPEs for

debugging purposes, there is a runtime performance and resource-allocation cost.

FIFO run-to-completion models, or lightweight cooperatively-yielding models, can

be used for efficient task-scheduling.

A single SPE can run only one thread at a time; it cannot support multiple

simultaneous threads.

The Asymmetric-Thread Runtime Model is flexible and supports all of the other

programming models described in this chapter. Any program that explicitly calls

spe_context_create and spe_context_run is an example of the Asymmetric-Thread

Runtime Model. For an example of envoking SPE threads, see “Creating threads

for the SPEs” on page 38.

This is the fundamental model provided by the SDK’s SPU Runtime Management

Library, and it is identified by user threads (both PPE and SPE) running on the

Cell Broadband Engine’s heterogeneous processing complex.

User-mode thread model

The User-Mode Thread Model refers to one SPE thread managing a set of user-level

functions running in parallel.

The user-level functions are called microthreads (and also user threads and user-level

tasks) . The SPE thread is supported by the operating system. The microthreads are

created and supported by user software; the operating system is not involved.

However, the set of microthreads can run across a set of SPUs.

The SPU application schedules tasks in shared memory, and the tasks are

processed by available SPUs. For example, in game programming, the tasks can

refer to scene objects that need updating. Microthreads can complete at any time,

and new microthreads can be spawned at any time.

One advantage of this programming model is that the microthreads, running on a

set of SPUs under the control of an SPE thread, have predictable overhead. A

single SPE cannot save and restore the MFC commands queues without assistance

from the PPE.

Cell application frameworks

The complexity of implementing many of these programming models is

significantly reduced by using application frameworks.

120 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

One such framework is the Accelerated Library Framework (ALF). This framework

provides a set of functions to help programmers solve data parallel computation

problems on hybrid systems using a single-program-multiple-data (SPMD)

programming style. Features include architecturally independent data transfer

management, parallel task management, multi-buffering, and data partitioning.

For further details about the ALF, refer to the Accelerated Library Framework, User’s

Guide.

SPE overlays

When code does not fit in an SPE’s local store, overlays can be useful.

An overlay is SPU code that is dynamically loaded and executed by a running SPU

program. It cannot be independently loaded or run on an SPE. SPE overlays allow

the programmer to manage SPU code in a modular fashion.

The specific SPU code that is needed at runtime is dynamically loaded.

Additional information on developing code with overlays is provided in the

Software Development Kit, Programmer’s Guide.

Chapter 4. Programming models 121

122 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Chapter 5. The simulator

The IBM Full System Simulator for the Cell Broadband Engine is a generalized

simulator that can be configured to simulate a broad range of full-system

configurations.

The simulator supports full functional simulation , including the:

v PPE

v SPEs

v MFCs

v PPE caches

v bus

v memory controller

It can simulate and capture many levels of operational details on instruction

execution, cache and memory subsystems, interrupt subsystems, communications,

and other important system functions. It also supports some cycle-accurate

simulation (performance or timing simulation).

Figure 28 shows the simulation stack. The simulator is part of the software

development kit (SDK).

If accurate timing and cycle-level simulation are not required, the simulator can be

used in its functional-only mode , running as a debugger to test the functions and

features of a program.

If cycle-level analysis is required, it can be used in performance simulation (or timing

simulation) mode, to get accurate performance analyses.

Figure 28. Simulation stack

 123

Simulator configurations are extensible and can be modified using Tool Command

Language (Tcl) commands to produce the type and level of analysis required.

The simulator itself is a general tool that can be configured for a broad range of

microprocessors and hardware simulations. The SDK, however, provides a

ready-made configuration of the simulator for Cell Broadband Engine system

development and analysis.

Simulator basics

This section provided as overview of IBM Full System Simulator for the Cell

Broadband Engine.

Additional details can be found in the simulator’s documentation installed in

/opt/ibm/systemsim-cell/doc.

Operating-system modes

The simulator has two modes of operation, with regard to operating systems: Linux

mode, and standalone mode.

Linux mode

In Linux mode, after the simulator is configured and loaded, the simulator boots

the Linux operating system on the simulated system.

At runtime, the operating system is simulated along with the running programs.

The simulated operating system takes care of all the system calls, just as it would

in a non-simulation (real) environment.

Standalone mode

In standalone mode, the application is loaded without an operating system.

Standalone applications are user-mode applications that are normally run on an

operating system. On a real system, these applications rely on the operating system

to perform certain tasks, including loading the program, address translation, and

system-call support. In standalone mode, the simulator provides some of this

support, allowing applications to run without having to first boot an operating

system on the simulator.

There are, however, limitations that apply when building an application to be

loaded and run by the simulator without an operating system. Typically, the

operating system provides address-translation support.

v Since an operating system is not present in this mode, the simulator loads

executables without address translation, so that the effective address is the same as

the real address. Therefore, all addresses referenced in the executable must be

valid real addresses.

v If the simulator has been configured with 64 MB of memory, all addresses must

fit in the range of X’0’ to X’3FFFFFF’.

Interacting with the simulator

There are two ways to interact with the simulator. Firstly, by issuing commands to

the simulated system. Secondly, by issuing commands to the simulator.

The simulated system is the Linux environment on top of the simulated Cell

Broadband Engine, where you run and debug programs. You interact with it by

124 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

entering commands at the Linux command prompt, in the console window. The

console window is a Linux shell of the simulated Linux operating system.

You can also control the simulator itself, configuring it to do such tasks as collect

and display performance statistics on particular SPEs, or set breakpoints in code.

These commands are entered at the simulator command line in the simulator

command window, or using the equivalent actions in the graphical user interface

(GUI).

The GUI is a graphical means of interacting with the simulator. The GUI is

described in “Graphical User Interface” on page 126.

Figure 29 shows the simulator windows, and the layers with which they

communicate.

Command-line interface

To start the simulator in command-line mode, enter the following command:

PATH=/opt/ibm/systemsim-cell/bin:$PATH; systemsim.

This command starts the simulator, which initializes the simulation and displays

the prompt:

 systemsim %

The window displaying the simulator prompt is the command window. While

starting the simulation, the simulator creates the console window, which is initially

labeled UART0 in the window’s title bar.

All commands must be entered at the prompt in the command window (that is,

the window in which the simulator was started). Some of the important commands

are shown in Table 34 on page 126.

Figure 29. Simulator structures and screens

Chapter 5. The simulator 125

Table 34. Important Commands for the IBM Full System Simulator for the Cell Broadband

Engine

Simulator Command Meaning

quit Closes the simulation and exits the simulator.

help Displays a list of the available simulator commands.

mysim go Starts or continues the simulation. The first time it is issued,

the simulator boots the Linux operating system on the

simulation.

mysim spu n set model

mode

Sets SPEn into model mode, where n is a value from 0 to 7

and mode is either pipeline or instruction.

mysim spu n display

statistics

Displays to the simulator command window, the performance

analysis statistics collected on SPEn, where n is a value from 0

to 7. Statistics are only collected when the SPE is executing in

pipeline mode.

The simulator prompt is displayed in the command window when the simulation

is stopped, or paused. When the simulation is running, the command window,

instead, displays a copy of the output to the console window and simulation-cycle

information every few seconds, and the prompt is not available.

To stop the simulation and get back the prompt — use the Ctrl-c key sequence.

This will stop the simulation, and the prompt will reappear.

Graphical User Interface

The simulator’s GUI offers a visual display of the state of the simulated system,

including the PPE and the eight SPEs.

You can view the values of the registers, memory, and channels, as well as viewing

performance statistics. The GUI also offers an alternate method of interacting with

the simulator. Figure 30 on page 127 shows the main GUI window that appears

when the GUI is launched.

126 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The main GUI window has two basic areas:

v The vertical panel on the left.

v The rows of buttons on the right.

The vertical panel represents the simulated system and its components. The rows

of buttons are used to control the simulator.

To start the GUI from the Linux run directory, enter:

 PATH=/opt/ibm/systemsin-cell/bin:$PATH; systemsim -g

The simulator will then configure the simulator as a Cell Broadband Engine and

display the main GUI window, labeled with the name of the application program.

When the GUI window first appears, click the Go button to boot the Linux

operating system.

For a detailed description of starting the simulator and running a program see

“Running the program in the simulator” on page 44.

The simulation panel

When the main GUI window first appears, the vertical panel contains a single

folder labeled mysim.

To see the contents of mysim, click on the plus sign (+) in front of the folder icon.

When the folder is expanded, you can see its contents. These include

v a PPE (labelled PPE0:0:0 and PPE0:0:1,

v the two threads of the PPE),

v eight SPEs (SPE0... SPE7).

Figure 30. Main Graphical User Interface for the simulator

Chapter 5. The simulator 127

The folders representing the processors can be further expanded to show the

viewable objects and the options and actions available. Figure 31 shows the vertical

panel with several of the processor folders expanded.

PPE components

There are five PPE components visible in the expanded PPE folder.

The five visible PPE components are:

v PCTrack

v PCCCore

v GPRegs

v FPRegs

v PCAddressing

Double-clicking a folder icon brings up a window displaying the program-state

data. Several of the available windows are shown in the figures provided here.

The general-purpose registers (GPRs) and the floating-point registers (FPRs) can be

viewed separately by double-clicking on the GPRegs and the FPRegs folders

respectively.

