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Preface  

About this book 

This  tutorial  is  written  for  programmers  who  are  interested  in developing  

applications  or  libraries  for  the  Cell  Broadband  Engine™ (Cell  BE).  It is  not  

intended  for  programmers  who  want  to  develop  device  drivers,  compilers,  or  

operating  systems  for  the  Cell  Broadband  Engine.  

The  descriptions  and  examples  in this  tutorial  are  from  the  Software  Development  Kit  

for  Multicore  Acceleration, Version  3.0.  The  examples  are  chosen  to highlight  the  

general  principals  required  for  Cell  Broadband  Engine  programming,  so  that  an  

experienced  programmer  can  apply  this  knowledge  to other  environments.  

Who should read this book 

The  document  is intended  for  system  and  application  programmers  who  wish  to  

develop  Cell  Broadband  Engine  applications.  

Prerequisites 

It is  assumed  that  you  are  an  experienced  C/C++  programmer  and  are  familiar  

with  the  basic  concepts  of single-instruction,  multiple-data  (SIMD)  vector  

instruction  sets,  such  as  the  PowerPC  

® Architecture™ Vector/SIMD  Multimedia  

Extensions,  Intel  

® MMX™, SSE,  3DNOW!,  or  x86-64  instruction  sets.  

It is  also  assumed  that  you  have  the  Software  Development  Kit  (SDK)  for  

Multicore  Acceleration,  which  includes  a Cell  BE  specific,  64-bit  PowerPC  Linux  

operating  system,  SDK  code  examples,  and  the  IBM  Full  System  Simulator  for  Cell  

BE.  

Related documentation 

The  following  is a list  of reference  and  supporting  materials  for  the  Cell  Broadband  

Engine.  Additional  documentation  for  specific  SDK  components  is generally  

provided  with  that  component.  

v   C/C++  Language  Extensions  for  Cell  Broadband  Engine  Architecture  

v   Cell  Broadband  Engine,  Architecture  

v   Cell  Broadband  Engine  Linux  Reference  Implementation,  Application  Binary  Interface  

Specification  

v   Cell  Broadband  Engine,  Programming  Handbook  

v   Cell  Broadband  Engine,  Registers  

v   Accelerated  Library  Framework,  Programmer’s  Guide  and  API  Reference  

v   Data  Communication  and  Synchronization,  Programmer’s  Guide  and  API  Reference  

v   PowerPC  Microprocessor  Family:  The  Programming  Environments  Manual  for  64-bit  

Microprocessors  

v   PowerPC  Microprocessor  Family:  Vector/SIMD  Multimedia  Extension  Technology  

Programming  Environments  Manual,  Version  2.06c  

v   PowerPC  Operating  Environment  Architecture,  Book  III,  Version  2.02  

v   PowerPC  User  Instruction  Set  Architecture,  Book  I, Version  2.02  
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v   PowerPC  Virtual  Environment  Architecture,  Book  II,  Version  2.02  

v   SIMD  Math  Library  Specification  for  Cell  Broadband  Engine  

v   Software  Development  Kit,  Programmer’s  Guide  

v   SPE  Runtime  Management  Library  (Version  2)  

v   SPU  Application  Binary  Interface  Specification  

v   SPU  Assembly  Language  Specification  

v   Synergistic  Processor  Unit,  Instruction  Set  Architecture
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Chapter  1.  Overview  of  the  Cell  Broadband  Engine  

Introduction 

The  first  generation  Cell  Broadband  Engine  is the  first  incarnation  of  a new  family  

of  microprocessors  conforming  to the  Cell  Broadband  Processor  Architecture  (CBEA).  

The  CBEA  is a new  architecture  that  extends  the  64-bit  PowerPC  Architecture.  

The  CBEA  and  the  Cell  Broadband  Engine  are  the  result  of  a collaboration  between  

Sony,  Toshiba,  and  IBM,  known  as  STI,  formally  started  in early  2001.  

Background and motivations 

Although  the  Cell  Broadband  Engine  is initially  intended  for  application  in game  

consoles  and  media-rich  consumer-electronics  devices  such  as high-definition  

televisions,  the  architecture  and  the  Cell  Broadband  Engine  implementation  have  

been  designed  to  enable  fundamental  advances  in  processor  performance.  A  much  

broader  use  of  the  architecture  is envisioned.  