Figure 31. Project and processor folders

128 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Figure 32 shows the GPR window, and Figure 33 shows the FPR window. As data

changes in the simulated registers, the data in the windows is updated and

registers that have changed state are highlighted.

The PPE Core window (PPCCore) shows the contents of all the registers of the PPE,

including the Vector/SIMD Multimedia Extension registers. Figure 34 on page 130

shows the PPE Core window.

Figure 32. PPE General-Purpose Registers window

Figure 33. PPE Floating-Point Registers window

Chapter 5. The simulator 129

SPE components

The SPE folders (SPE0 ... SPE7) each have ten sub-items.

Five of the sub-items represent windows that show data in the registers, channels,

and memory:

v SPUTrack

v SPUCore

v SPEChannel

v LS_Stats

v SPUMemory

Two of the sub-items, and , represent windows that show state information on the

MFC:

v MFC

v MFC_XLate

The last three sub-items represent actions to perform on the SPE:

v SPUStats

v Model

v Load-Exec

Several interesting SPE data windows are shown in this section’s figures. Figure 35

on page 131 shows the MFC window, which provides internal MFC state

information. Figure 36 on page 132 shows the MFC_XLate window, which provides

translation structure state information. Figure 37 on page 133 shows the

SPEChannel window, which provides information about the SPE’s channels.

Figure 34. PPE Core window

130 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Figure 35. SPE MFC window

Chapter 5. The simulator 131

Figure 36. SPE MFC Address Translation window

132 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The last three items in an SPE folder represent actions to perform, with respect to

the associated SPE. The first of these is SPUStats. When the system is stopped and

you double-click on this item, the simulator displays program performance

statistics in its own pop-up window.

Figure 38 on page 134 shows an example of a statistics dump. These statistics are

only collected when the Model is set to pipeline mode.

Figure 37. SPE Channels window

Chapter 5. The simulator 133

The next item in the SPE folder is labelled either:

v Model: instruction,

v Model: pipeline, or

v Model: fast.

The label indicates whether the simulation is in:

v instruction mode for checking and debugging the functionality of a program,

v pipeline mode for collecting performance statistics on the program, or

v fast mode for fast functional simulation only.

The model can be toggled by double-clicking the item. The Perf Models button on

the GUI can also be used to display a menu for setting the simulator model modes

of all of the SPEs simultaneously.

Figure 38. SPE statistics

134 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

The last item in the SPE folder, Load-Exec, is used for loading an executable onto

an SPE. When you double-click the item, a file-browsing window is displayed,

allowing you to find and select the executable file to load.

GUI buttons

On the right side of the GUI screen are five rows of buttons. These are used to

manipulate the simulation process.

The five rows of buttons, shown in Figure 30 on page 127, do the following:

v Advance Cycle — Advances the simulation by a set number of cycles. The default

value is 1 cycle, but it can be changed by entering an integer value in the

textbox above the buttons, or by moving the slider next to the textbox. The

drop-down menu at the top of the GUI allows the user to select the time domain

for cycle stepping. The time units to use for cycles are expressed in terms of

various system components. The simulation must be stopped for this button to

work; if the simulation is not stopped, the button is inactive.

v Go — Starts or continues the simulation. In the SDK’s simulator, the first time

the Go button is clicked it initiates the Linux boot process. (In general, the action

of the Go button is determined by the startup tcl file located in the directory

from which the simulator is started.)

v Stop — Pauses the simulation.

v Service GDB — Allows the external gdb debugger to attach to the running

program. This button is also inactive while the simulation is running.

v Triggers/Breakpoints — Displays a window showing the current triggers and

breakpoints.

v Update GUI — Refreshes all of the GUI screens. By default, the GUI screens are

updated automatically every four seconds. Click this button to force an update.

v Debug Controls — Displays a window of the available debug controls and allows

you to select which ones should be active. Once enabled, corresponding

information messages will be displayed. Figure 39 on page 137 shows the Debug

Controls window.

v Options — Displays a window allowing you to select fonts for the GUI display.

On a separate tab, you can enter the gdb debugger port.

v Emitters — Displays a window with the defined emitters, with separate tabs for

writers and readers. Figure 46 on page 148 shows the Emitters window. For more

on emitters, see “Emitters” on page 147.

v Fast Mode — Toggles fast mode on and off. Fast mode accelerates the execution

of the PPE at the expense of disabling certain system-analysis features. It is

useful for quickly advancing the simulation to a point of interest. When fast

mode is on, the button appears depressed; otherwise it appears normal. Fast

mode can also be enabled with the mysim fast on command and disabled with

the mysim fast off command.

v Perf Models — Displays a window in which various performance models can be

selected for the various system simulator components. Provides a convenient

means to set each SPU’s simulation mode to either cycle accurate pipeline mode

or instruction mode or fast functional-only mode. The same capabilities are

available using the Model:instruction, Model:pipeline, Model:fast toggle menu

sub-item under each SPE in the tree menu at the left of the main control panel.

Figure 42 on page 140 shows the SPU Performance Model Modes window.

v SPE Visualization — Plots histograms of SPU and DMA event counts. The counts

are sampled at user defined intervals, and are continuously displayed. Two

modes of display are provided: a “scroll” view, which tracks only the most

Chapter 5. The simulator 135

recent time segment, and a “compress” view, which accumulates samples to

provide an overview of the event counts during the time elapsed. Users can

view collected data in either detail or summary panels.

– The detailed, single-SPE panel tracks SPU pipeline phenomena (such as stalls,

instructions executed by type, and issue events), and DMA transaction counts

by type (gets, puts, atomics, and so forth).

– The summary panel tracks all eight SPEs for the CBE, with each plot showing

a subset of the detailed event count data available.

Figure 40 on page 138 shows the SPE Visualization window.

v Process-Tree and Process-Tree-Stats — This feature requires OS kernel hooks that

allow the simulator to display process information. This feature is currently not

provided in the SDK kernel.

v Track All PCs — Figure 41 on page 139 shows the Track All PCs window.

v SPU Modes — Provides a convenient means to set each SPU’s simulation mode

to either cycle accurate pipeline mode or fast functional-only mode. The same

capabilities are available using the Model:instruction or Model:pipeline toggle

menu sub-item under each SPE in the tree menu at the left of the main control

panel. Figure 42 on page 140 shows the SPU Modes window.

v Event Log — Enables a set of predefined triggers to start collecting the log

information. The window provides a set of buttons that can be used to set the

marker cycle to a point in the process.

v Exit — Exits the simulator and closes the GUI window.

136 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Figure 39. Debug Controls window

Chapter 5. The simulator 137

Figure 40. SPE Visualization window

138 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Figure 41. Track All PCs window

Chapter 5. The simulator 139

Performance monitoring

The simulator provides both functional-only and cycle-accurate simulation modes.

The functional-only mode models the effects of instructions, without accurately

modeling the time required to execute the instructions. In functional-only mode, a

fixed latency is assigned to each instruction; the latency can be arbitrarily altered

by the user. Since latency is fixed, it does not account for processor implementation

and resource conflict effects that cause instruction latencies to vary. Functional-only

mode assumes that memory accesses are synchronous and instantaneous. This

mode is useful for software development and debugging, when a precise measure

of execution time is not required.

The cycle-accurate mode models not only functional accuracy but also timing. It

considers internal execution and timing policies as well as the mechanisms of

system components, such as arbiters, queues, and pipelines. Operations may take

several cycles to complete, accounting for both processing time and resource

constraints.

The cycle-accurate mode allows you to:

v Gather and compare performance statistics on full systems, including the PPE,

SPEs, MFCs, PPE caches, bus, and memory controller.

v Determine precise values for system validation and tuning parameters, such as

cache latency.

v Characterize the system workload.

v Forecast performance at future loads, and fine-tune performance benchmarks for

future validation.

Figure 42. SPU Modes window

140 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

In the cycle-accurate mode, the simulator automatically collects many performance

statistics. Some of the more important SPE statistics are:

v Total cycle count

v Count of branch instructions

v Count of branches taken

v Count of branches not taken

v Count of branch-hint instructions

v Count of branch-hints taken

v Contention for an SPE’s local store

v Stall cycles due to dependencies on various pipelines

Displaying performance statistics

You can collect and display simple performance statistics on a program without

performing any instrumentation of the program code. Collection of more complex

statistics requires program instrumentation.

The following steps demonstrate how to collect and display simple performance

statistics. The example PPE program starts (“spawns”) the same thread on three

SPEs.

v When an SPE thread is spawned, its SPE number (any number between 0 and 7)

is passed in a data structure as a parameter to the main function.

v The SPE program contains a for-loop that is executed zero or more times.

v The number of times it is executed is equal to three times the value passed to its

main function.

The names of the PPE and SPE programs are tpa1 and tpa1_spu, respectively. Part

of the most important sections of the programs are shown in “Example program:

tpa1” on page 146.

The following steps are marked as to whether they are performed in the

simulator’s command window or its console window. To collect and display simple

performance statistics, do the following:

1. Start the simulator. Start the simulator by entering the following command:

 PATH=/opt/ibm/systemsin-cell/bin:$PATH; systemsim

This command starts the simulator in command-line mode, and displays the

simulator prompt.

 systemsim %

2. In the command window, set the SPUs to pipeline mode. An SPU must be in

pipeline mode to collect performance statistics from that SPU. If, instead, the

SPU is in instruction mode, it will only report the total instruction count. Use

the mysim spu command to set those processors to pipeline mode, as follows:

 mysim spu 0 set model pipeline

 mysim spu 1 set model pipeline

 mysim spu 2 set model pipeline

Note: The specific SPU numbers are examples only. The operating system may

assign the SPU programs to execute on a different set of SPUs. You can also use

the SPU Modes button or the folder under each SPE labeled Model to set the

model to pipeline mode.

3. In the command window, boot Linux. Boot the Linux operating system on the

simulated PPE by entering:

Chapter 5. The simulator 141

mysim go

4. In the console window, load the executables. Load the PPE and SPE executables

from the base environment into the simulated environment, and set their file

permissions to executable, as follows:

 callthru source tpa1 > tpa1

 callthru source tpa1_spu > tpa1_spu

 chmod +x tpa1

 chmod +x tpa1_spu

5. In the console window, run the PPE program. Run the PPE program in the

simulation by entering the name of the executable file, as follows:

 tpa1

6. In the command window, pause the simulation and display statistics. When the

program finishes execution, select the simulator control window. Pause the

simulator by entering the Ctrl-c key sequence. To display the performance

statistics for the three SPEs, enter the following commands:

 mysim spu 0 display statistics

 mysim spu 1 display statistics

 mysim spu 2 display statistics

As each command is entered, the simulator displays the performance statistics in

the simulator command window. Figure 43 on page 143 shows a screen image of

the SPE 0 performance statistics.

142 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Although the programs on SPE 0 and SPE 2 are the same, the program on SPE 0

executed the loop zero times, but the program on SPE 2 executed the loop six

times.

You can compare the performance statistics of SPE 0 (Figure 43) with those of

SPE 2, which are shown in Figure 44 on page 144.

Note: The statistics collected in this manner include the SPU cycles required to

load the SPE thread, start the SPE thread, and cleanup the SPE thread upon

SPU DD3.0

Total Cycle count 35185

Total Instruction count 643

Total CPI 54.72

Performance Cycle count 35185

Performance Instruction count 1701 (1502)

Performance CPI 20.68 (23.43)

Branch instructions 135

Branch taken 120

Branch not taken 15

Hint instructions 9

Hint hit 31

Contention at LS between Load/Store and Prefetch 49

Single cycle 1108 (3.1%)

Dual cycle 197 (0.6%)

Nop cycle 137 (0.4%)

Stall due to branch miss 1655 (4.7%)

Stall due to prefetch miss 0 (0.0%)

Stall due to dependency 826 (2.3%)

Stall due to fp resource conflict 0 (0.0%)

Stall due to waiting for hint target 11 (0.0%)

Issue stalls due to pipe hazards 6 (0.0%)

Channel stall cycle 31236 (88.8%)

SPU Initialization cycle 9 (0.0%)

Total cycle 35185 (100.0%)

Stall cycles due to dependency on each pipelines

 FX2 62 (7.5% of all dependency stalls)

 SHUF 322 (39.0% of all dependency stalls)

 FX3 2 (0.2% of all dependency stalls)

 LS 413 (50.0% of all dependency stalls)

 BR 0 (0.0% of all dependency stalls)

 SPR 21 (2.5% of all dependency stalls)

 LNOP 0 (0.0% of all dependency stalls)

 NOP 0 (0.0% of all dependency stalls)

 FXB 0 (0.0% of all dependency stalls)

 FP6 0 (0.0% of all dependency stalls)

 FP7 0 (0.0% of all dependency stalls)

 FPD 6 (0.7% of all dependency stalls)

The number of used registers are 128, the used ratio is 100.00

dumped pipeline stats

Figure 43. tpa1 statistics for SPE 0

Chapter 5. The simulator 143

completion.

SPE performance profile checkpoints

The simulator can automatically capture system-wide performance statistics that

are useful in determining the sources of performance degradation, such as channel

stalls and instruction-scheduling problems.

You can also use SPE performance profile checkpoints to delimit a specific region of

code over which performance statistics are to be gathered.

SPU DD3.0

Total Cycle count 35537

Total Instruction count 643

Total CPI 55.27

Performance Cycle count 35537

Performance Instruction count 1802 (1590)

Performance CPI 19.72 (22.35)

Branch instructions 153

Branch taken 136

Branch not taken 17

Hint instructions 15

Hint hit 37

Contention at LS between Load/Store and Prefetch 49

Single cycle 1170 (3.3%)

Dual cycle 210 (0.6%)

Nop cycle 150 (0.4%)

Stall due to branch miss 1854 (5.2%)

Stall due to prefetch miss 0 (0.0%)

Stall due to dependency 879 (2.5%)

Stall due to fp resource conflict 0 (0.0%)

Stall due to waiting for hint target 23 (0.1%)

Issue stalls due to pipe hazards 6 (0.0%)

Channel stall cycle 31236 (87.9%)

SPU Initialization cycle 9 (0.0%)

Total cycle 35537 (100.0%)

Stall cycles due to dependency on each pipelines

 FX2 86 (9.8% of all dependency stalls)

 SHUF 348 (39.6% of all dependency stalls)

 FX3 2 (0.2% of all dependency stalls)

 LS 413 (47.0% of all dependency stalls)

 BR 3 (0.3% of all dependency stalls)

 SPR 21 (2.4% of all dependency stalls)

 LNOP 0 (0.0% of all dependency stalls)

 NOP 0 (0.0% of all dependency stalls)

 FXB 0 (0.0% of all dependency stalls)

 FP6 0 (0.0% of all dependency stalls)

 FP7 0 (0.0% of all dependency stalls)

 FPD 6 (0.7% of all dependency stalls)

The number of used registers are 128, the used ratio is 100.00

dumped pipeline stats

Figure 44. tpa1 statistics for SPE 2

144 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Performance profile checkpoints (such as prof_clear , prof_start and prof_stop in

the code samples below) can be used to capture higher-level statistics such as the

total number of instructions, the number of instructions other than no-op

instructions, and the total number of cycles executed by the profiled code segment.

The checkpoints are special no-op instructions that indicate to the simulator that

some special action should be performed. No-op instructions are used because they

allow the same program to be executed on real hardware. A SPE header file,

profile.h , provides a convenient function-call-like interface to invoke these

instructions.

In addition to displaying performance information, certain performance profile

checkpoints can control the statistics-gathering functions of the SPU.

For example, profile checkpoints can be used to capture the total cycle count on a

specific SPE. The resulting statistic can then be used to further guide the tuning of

an algorithm or structure of the SPE. The following example illustrates the

profile-checkpoint code that can be added to an SPE program in order to clear,

start, and stop a performance counter:

 #include <profile.h>

 . . .

 prof_clear(); // clear performance counter

 prof_start(); // start recording performance statistics

 ...

 <code_to_be_profiled>

 ...

 prof_stop(); // stop recording performance statistics

When a profile checkpoint is encountered in the code, an instruction is issued to

the simulator, causing the simulator to print data identifying the calling SPE and

the associated timing event. The data is displayed on the simulator control

window in the following format:

SPUn: CPm, xxxxx(yyyyy), zzzzzzz

where:

v n is the number of the SPE on which the profile checkpoint has been issued,

v m is the checkpoint number,

v xxxxx is the instruction counter,

v yyyyy is the instruction count excluding no-ops,

v zzzzzz is the cycle counter.

The following example uses the tpa1_spu program and instruments the loop with

the prof_clear , prof_start and prof_stop profile checkpoints. The relevant code

is shown here.

// file tpa2_spu.c

#include <sim_printf.h>

#include <profile.h>

 ...

 prof_clear();

 prof_start();

 for(i=0; i<spe_num*3; i++)

 sim_printf("SPE#: %lld, Count: %d\n", spe_num, i);

 prof_stop();

Chapter 5. The simulator 145

Figure 45 shows the output produced by the program.

Example program: tpa1

The following example program tpa1 is used in the sections above to show the

basic performance statistics that can be collected and displayed without

instrumentation of the code.

tpa1.c is the source code for the PPE, which spawns three copies of program

tpa1_spu on SPEs 0, 1 and 2. The code in tpa1_spu executes the for-loop a different

number of times in each of the SPEs. For each SPE, the loop is executed three

times the number passed in as the parameter.

// file tpa1.c - error checking removed to improve readability

 ...

 // the value of nr_spus is 3

 for (i = 0; i < nr_spus; i++) {

 spe_context_ptr_t spe;

 spe_program_handle_t *tpa1_spu;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 union {

 void *ptr;

 unsigned int spe_num;

 } t_info;

 spe = spe_context_create(0, NULL);

 tpa1_spu = spe_image_open("tpa1_spu")

 (void)spe_program_load(spe, &tpa1_spu);

 printf("Spawning thread: %d\n", i);

 t_tinfo.spe_num = i;

 (void)spe_context_run(spe, &entry, 0, t_info.ptr, NULL, NULL);

 (void)spe_context_detroy(spe);

 }

 // file tpa1_spu.c

 main(unsigned long long id, unsigned long long spe_num)

 {

 int i;

 for(i=0; i<spe_num*3; i++)

 sim_printf("SPE#: %lld, Count: %d\n", spe_num, i);

 }

SPU2: CP0, 863(740), 17800

clear performance info.