The  Cell  Broadband  Engine  is a single-chip  multiprocessor  with  nine  processors  

operating  on  a shared,  coherent  memory.  In  this  respect,  it  extends  current  trends  

in  PC  and  server  processors.  The  most  distinguishing  feature  of the  Cell  

Broadband  Engine  is that,  although  all  processors  share  main  storage  (the  

effective-address  space  that  includes  main  memory),  their  function  is specialized  

into  two  types:  

v   the  PowerPC  Processor  Element  (PPE),  

v   the  Synergistic  Processor  Element  (SPE).

The  Cell  Broadband  Engine  has:  

v   one  PPE,  

v   eight  SPEs.

The  PPE  (the  first  type  of  processor  element)  is a 64-bit  PowerPC  Architecture  core.  

It is  fully  compliant  with  the  64-bit  PowerPC  Architecture  and  can  run 32-bit  and  

64-bit  operating  systems  and  applications.  

The  SPE  (the  second  type  of  processor  element)  is optimized  for  running  

compute-intensive  applications,  and  it is not  optimized  for  running  an  operating  

system.  The  SPEs  are  independent  processors,  each  running  its  own  individual  

application  programs.  Each  SPE  has  full  access  to coherent  shared  memory,  

including  the  memory-mapped  I/O  space.  

The  designation  synergistic  for  this  processor  was  chosen  carefully  because  there  is 

a mutual  dependence  between  the  PPE  and  the  SPEs.  The  SPEs  depend  on  the  PPE  

to  run the  operating  system,  and,  in  many  cases,  the  top-level  control  thread  of an  

application.  The  PPE  depends  on  the  SPEs  to  provide  the  bulk  of the  application  

performance.  

The  SPEs  are  designed  to  be  programmed  in  high-level  languages  and  support  a 

rich  instruction  set  that  includes  extensive  single-instruction,  multiple-data  (SIMD)  

functionality.  However,  just  like  conventional  processors  with  SIMD  extensions,  use  

of  SIMD  data  types  is preferred,  not  mandatory.  For  programming  convenience,  

the  PPE  also  supports  the  PowerPC  Architecture  Vector/SIMD  Multimedia  

Extension.  
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To an  application  programmer,  the  Cell  Broadband  Engine  looks  like  a 9-way  

coherent  multiprocessor.  The  PPE  is more  adept  at control-intensive  tasks  and  

quicker  at  task  switching.  The  SPEs  are  more  adept  at compute-intensive  tasks  and  

slower  at  task  switching.  However,  either  processor  is capable  of both  types  of 

functions.  This  specialization  has  allowed  increased  efficiency  in  the  

implementation  of  both  the  PPE  and  especially  the  SPEs.  It is a significant  factor  in 

the  approximate  order-of-magnitude  improvement  in peak  computational  

performance  and  area-and-power  efficiency  that  the  Cell  Broadband  Engine  

achieves  over  conventional  PC  processors.  

A  significant  difference  between  the  PPE  and  SPEs  is how  they  access  memory:  

v   The  PPE  accesses  main  storage  (the  effective-address  space  that  includes  main  

memory)  with  load  and  store  instructions  that  go  between  a private  register  file  

and  main  storage  (which  may  be  cached).  

v   The  SPEs  access  main  storage  with  direct  memory  access  (DMA)  commands  that  

go  between  main  storage  and  a private  local  memory  used  to  store  both  

instructions  and  data.  SPE  instruction-fetches  and  load  and  store  instructions  

access  this  private  local  store,  rather  than  shared  main  storage.  This  3-level  

organization  of  storage  (register  file,  local  store,  main  storage),  with  

asynchronous  DMA  transfers  between  local  store  and  main  storage,  is a radical  

break  with  conventional  architecture  and  programming  models,  because  it  

explicitly  parallelizes  computation  and  the  transfers  of  data  and  instructions.

The  reason  for  this  radical  change  is that  memory  latency,  measured  in  processor  

cycles,  has  gone  up  several  hundredfold  in  the  last  20  years.  The  result  is that  

application  performance  is,  in  most  cases,  limited  by  memory  latency  rather  than  

by  peak  compute  capability  or  peak  bandwidth.  When  a sequential  program  on  a 

conventional  architecture  performs  a load  instruction  that  misses  in  the  caches,  

program  execution  now  comes  to  a halt  for  several  hundred  cycles.  Compared  to  

this  penalty,  the  few  cycles  it  takes  to  set  up  a DMA  transfer  for  an  SPE  is quite  

small.  Conventional  processors,  even  with  deep  and  costly  speculation,  manage  to  

get,  at  best,  a handful  of  independent  memory  accesses  in  flight.  The  result  can  be  

compared  to  a bucket  brigade  in which  a hundred  people  are  required  to cover  the  

distance  to  the  water  needed  to put  the  fire  out,  but  only  a few  buckets  are  

available.  In  contrast,  the  explicit  DMA  model  allows  each  SPE  to have  many  

concurrent  memory  accesses  in  flight,  without  the  need  for  speculation.  