SPU2: CP30, 0(0), 1

start recording performance info.

SPE#: 25296904, Count: 0

SPE#: 25296904, Count: 1

SPE#: 25296904, Count: 2

SPE#: 25296904, Count: 3

SPE#: 25296904, Count: 4

SPE#: 25296904, Count: 5

SPU2: CP31, 118(103), 400

stop recording performance info.

Figure 45. Profile checkpoint output for SPE 2

146 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Emitters

In addition to the basic cycle-count and summary statistics provided by its profile

checkpoints and triggers, the simulator also supports a user-extensible

event-analysis system, called emitters.

The emitters, selected on the GUI screen (Figure 30 on page 127), de-couple

performance event-collection from performance analysis tools. The emitter

event-analysis system has two primary functions:

v Event Data Production — During simulation, the simulator can identify a wide

variety of architectural and programmatic events that influence system and

software performance. Using configuration commands, you can request the

simulator to emit records for a specific set of events into a circular, shared

memory buffer. Reader programs attach to the shared memory buffer to

consume these event records. Examples of emitter events include instruction

execution, memory-reference addresses, and cache hits and misses.

v Event Processing — There are one or more readers that analyze event records

from this buffer. The readers typically compute performance measurements and

statistics, visualize system and application behavior, and capture traces for

post-processing. The simulator is prepackaged with a set of prebuilt sample

emitter readers, and users can develop and customize their own emitter readers.

Figure 46 on page 148 shows the emitter selections available by clicking the

Emitters button on the GUI screen.

Figure 47 on page 148 shows the emitter architecture. Emitters can be used in any

simulator mode. The writer toggle buttons in the GUI are used to enable or disable

production of the associated event to the circular buffer. An emitter reader

program is needed to receive the events from the circular buffer using the emitter

reader API.

The emitter framework is meant for programmers who wish to conduct

performance analyses or capture traces by developing custom reader programs.

Chapter 5. The simulator 147

The types of events that can be tracked are described in:

 /opt/ibm/systemsim-cell/include/emitter/emitter_data_t.h

The categories of events are:

Figure 46. Emitters

Figure 47. Emitter architecture

148 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

v Begin/end markers (Header, Footer)

v PPU and SPU instructions

v Cache hits or misses

v Process/thread state (create, resume, kill, and so forth)

v Translation Lookaside Buffer (TLB), Segment Lookaside Buffer (SLB),

Effective-to-Real Address Translation (ERAT) operations

v Device operations (disk)

v Annotations

v Transactions

SPU performance and semantics

The simulator collects several statistics related to SPU performance.

Table 35 lists the performance statistics that are available in the public SDK.

 Table 35. Simulator Performance Statistics for the SPU

Statistic Name Meaning

performance_inst_count Instruction count (profile checkpoint sensitive),

including and not including no-ops.

performance_cycle_count Cycle count (profile checkpoint sensitive).

branch_taken Count of branch instructions taken.

branch_not_taken Count of branch instructions not taken.

hint_instructions Count of branch hint instructions.

hint_instruction_hits Number of times a hint instruction predicted

correctly.

ls_contention Number of cycles in which local store load/store

instructions prevented prefetch.

sbi_contention Number of cycles in which the Synergistic Bus

Interface (SBI) DMA operations prevented SPU

local store access.

single_cycle Number of cycles in which only one pipeline

executed an instruction.

dual_cycle Number of cycles in which both pipelines

executed an instruction.

sp_issue_block Number of cycles in which dual-issue was

prevented, due to an SP-class instruction not

being available to issue.

dp_issue_block Number of cycles in which dual-issue was

prevented, due to a DP-class instruction not being

available to issue.

cross_issue_cycle Number of cycles in which issue pipe{0,1} sent an

instruction to the opposite issue pipe{1, 0}.

nop_inst_count Number of NOP instructions executed (NOP,

LNOP, HBR, and HBC).

src0_dep_cycle Number of cycles in which dual-issue was

prevented, due to operand dependencies between

the two instructions that were ready to issue

simultaneously.

Chapter 5. The simulator 149

Table 35. Simulator Performance Statistics for the SPU (continued)

Statistic Name Meaning

nop_cycle Number of cycles in which a NOP was executed

in either pipeline.

branch_stall_cycles Number of cycles stalled due to branch miss.

prefetch_miss_stall_cycles Number of cycles instruction issue stalled due to

prefetch miss.

pipe_dep_stall_cycles Number of cycles instruction issue stalled, due to

source operand dependencies on target operands

in any execution pipeline.

pipe_busy_cycles Number of cycles all execution pipelines were

expected to be busy processing in-flight

instructions (unaffected by flush).

fp_resource_conflict_stall_cycles Number of cycles stalled due to floating-point

unit resource conflict.

hint_stall_cycles Number of cycles stalled due to waiting for hint

target.

siss_stall_cycles Number of cycles stalled due to structural

execution pipe dependencies.

channel_stall_cycles Number of cycles stalled waiting for a channel

operation to complete.

XXX_inst_count (see below) Number of XXX instructions executed.

XXX_dep_stall_cycles (see below) Number of cycles stalled due to a source operand

dependency on a target operand of an in-flight

instruction in the XXX execution pipeline.

XXX_iss_stall_cycles (see below) Number of cycles stalled due to a structural

dependency on an XXX class instruction.

XXX_busy_cycle (see below) Total cycles the XXX execution pipeline was

expected to be busy processing in-flight

instructions (unaffected by flush).

Where XXX (above) is one of:

FX2 SPX fixed-point unit (fixed [FX] class) instructions.

SHUF SFS shuffle and quad-rotate fixed-point unit

(shuffle [SH] class) instructions.

FX3 SFX 4-cycle fixed-point unit (word rotate and shift

[WS] class) instructions.

LS SLS load and store unit (load and store [LS] class)

instructions.

BR SCN branch and control unit and sequencer

(branch resolution [BR] class) instructions.

SPR SSC Channel and DMA unit (channel interface

[CH] class) instructions.

LNOP Odd pipeline (load no operation [LNOP] class)

no-ops.

NOP Even pipeline (NOP class) no-ops.

FXB SFP byte operations (byte operations [BO] class)

instructions.

FP6 SFP FPU single-precision (single-precision

floating-point [SP] class) instructions.

150 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Table 35. Simulator Performance Statistics for the SPU (continued)

Statistic Name Meaning

FP7 SFP integer (floating-point integer [FI] class)

instructions.

FPD SFP FPU double-precision (double-precision

floating-point [DP] class) instructions.

Chapter 5. The simulator 151

152 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

 153

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

154 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Edition notices

© Copyright International Business Machines Corporation, Sony Computer

Entertainment Incorporated, Toshiba Corporation 2006, 2007. All rights reserved.

U.S. Government Users Restricted Rights — Use, duplication, or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

Notices 155

156 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

BladeCenter

IBM

The IBM logo

ibm.com

POWER

Power PC

PowerPC

PowerPC Architecture

 Cell Broadband Engine and Cell/B.E.™ are trademarks of Sony Computer

Entertainment, Inc., in the United States, other countries, or both and is used under

license therefrom

Intel®, Intel Inside® (logos), MMX, and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Microsoft®, Windows®, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

Linux® is a trademark of Linus Torvalds in the United States, other countries, or

both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United

States and other countries.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Other company, product, or service names may be trademarks or service marks of

others.

 157

158 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Glossary

ABI

Application Binary Interface. This is the standard

that a program follows to ensure that code

generated by different compilers (and perhaps

linking with various, third-party libraries) will

run correctly on the Cell Broadband Engine. The

ABI defines data types, register use, calling

conventions, object formats.

AOS

Array of structures. A method of organizing

related data values. Also called vector-across

form. See also SOA.

API

Application Program Interface.

ATO

Atomic Unit. Part of an SPE’s MFC. It is used to

synchronize with other processor units.

atomic access

A bus access that attempts to be part of an atomic

operation.

atomic operation

A set of operations, such as read-write, that are

performed as an uninterrupted unit.

BIC

Bus Interface Controller. Part of the Cell

Broadband Engine Interface (BEI) to I/O.

BIF

Cell Broadband Engine Interface. The EIB’s

internal communication protocol. It supports

coherent interconnection to other Cell Broadband

Engines and BIF-compliant I/O devices, such as

memory subsystems, switches, and bridge chips.

See also IOIF.

BIU

Bus Interface Unit. Part of the PPE’s interface to

the EIB.

branch hint

A type of branch instruction that provides a hint

of the address of the branch instruction and the

address of the target instruction. Hints are coded

by the programmer or inserted by the compiler.

The branch is assumed taken to the target. Hints

are used in place of branch prediction in the SPU.

built-ins

A type of C and C++ programming language

intrinsic that “built in” to the compiler.

B

Byte.

cache

High-speed memory close to a processor. A cache

usually contains recently-accessed data or

instructions, but certain cache-control instructions

can lock, evict, or otherwise modify the caching

of data or instructions.

caching-inhibited

A memory update policy in which the cache is

bypassed, and the load or store is performed to or

from main memory.

CBEA

Cell Broadband Engine Architecture. The Cell

Broadband Engine is one implementation of the

Cell Broadband Engine Architecture.