The  most  productive  SPE  memory-access  model  appears  to  be  the  one  in  which  a 

list  (such  as  a scatter-gather  list)  of  DMA  transfers  is constructed  in  an  SPE’s  local  

store,  so  that  the  SPE’s  DMA  controller  can  process  the  list  asynchronously  while  

the  SPE  operates  on  previously  transferred  data.  In several  cases,  this  new  

approach  to  accessing  memory  has  led  to  application  performance  exceeding  that  

of  conventional  processors  by  almost  two  orders  of  magnitude,  significantly  more  

than  one  would  expect  from  the  peak  performance  ratio  (about  10x)  between  the  

Cell  Broadband  Engine  and  conventional  PC  processors.  

It  is also  possible  to  write  compilers  that  manage  an  SPE’s  local  Store  as a very  

large  second-level  register  file  or  to automatically  bring  in  code  when  needed  and  

present  a conventional  symmetric  multiprocessing  (SMP)  model.  Although  such  a 

compiler  exists,  at  least  in  prototype  form,  it does  not  today  result  in the  most  

optimal  application  performance.  Hence,  this  tutorial  focuses  on  approaches  to 

programming  the  Cell  Broadband  Engine  that  expose  the  local  store  and  the  

asynchronous  DMA-transfer  commands.  
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Scaling the three performance-limiting walls 

The  Cell  Broadband  Engine  overcomes  three  important  limiters  of  contemporary  

microprocessor  performance:  power  use,  memory  use,  and  processor  frequency.  

Scaling the power-limitation wall 

Increasingly,  microprocessor  performance  is limited  by  achievable  power  

dissipation  rather  than  by  the  number  of  available  integrated-circuit  resources  

(transistors  and  wires).  

Therefore,  the  only  way  to  significantly  increase  the  performance  of 

microprocessors  is  to  improve  power  efficiency  at about  the  same  rate  as  the  

performance  increase.  

One  way  to  increase  power  efficiency  is to  differentiate  between:  

v   processors  optimized  to run an  operating  system  and  control-intensive  code,  and  

v   processors  optimized  to run compute-intensive  applications.

The  Cell  Broadband  Engine  does  this  by  providing  a general-purpose  PPE  to  run 

the  operating  system  and  other  control-plane  code,  and  eight  SPEs  specialized  for  

computing  data-rich  (data-plane) applications.  

Scaling the memory-limitation wall 

On  multi-gigahertz  symmetric  multiprocessors  (even  those  with  integrated  memory  

controllers)  latency  to  DRAM  memory  is currently  approaching  1,000  cycles.  

As  a result,  program  performance  is dominated  by  the  activity  of  moving  data  

between  main  storage  (the  effective-address  space  that  includes  main  memory)  and  

the  processor.  Increasingly,  compilers  and  even  application  writers  must  manage  

this  movement  of  data  explicitly,  even  though  the  hardware  cache  mechanisms  are  

supposed  to  relieve  them  of this  task.  

The  Cell  Broadband  Engine’s  SPEs  use  two  mechanisms  to  deal  with  long  

main-memory  latencies:  

v   a 3-level  memory  structure  (main  storage,  local  stores  in  each  SPE,  and  large  

register  files  in  each  SPE),  

v   asynchronous  DMA  transfers  between  main  storage  and  local  stores.

These  features  allow  programmers  to  schedule  simultaneous  data  and  code  

transfers  to  cover  long  latencies  effectively.  Because  of  this  organization,  the  Cell  

Broadband  Engine  can  usefully  support  128  simultaneous  transfers  between  the  

eight  SPE  local  stores  and  main  storage.  This  surpasses  the  number  of 

simultaneous  transfers  on  conventional  processors  by  a factor  of  almost  twenty.  

Scaling the frequency-limitation wall 

Conventional  processors  require  increasingly  deeper  instruction  pipelines  to  

achieve  higher  operating  frequencies.  This  technique  has  reached  a point  of 

diminishing  returns  – and  even  negative  returns  if power  is  taken  into  account.  