 159

Cell Broadband Engine Linux

task

A task running on the PPE and SPE. Each such

task has one or more Linux threads and some

number of SPE threads. All the Linux threads

within the task share the task’s resources,

including access to the SPE threads.

Cell Broadband Engine program

A PPE program with one or more embedded SPE

programs.

channel

Channels are unidirectional, function-specific

registers or queues. They are the primary means

of communication between an SPE’s SPU and its

MFC, which in turn mediates communication

with the PPE, other SPEs, and other devices.

These other devices use MMIO registers in the

destination SPE to transfer information on the

channel interface of that destination SPE.

Specific channels have read or write properties,

and blocking or nonblocking properties. Software

on the SPU uses channel commands to enqueue

DMA commands, query DMA and processor

status, perform MFC synchronization, access

auxiliary resources such as the decrementer

(timer), and perform interprocessor-
communication via mailboxes and

signal-notification.

CL

The class-ID parameter in an MFC command.

coherence

Memory and cache coherence. The correct

ordering of stores to a memory address, and the

enforcement of any required cache write-backs

during accesses to that memory address. Cache

coherence is implemented by a hardware snoop

(or inquire) method, which compares the memory

addresses of a load request with all cached copies

of the data at that address. If a cache contains a

modified copy of the requested data, the modified

data is written back to memory before the

pending load request is serviced.

control plane

Software or hardware that manages the operation

of data-plane software or hardware, by allocating

resources, updating tables, handling errors, and

so forth. See also data-plane.

cycle

Unless otherwise specified, one tick of the PPE

clock.

data plane

Software or hardware that operates on a stream

or other large body of data and is managed by

control-plane software or hardware. See also

control-plane.

decrementer

A register that counts down each time an event

occurs. Each SPU contains dedicated 32-bit

decrementers for scheduling or performance

monitoring, by the program or by the SPU itself.

D-ERAT

Data ERAT.

DMA

Direct Memory Access. A technique for using a

special-purpose controller to generate the source

and destination addresses for a memory or I/O

transfer.

DMAC

Direct Memory Access Controller. A controller

that performs DMA transfers.

DMA command

A type of MFC command that transfers or

controls the transfer of a memory location

containing data or instructions. See also MFC

command.

DMA list

A sequence of transfer elements (or list entries)

that, together with an initiating DMA-list

command, specifies a sequence of DMA transfers

between a single area of LS and discontinuous

160 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

areas in main storage. Such lists are stored in an

SPE’s LS, and the sequence of transfers is initiated

with a DMA-list command such as getl or putl.

DMA-list commands can only be issued by

programs running on an SPE, but the PPE or

other devices can create and store the lists in an

SPE’s LS. DMA lists can be used to implement

scatter-gather functions between main storage and

the LS.

DMA-list command

A type of MFC command that initiates a sequence

of DMA transfers specified by a DMA list stored

in an SPE’s LS. See also DMA list.

DMA queue

A set of two queues for holding DMA-transfer

commands. The SPE’s queue has 16 entries. The

PPE’s queue has four entries (two plus an

additional two for the L2 cache) for

SPE-requested DMA commands, and eight entries

for PPE-requested DMA commands.

dual-issue

Issuing two instructions at once, under certain

conditions. See also fetch group.

EA

Effective address.

ECC

Error-Correcting Code.

effective address

An address generated or used by a program to

reference memory. A memory-management unit

translates an effective address (EA) to a virtual

address (VA), which it then translates to a real

address (RA) that accesses real (physical) memory.

The maximum size of the effective-address space

is 2⁶⁴ bytes.

EIB

Element Interconnect Bus. The on-chip coherent

bus that handles communication between the

PPE, SPEs, memory, and I/O devices (or a second

Cell Broadband Engine). The EIB is organized as

four unidirectional data rings (two clockwise and

two counterclockwise).

ELF

Executable and Linking Format. The standard

object format for many UNIX operating systems,

including Linux. Originally defined by AT&T and

placed in public domain. Compilers generate ELF

files. Linkers link to files with ELF files in

libraries. Systems run ELF files.

ERAT

Effective-to-Real Address Translation, or a buffer

or table that contains such translations, or a table

entry that contains such a translation.

even pipeline

Part of an SPE’s dual-issue execution pipeline.

Also referred to as pipeline 0.

exception

An error, unusual condition, or external signal

that may alter a status bit and will cause a

corresponding interrupt, if the interrupt is

enabled. See also interrupt.

fence

An option for a barrier ordering command that

causes the processor to wait for completion of all

MFC commands before starting any commands

queued after the fence command. It does not

apply to these immediate commands: getllar,

putllc, and putlluc.

fetch group

A doubleword-aligned instruction pair. Dual-issue

occurs when a fetch group has two instructions

that are ready to issue, and when the first

instruction can be issued on the even pipeline and

the second instruction can be issued on the odd

pipeline.

Glossary 161

FIFO

First In First Out. Refers to one way elements in a

queue are processed. It is analogous to “people

standing in line.”

flat register

An architecture with only one register file, in

which all types of operands are stored. Also

called a unified register file. By contrast,

conventional register architectures have separate

sets of special-purpose registers for such things as

scalar operands, floating-point operands, vectors,

branch-and-link values, conditions, and so forth.

The SPEs have a flat register architecture. The

PPE has a conventional register architecture.

FlexIO

Rambus FlexIO bus, a high performance I/O bus.

FPU

Floating-point unit.

FXU

In the PPE, the fixed-point integer unit. In the

SPU, the fixed-point exception unit.

gdb

GNU debugger. A modified version of gdb,

ppu-gdb, starts a Cell Broadband Engine

program. The PPE component runs first and uses

system calls, hidden by the SPU programming

library, to move the SPU component of the Cell

Broadband Engine program into the local store of

the SPU and start it running.

generic intrinsics

C and C++ language extensions that map to one

or more specific intrinsics. (See also intrinsic.) All

generic SPU intrinsics are prefaced by the string

spu_. For example, the generic intrinsic that

implements the stop assembly instruction is

named spu_stop.

guarded

Prevented from responding to speculative loads

and instruction fetches. The operating system

typically implements guarding, for example, on

all I/O devices.

hypervisor

A control (or virtualization) layer between

hardware and the operating system. It allocates

resources, reserves resources, and protects

resources among (for example) sets of SPEs that

may be running under different operating

systems.

The Cell Broadband Engine has three operating

modes: user, supervisor and hypervisor. The

hypervisor performs a meta-supervisor role that

allows multiple independent supervisors’

software to run on the same hardware platform.

For example, the hypervisor allows both a

real-time operating system and a traditional

operating system to run on a single PPE. The PPE

can then operate a subset of the SPEs in the Cell

Broadband Engine with the real-time operating

system, while the other SPEs run under the

traditional operating system.

IEEE 754

The IEEE 754 floating-point standard. A standard

written by the Institute of Electrical and

Electronics Engineers that defines operations and

representations of binary floating-point arithmetic.

I-ERAT

Instruction ERAT.

imprecise exception

A synchronous exception that does not adhere to

the precise exception model. In the Cell

Broadband Engine, single-precision floating-point

operations generate imprecise exceptions. See also

precise exception.

instruction latency

The total number of clock cycles necessary to

execute an instruction and produce the results of

that instruction.

162 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

in-order

In program order. The PPE and SPEs execute

instructions in-order; that is, they do not

rearrange them (out-of-order).

interrupt

A change in machine state in response to an

exception. See also exception.

intrinsic

A C-language command, in the form of a function

call, that is a convenient substitute for one or

more inline assembly-language instructions.

Intrinsics make the underlying ISA accessible

from the C and C++ programming languages.

IOC

I/O Interface Controller.

I/O device

Input/output device. From software’s viewpoint,

I/O devices exist as memory-mapped registers

that are accessed in main-storage space by

load/store instructions. The operating system

typically configures access to I/O devices as

caching-inhibited and guarded.

IOIF

Cell Broadband Engine I/O Interface. The EIB’s

noncoherent protocol for interconnection to I/O

devices. See also BIF.

JSRE

Joint Software Reference Environment. An

organization of the Cell Broadband Engine

developers pursuing the development of reference

software and standards for the Cell Broadband

Engine.

JTAG

Joint Test Action Group. A test-access port defined

by the IEEE 1149 standard.

KB

Kilobyte.

L1

Level-1 cache memory. The closest cache to a

processor, measured in access time.

L2

Level-2 cache memory. The second-closest cache

to a processor, measured in access time. An L2

cache is typically larger than an L1 cache.

LA

An LS address of a DMA list. It is used as a

parameter in an MFC command.

latency

The time between when a function (or

instruction) is called and when it returns.

Programmers often optimize code so that

functions return as quickly as possible; this is

referred to as the low-latency approach to

optimization. Low-latency designs often leave the

processor data-starved, and performance can

suffer.

libspe.a

An SPU-thread runtime management library.

lnop

A NOP in an SPU’s odd pipeline. It can be

inserted in code to align for dual issue of

subsequent instructions.

local store

The 256-KB local store (LS) associated with each

SPE. It holds both instructions and data.

loop unrolling

A programming optimization that increases the

step of a loop, and duplicates the expressions

within a loop to reflect the increase in the step.

This can improve instruction scheduling and

memory access time.

LS

See local store.

Glossary 163

LSA

Local Store Address. An address in the LS of an

SPU, by which programs running in the SPU and

DMA transfers managed by the MFC access the

LS.

list element

See transfer element and DMA list.

Linux thread

A thread running on the PPE in the Linux

operating-system environment.

mailbox

A queue in an SPE’s MFC for exchanging 32-bit

messages between the SPE and the PPE or other

devices. Two mailboxes (the SPU Write Outbound

Mailbox and SPU Write Outbound Interrupt

Mailbox) are provided for sending messages from

the SPE. One mailbox (the SPU Read Inbound

Mailbox) is provided for sending messages to the

SPE.

main memory

See main storage.

main storage

The effective-address (EA) space. It consists

physically of real memory (whatever is external to

the memory-interface controller, including both

volatile and nonvolatile memory), SPU LSs,

memory-mapped registers and arrays,

memory-mapped I/O devices (all I/O is

memory-mapped), and pages of virtual memory

that reside on disk. It does not include caches or

execution-unit register files. See also local store.

makefile

A descriptive file used by the make command in

which the user specifies: (a) target program or

library, (b) rules about how the target is to be

built, (c) dependencies which, if updated, require

that the target be rebuilt.

MB

Megabyte.

memory channel

An interface to external memory chips. The Cell

Broadband Engine supports two Rambus Extreme

Data Rate (XDR) memory channels.

memory-mapped

Mapped into the Cell Broadband Engine’s

addressable-memory space. Registers, SPE local

stores (LSs), I/O devices, and other readable or

writable storage can be memory-mapped.

Privileged software does the mapping.

method stub

A small piece of code used to stand in for some

other code.

MFC

Memory Flow Controller. It is part of an SPE and

provides two main functions: moves data via

DMA between the SPE’s local store (LS) and main

storage, and synchronizes the SPU with the rest

of the processing units in the system.

MFC proxy commands

MFC commands issued using the MMIO

interface.

MIC

Memory Interface Controller. The Cell Broadband

Engine’s MIC supports two memory channels.

MMIO

Memory-Mapped Input/Output. See also

memory-mapped.

MMU

Memory Management Unit. A functional unit that

translates between effective addresses (EAs) used

by programs and real addresses (RAs) used by

physical memory. The MMU also provides

protection mechanisms and other functions.

M:N thread model

A programming model in which M threads are

distributed over N processor elements.

164 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

MPI

Message Passing Interface.

MSR

Machine State Register.

MT

Multithreading. See multithreading.

multithreading

Simultaneous execution of more than one

program thread. It is implemented by sharing one

software process and set of execution resources

but duplicating the architectural state (registers,

program counter, flags, and so forth) of each

thread.

NaN

Not-a-Number. A special string of bits encoded

according to the IEEE 754 Floating-Point

Standard. A NaN is the proper result for certain

arithmetic operations; for example, 0/0 = NaN.

There are two types of NaNs, quiet NaNs and

signaling NaNs. Only the signaling NaN raises a

floating-point exception when it is generated.

NCU

Non-Cacheable Unit.

odd pipeline

Part of an SPE’s dual-issue execution pipeline.

Also referred to as pipeline 1.

OpenMP

An API that supports multiplatform,

shared-memory parallel programming.

overlay

SPU code that is dynamically loaded and

executed by a running SPU program.

page table

A table that maps virtual addresses (VAs) to real

addresses (RA) and contains related protection

parameters and other information about memory

locations.

PC

Personal Computer.

performance simulation

Simulation by the IBM Full System Simulator for

the Cell Broadband Engine in which both the

functional behavior of operations and the time

required to perform the operations is simulated.

Also called cycle-accurate simulation.

pervasive logic

Logic that provides power management, thermal

management, clock control, software-performance

monitoring, trace analysis, and so forth.

pipelining

A technique that breaks operations, such as

instruction processing or bus transactions, into

smaller stages so that a subsequent stage in the

pipeline can begin before the previous stage has

completed.

PMD

Power Management and Debug.

POSIX

Portable Operating System Interface.

PowerPC 970

A 64-bit microprocessor from IBM in the PowerPC

family. It supports both the PowerPC and

Vector/SIMD Multimedia Extension instruction

sets.

PowerPC Architecture

A computer architecture that is based on the third

generation of RISC processors. The PowerPC

architecture was developed jointly by Apple,

Motorola, and IBM.

Glossary 165

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell Broadband Engine.

PPSS

PowerPC Processor Storage Subsystem. Part of

the PPE. It operates at half the frequency of the

PPU and includes an L2 cache and Bus Interface

Unit (BIU).

PPU

PowerPC Processor Unit. The part of the PPE that

includes the execution units, memory-
management unit, and L1 cache.

precise exception

An exception for which the pipeline can be

stopped, so instructions that preceded the faulting

instruction can complete, and subsequent

instructions can be flushed and redispatched after

exception handling has completed.

preferred slot

The left-most word (bytes 0, 1, 2, and 3) of a

128-bit register in an SPE. The SIMD element in

which scalar values are naturally maintained.

privileged mode

Also known as supervisor mode. The permission

level of operating system instructions. The

instructions are described in PowerPC Architecture,

Book III and are required of software that accesses

system-critical resources.

problem state

The permission level of user instructions. The

instructions are described in PowerPC Architecture,

Books I and II and are required of software that

implements application programs.

PTE

Page Table Entry. See page table.

QoS

Quality of Service. It usually relates to a

guarantee of minimum bandwidth for streaming

applications.

RA

Real Address. See real address.

real address

An address for physical storage, which includes

physical memory, the PPE’s L1 and L2 caches,

and the SPE’s local stores (LSs) if the operating

system has mapped the LSs to the real-address

space. The maximum size of the real-address

space is 2⁴² bytes.

scalar

An instruction operand characterized by a single

value.

scarf hint

A performance hint for DMA put operations. The

hint is intended to allow another processor or

device, such as the PPE, to capture the data into

its cache as the data is transferred to storage.

SCN

SPU Control Unit. A unit in the SPU that handles

branches and program control.

SDK

Software Development Kit. Sample software for

the Cell Broadband Engine that includes the

Linux operating system.

semi-pipelined

A processor is semi-pipelined if it fetches the next

instruction while decoding and executing the

current instruction.

SFP

SPU Floating-Point Unit. It handles

single-precision and double-precision

floating-point operations.

166 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

SFS

SPU Odd Fixed-Point Unit. It handles shuffle

operations.

SFX

SPU Even Fixed-Point Unit. It handles arithmetic,

logical, and shift operations.

signal

Information sent on a signal-notification channel.

These channels are inbound (to an SPE) registers.

They can be used by the PPE or other processor

to send information to an SPE. Each SPE has two

32-bit signal-notification registers, each of which

has a corresponding memory-mapped I/O

(MMIO) register into which the signal-notification

data is written by the sending processor. Unlike

mailboxes, they can be configured for either

one-to-one or many-to-one signalling.

These signals are unrelated to UNIX signals. See

also channel and mailbox.

signal notification

See signal.

SIMD

Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple

data elements that make up a vector data-type.

Also known as vector processing. This style of

programming implements data-level parallelism.

SIMDize

Transform scaler code to vector code.

single-ported

Single-ported memory allows only one access at a

time.

SLB

Segment Lookaside Buffer. It is used to map an

effective address (EA) to a virtual address (VA).

SLS

SPU Load and Store Unit. It handles loads, stores,

and branch hints, and it includes the SPE’s local

store (LS).

SMM

Synergistic Memory Management Unit. It

translates EAs to RAs in an SPU.

snoop

To compare an address on a bus with a tag in a

cache, in order to detect operations that violate

memory coherency. Also called inquire.

SOA

Structure of arrays. A method of organizing

related data values. Also called parallel-array

form. See also AOS.

SPE

Synergistic Processor Element. It includes an SPU,

an MFC, and an LS.

specific intrinsic

A type of C and C++ language extension that

maps one-to-one with a single SPU assembly

instruction. All SPU specific intrinsics are named

by prefacing the SPU assembly instruction with

si_.

SPE thread

(a) A thread running on an SPE. Each such thread

has its own 128 x 128-bit register file, program

counter, and MFC Command Queues, and it can

communicate with other execution units (or with

effective-address memory through the MFC

channel interface). (b) A thread scheduled and run

on an SPE. A program has one or more SPE

threads. Each thread has its own SPU local store

(LS), register file, program counter, and MFC

command queues.

SPI

Serial Peripheral Interface. Connects to pervasive

logic elements.

Glossary 167

splat

To replicate, as when a single scalar value is

replicated across all elements of an SIMD vector.

SPR

Special-Purpose Register.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

SPU ISA

SPU Instruction Set Architecture. An SIMD

instruction set executed in SPEs that is similar to

the Vector/SIMD Multimedia Extension

instruction set executed by the PPE.

spulet

A standalone SPU program that is managed by a

PPE executive.

SSC

SPU Channel and DMA Unit. It handles all input

and output functions for an SPU.

SSE

Single SIMD Extensions. An Intel instruction set.

sticky bit

A bit that is set by hardware and remains set

until cleared by software.

stub

See method stub.

supervisor mode

See privileged mode.

software-managed memory

An SPE’s local store (LS), which is filled from

main memory using software-initiated DMA

transfers. Although most processors reduce

latency to memory by using caches, an SPE uses

its DMA-filled LS. This approach provides a high

degree of control for real-time programming.

However, this approach is advantageous only if

the DMA transfer-size is sufficiently large and the

DMA command is issued well before the data is

needed, because the latency and instruction

overhead associated with DMA transfers exceeds

the latency of servicing a cache miss.

synchronization

The order in which storage accesses are

performed.

system storage

All program-addressable memory in a system,

including main storage (main memory), the PPE’s

L1 and L2 caches, and the SPE’s local store (LS).

tag group

A group of DMA commands. Each DMA

command is tagged with a 5-bit tag group

identifier. Software can use this identifier to check

or wait on the completion of all queued

commands in one or more tag groups. All DMA

commands except getllar, putllc, and putlluc are

associated with a Tag Group.

Tcl

Tool Command Language. An interpreted script

language used to develop GUIs, application

prototypes, Common Gateway Interface (CGI)

scripts, and other scripts.

TG

A tag-group ID parameter in an MFC command.

thread

A sequence of instructions executed within the

global context (shared memory space and other

global resources) of a process that has created

(spawned) the thread. Multiple threads (including

multiple instances of the same sequence of

instructions) can run simultaneously, if each

thread has its own architectural state (registers,

program counter, flags, and other program-visible

state).

Each SPE can support only a single thread at any

one time. The multiple SPEs can simultaneously

support multiple threads. The PPE supports two

168 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

threads at any one time, without the need for

software to create the threads. The PPE does this

by duplicating architectural state.

throughput

The number of instructions completed per cycle.

A high-throughput application design seeks to

keep pipelines full. To improve throughput,

functions may need to do nontrivial amounts of

work and operate with good locality of data

reference.

TKM

Token Management Unit. Part of the Element

Interconnect Bus (EIB) that software can program

to regulate the rate at which particular devices are

allowed to make EIB command requests.

TLB

Translation Lookaside Buffer. An on-chip cache

that translates virtual addresses (VAs) to real

addresses (RAs). A TLB caches page-table entries

for the most recently accessed pages, thereby

eliminating the necessity to access the page table

from memory during load/store operations.

transfer element

See DMA list.

TS

The transfer-size parameter in an MFC command.

unified register file

A register file in which all data types—integer,

single-precision and double- floating-point,

logicals, bytes, and others—use the same register

file. The SPEs (but not the PPE) have unified

register files.

user mode

The mode in which problem state software runs.

See also problem state.

VA

Virtual Address.

vector

An instruction operand containing a set of data

elements packed into a one-dimensional array.

The elements can be fixed-point or floating-point

values. Most Vector/SIMD Multimedia Extension

and SPU SIMD instructions operate on vector

operands. Vectors are also called SIMD operands or

packed operands.

Vector/SIMD

The SIMD instruction set of the PowerPC

Architecture, supported on the PPE.

virtual address

An address to the virtual-memory space, which is

much larger than the physical address space and

includes pages stored on disk. It is translated

from an effective address (EA) by a segmentation

mechanism and used by the paging mechanism to

obtain the real address (RA). The maximum size

of the virtual-address space is 2⁶⁵ bytes.

virtual memory

The address space created using the memory

management facilities of a processor.

virtual mode

The mode in which virtual-address translation is

enabled.

VPN

Virtual Page Number. The number of the page in

virtual memory.

VXU

Vector/SIMD Multimedia Extension unit.

word

Four bytes.

workload

A set of code samples in the SDK that

characterizes the performance of the architecture,

algorithms, libraries, tools, and compilers.

Glossary 169

writeback flag

A flag written by an SPE to main storage that

notifies the PPE of a specific event.

XDR

Rambus XDR DRAM memory technology.

XIO

A Rambus XDR Extreme Data Rate I/O (XIO)

memory channel.

xlc

The IBM optimizing C compiler.

170 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Index

Special characters
__builtin_expect 75

_align_hint directive 75

A
ABI (Application Binary Interface) 65,

83

Accelerated Library Framework 121

addressing modes 22, 25

aligned attribute 75

AOS (array of structures) 62, 98

Application Binary Interface (ABI) 65,

83

architecture of the PPE 6

array of structures (AOS) 62, 98

array-summing example 34

asymmetric-thread runtime model 120

auto-vectorizing compiler 88

B
barrier commands 86

barriers and fences 79

basic blocks 89

BHT (branch history table) 91

big-endian byte and bit ordering 9

big-endian ordering 60

blocking channel 57

branch hints 89, 91

branch history table (BHT) 91

branch mispredicts 91

branch target instruction cache

(BTIC) 91

BTIC (branch target instruction

cache) 91

built-Ins 66

byte ordering 9

C
C/C++ language extensions 25

CBEA (Cell Broadband Engine

Architecture) 1

Cell Application Frameworks 121

Cell Broadband Engine Architecture

(CBEA) 1, 4, 19

Cell Broadband Engine Architecture,

overview 1

Cell Broadband Engine Linux task 12

Cell Broadband Engine program,

performance optimization 106

channel domains 35

checkpoints 144

clamping 25

command-line interface 125

command-line mode 141

commands, DMA 76

commands, synchronization 76

compatibility with existing PowerPC

code 23

compiler directives 75

composite intrinsics 66

computation-acceleration model 119

condition register (CR) 19

console window 124

control plane 4, 24

count register (CTR) 19

CR (condition register) 19

CTR (count register) 19

cycle-accurate simulation 123, 140

D
data plane 3, 4, 24

data types 28

debugging 48

decrementer (timer) 54

denormals 51

dependencies 109

device-extension model 118

Direct Memory Access Controller

(DMAC) 54

directives 75

directory structure 41

DMA command, tag groups 79

DMA commands 37, 76

DMA commands, get 76

DMA commands, put 76

DMA list, creating 85

DMA transfers 35, 49, 80, 109

DMA-list transfers 85

DMA-list transfers, programming

example 85

DMAC (Direct Memory Access

Controller) 54

double buffering 86

double buffering (programming

example) 86

dual-issue 53

dynamic branch prediction 91

dynamic timing analysis 108

dynamic timing analysis, on the IBM Full

System Simulator 113

E
EA (effective address) 19, 22, 35, 65, 83,

124

ECC (error-correcting code) 53

Eclipse IDE 41

effective address (EA) 19, 22, 35, 65, 83,

124

Effective-to-Real Address

Translation 147

Element Interconnect Bus (EIB) 4, 19

emitters 147

error-correcting code (ECC) 53

Euler, particle-system simulation 96

example program, tpa1 146

example, array-summing 34

example, using Vector instructions in PPE

program 33

executables 41

F
fast mode 135

fenced command option 86

fetch group 53

fixed-point exception register (XER) 19

floating-point registers (FPRs) 19

floating-point status and control register

(FPSCR) 19

Floating-Point Status and Control

Register (FPSCR) 51

FPRegs 128

FPRs (floating-point registers) 19

FPSCR (floating-point status and control

register) 19

FPSCR (Floating-Point Status and Control

Register) 51

fscrrd instruction 51

fscrwr instruction 51

Full System Simulator, for the Cell

Broadband Engine 106

function offload model 117

function-inlining 89

functional simulation 123

functions, running on the SPEs 118

G
general-purpose registers (GPRs) 19

General-Purpose Registers (GPRs) 51

generic intrinsics 29, 66

get commands 76

glossary 159

GPRegs 128

GPRs (general-purpose registers) 19

GPRs (General-Purpose Registers) 51

Graphical User Interface 126

graphics rounding mode 94

GUI buttons 135

H
HBR (hint for branch) 91

hint for branch (HBR) 91

hint-trigger address 91

I
I/O devices 4, 19

IBM Full System Simulator for the Cell

Broadband Engine 45, 123

IBM Full System Simulator, dynamic

timing analysis 113

 171

IDL (Interface Definition Language) 118

IEEE 754 51, 94

in-order 6, 23, 53, 55

instruction types 23, 25

inter-loop dependencies 109

Interface Definition Language (IDL) 118

intrinsics 11, 25, 26, 33, 64

intrinsics, casting 66

intrinsics, not available as generic

intrinsics 66

J
Joint Software Reference Environment

(JSRE) 66

JSRE (Joint Software Reference

Environment) 66

L
link register (LR) 19

Linux command prompt 124

Linux mode 124

Linux task 12

Linux threads 12

list element 84

Load-Exec 130

local store domains 35

loop unrolling 109

loop-carried dependencies 109

loop-unrolling 89

LR (Link Register) 19

LS considerations 94

M
M:N thread model 13

macro translation 94

macros (MFC), input and output 80

mailboxes (queues) 58

main storage domain 35

many-to-one signaling 59

mapping PPE to SPEs 93

Memory Flow Controller (MFC) 35, 49

memory use (limitation of) 3

method stub 118

MFC (Memory Flow Controller) 35, 49

MFC command-parameter registers 35

microthreads 120

model instruction 130

model pipeline 130

monitoring performance 140

multi-stage pipeline model 13

multibuffering 86, 109

N
NaN (not-a-number) 51

non-blocking channel 57

not-a-number (NaN) 51

O
one-to-one signaling 59

overlays 121

P
packed operands 10

parallel-array form 98

parallel-stages model 13

partitioning 13

PCAddressing 128

PCC Core window 128

PCCCore 128

PCTrack 128

performance of microprocessors 3, 42

performance simulation 123

performance statistics, displaying 141

performance, SPU 149

pipeline mode 130

porting SIMD code from PPE to SPEs 92

power use (limitation of) 3

PowerPC Architecture Vector/SIMD

Multimedia Extension 1

PowerPC instructions 22

PowerPC Processor Element (PPE) 1, 4,

6, 19

PPE (PowerPC Processor Element) 6

PPE and SPE, architectural

differences 72

PPE code, parallelize for execution across

multiple SPEs 104

PPE code, porting for execution on

SPE 100

PPE instruction set 21

PPE registers 19

PPE thread 12

PPE-centric models 13

PPE, and the SPEs 35

ppu-gdb 48

precise trap 51

precision 94

predicate intrinsics 29

predication 89

preferred slot 60, 71

problem-state registers 19

procedures, running on the SPEs 118

processor frequency (limitation of) 3

profile checkpoints 144

programming 9

programming Models 117

programming tips 115

put commands 76

R
registers 19

remote procedure call (RPC) model 117,

118

rounding result 51

RPC (remote procedure call) 117, 118

runtime environment 13

S
saturation 25

scalar code, programming example 97

scalar intrinsics (PPE-specific) 26

scalar loads 109

scalar operands 71

scatter-gather 84

SDK (software development kit) 16

Segment Lookaside Buffer 147

select-bits (selb) instruction 89

select-bits intrinsic 89

service model 13

SFP (SPU Floating-Point Unit) 51

shared-memory multiprocessor

model 119

signal notification 40

signal-notification channels 59

signal-notification facility (SPE) 118

signals 59, 118

SIMD (single-instruction, multiple-data

vectorization) 10

SIMD code, porting from PPE to

SPEs 92

SIMDization 10

SIMDize 96

simulation 123

simulation panel 127

simulator basics 124

simulator command window 124

simulator for the Cell Broadband

Engine 45

simulator prompt 141

single-instruction, multiple-data

vectorization (SIMD) 10

SOA (structure of arrays) 62, 98

software development kit (SDK) 16

Sony, Toshiba, and IBM (STI) 1

SPE (Synergistic Processor Element) 7,

49

SPE overlays 121

SPE programming 38

SPE thread 12, 120

spe_context_create 38

spe_context_run 38

spe_program_load 38

SPE-centric model 13

specific intrinsics 29, 66

SPU (Synergistic Processor Unit) 49

SPU Floating-Point Unit (SFP) 51

SPU Instruction Set Architecture (SPU

ISA) 60

SPU intrinsics 64

SPU ISA (SPU Instruction Set

Architecture) 60

SPU performance 149

spu_mffpscr intrinsic 51

spu_mtfpscr intrinsic 51

spu_timing, static timing analysis 112

spu-gdb 48

spu-timing, static timing analyzer 106

SPUChannel 130

SPUCore 130

SPUMemory 130

SPUStats 130

SPUTrack 130

standalone mode 124

static branch prediction 91

static timing analysis, spu_timing 112

STI (Sony, Toshiba, and IBM) 1

sticky bit 51

storage barriers 40

storage domains 35

streaming model 119

structure of arrays (SOA) 62, 98

stub 118

172 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

suffixes 76

synchronization commands 76

Synergistic Processor Element (SPE) 1, 7,

49

Synergistic Processor Elements (SPEs) 4,

19

Synergistic Processor Unit (SPU) 49

T
tag groups (DMA command) 79

tag manager 80

task 12

Tcl (Tool Command Language)

commands 123

thread 12, 120

thread model 12

thread model (M:N) 13

timing analysis 108

timing simulation 123

Tool Command Language (Tcl) 123

transfer elements 76, 84

truncation 51

U
unified register file 50

unmappable Constructs 93

user threads 120

user-mode thread model 120

V
vector 10

vector data types 60

Vector instructions in PPE program,

example of 33

vector intrinsics 29

vector multimedia registers (VMRs) 19

vector operands 10

vector save register (VRSAVE) 19

vector status and control register

(VSCR) 19

vector types 28

vector-across form 98

vector/SIMD multimedia extension

intrinsics 33

Vector/SIMD Multimedia Extension

vector types 28

vector/SIMD multimedia extensions 4,

6, 19

vectorization 10

VMRs (vector multimedia registers) 19

VRSAVE (vector save register) 19

VSCR (vector status and control

register) 19

X
XER (fixed-point exception register) 19

Z
zero result 51

Index 173

174 SDK for Multicore Acceleration, Programming Tutorial - DRAFT

Readers’ Comments — We’d Like to Hear from You

Software Development Kit for Multicore Acceleration Version 3.0

Programming Tutorial

DRAFT

 Publication No. SC33-8410-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: +49-7031-16-3456

v Send your comments via e-mail to: eservdoc@de.ibm.com

v Send a note from the web page:

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC33-8410-00

SC33-8410-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicherstrasse 220

D -71032 Boeblingen

Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

SC33-8410-00

	Preface
	Contents
	Figures
	Tables
	Chapter 1. Overview of the Cell Broadband Engine
	Introduction
	Background and motivations
	Scaling the three performance-limiting walls
	Scaling the power-limitation wall
	Scaling the memory-limitation wall
	Scaling the frequency-limitation wall
	How the Cell Broadband Engine overcomes performance limitations

	Architecture overview
	The PowerPC Processor Element
	Synergistic Processor Elements

	Programming Overview
	Byte ordering and bit numbering
	SIMD vectorization
	SIMD C-language intrinsics
	Threads and tasks
	The runtime environment
	Application partitioning

	The software development kit

	Chapter 2. The PPE and the programming process
	PPE registers
	PPE instruction sets
	PowerPC instructions
	Addressing modes
	Instruction types
	Compatibility with existing PowerPC code

	Vector/SIMD Multimedia Extension instructions
	Addressing modes
	Instruction types

	C/C++ language extensions (intrinsics)
	Scalar intrinsics
	Vector data types
	Vector intrinsics

	Programming with Vector/SIMD Multimedia Extension intrinsics
	Example: incorporating Vector instructions into a PPE program
	Example: array-summing

	The PPE and the SPEs
	Storage Domains
	Issuing DMA commands from the PPE
	Creating threads for the SPEs
	Communication between the PPE and SPEs

	Developing code for the Cell Broadband Engine
	Producing a simple multi-threaded CBE program
	Running the program in the simulator
	Debugging programs

	Chapter 3. Programming the SPEs
	SPE configuration
	Synergistic Processor Unit
	SPE registers
	Floating-point operations
	Local Store
	Pipelines and dual-issue rules

	Memory flow controller
	Channels
	Channel instructions
	Mailboxes
	Signal notification

	SPU instruction set
	Data layout in registers
	Instruction types

	SPU C/C++ language extensions (intrinsics)
	Assembly language versus intrinsics comparison: an example
	Intrinsic classes
	Specific intrinsics
	Generic intrinsics
	Composite SPU intrinsics

	Promoting scalar data types to vector data types
	Differences between PPE and SPE SIMD support
	Architectural differences between PPE and SPE SIMD support
	Language-extension differences between PPE and SPE SIMD support

	Compiler directives

	MFC commands
	DMA-command tag groups
	Synchronizing DMA transfers
	MFC input and output macros

	Coding methods and examples
	DMA transfers
	DMA-list transfers
	Creating the DMA list
	Initiating the transfers specified in the DMA list
	DMA-list transfers: programming example

	Moving double-buffered data
	Vectorizing a loop
	Reducing the impact of branches
	Function-inlining and loop-unrolling
	Predication using select-bits instruction
	Reducing branch mispredicts with branch hint

	Porting SIMD code from the PPE to the SPEs
	Code-mapping considerations
	Code-mapping performance considerations
	Unmappable constructs considerations
	Limited size of LS considerations
	Equivalent precision considerations

	Simple macro translation
	Example 1: Euler particle-system simulation
	Initial scalar code
	Step 1: SIMDize the code for execution on the PPE
	Step 2: Port the PPE code for execution on the SPE
	Step 3: Parallelize code for execution across multiple SPEs

	Performance analysis
	Performance issues
	Example 1: Tuning SPE performance with static and dynamic timing analysis
	Static analysis of SPE threads
	Dynamic analysis of SPE threads
	Optimizations
	Static analysis of optimization
	Dynamic analysis of optimizations

	General SPE programming tips

	Chapter 4. Programming models
	Function-Offload Model
	Remote procedure call

	Device-Extension Model
	Computation-Acceleration Model
	Streaming model
	Shared-Memory Multiprocessor Model
	Asymmetric-Thread Runtime Model
	User-mode thread model
	Cell application frameworks
	SPE overlays

	Chapter 5. The simulator
	Simulator basics
	Operating-system modes
	Linux mode
	Standalone mode

	Interacting with the simulator

	Command-line interface
	Graphical User Interface
	The simulation panel
	PPE components
	SPE components

	GUI buttons

	Performance monitoring
	Displaying performance statistics
	SPE performance profile checkpoints
	Example program: tpa1
	Emitters

	SPU performance and semantics

	Notices
	Edition notices

	Trademarks
	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