By  specializing  the  PPE  and  the  SPEs  for  control  and  compute-intensive  tasks,  

respectively,  the  Cell  Broadband  Engine  Architecture,  on  which  the  Cell  Broadband  

Engine  is  based,  allows  both  the  PPE  and  the  SPEs  to  be  designed  for  high  

frequency  without  excessive  overhead.  The  PPE  achieves  efficiency  primarily  by  

executing  two  threads  simultaneously  rather  than  by  optimizing  single-thread  

performance.  
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Each  SPE  achieves  efficiency  by  using  a large  register  file,  which  supports  many  

simultaneous  in-process  instructions  without  the  overhead  of  register-renaming  or  

out-of-order  processing.  Each  SPE  also  achieves  efficiency  by  using  asynchronous  

DMA  transfers,  which  support  many  concurrent  memory  operations  without  the  

overhead  of speculation.  

How the Cell Broadband Engine overcomes performance 

limitations 

By  optimizing  control-plane  and  data-plane  processors  individually, the  Cell  

Broadband  Engine  alleviates  the  problems  posed  by  the  power,  memory,  and  

frequency  limitations.  

The  net  result  is a processor  that,  at the  power  budget  of  a conventional  PC  

processor,  can  provide  approximately  ten-fold  the  peak  performance  of  a 

conventional  processor.  Of  course,  actual  application  performance  varies.  Some  

applications  may  benefit  little  from  the  SPEs,  whereas  others  show  a performance  

increase  well  in  excess  of  ten-fold.  In  general,  compute-intensive  applications  that  

use  32-bit  or  smaller  data  formats  (such  as  single-precision  floating-point  and  

integer)  are  excellent  candidates  for  the  Cell  Broadband  Engine.  

The  remainder  of  this  chapter  describes  the  Cell  Broadband  Engine  hardware,  

some  basic  programming  conventions,  a typical  software-development  sequence,  

and  the  major  support  tools  available  in  the  software  development  kit  (SDK).  

v   Programming  the  PPE  is  described  in  Chapter  2,  “The  PPE  and  the  

programming  process,”  on  page  19.  

v   Programming  the  SPEs  is  described  in  Chapter  3,  “Programming  the  SPEs,”  on  

page  49.  

v   Programming  models  are  described  in  Chapter  4,  “Programming  models,”  on  

page  117.  

v   The  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine  is described  in 

Chapter  5,  “The  simulator,”  on  page  123.  

v   A glossary  is provided  in  “Glossary”  on  page  159.

Architecture overview 

The  Cell  Broadband  Engine  consists  of  nine  processors  on  a single  chip,  all  

connected  to  each  other  and  to external  devices  by  a high-bandwidth,  

memory-coherent  bus.  

Figure  1 on  page  5 shows  a block  diagram  of  the  Cell  Broadband  Engine.  The  main  

blocks  include  the:  

v   PowerPC  Processor  Element  (PPE). The  PPE  is the  main  processor.  It contains  a 

64-bit  PowerPC  Architecture  reduced  instruction  set  computer  (RISC)  core  with  a 

traditional  virtual-memory  subsystem.  It runs an  operating  system,  manages  

system  resources,  and  is  intended  primarily  for  control  processing,  including  the  

allocation  and  management  of  SPE  threads.  It  can  run legacy  PowerPC  

Architecture  software  and  performs  well  executing  system-control  code.  It 

supports  both  the  PowerPC  instruction  set  and  the  Vector/SIMD  Multimedia  

Extension  instruction  set.  

v   Synergistic  Processor  Elements  (SPEs). The  eight  SPEs  are  SIMD  processors  

optimized  for  data-rich  operations  allocated  to them  by  the  PPE.  Each  of these  

identical  elements  contains  a RISC  core,  256-KB,  software-controlled  local  store  

for  instructions  and  data,  and  a large  (128-bit,  128-entry)  unified  register  file.  The  

SPEs  support  a special  SIMD  instruction  set,  and  they  rely  on  asynchronous  
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DMA  transfers  to  move  data  and  instructions  between  main  storage  (the  

effective-address  space  that  includes  main  memory)  and  their  local  stores.  SPE  

DMA  transfers  access  main  storage  using  PowerPC  effective  addresses.  As  on  

the  PPE,  address  translation  is governed  by  PowerPC  Architecture  segment  and  

page  tables.  The  SPEs  are  not  intended  to  run an  operating  system.  

v   Element  Interconnect  Bus  (EIB). The  PPE  and  SPEs  communicate  coherently  with  

each  other  and  with  main  storage  and  I/O  through  the  EIB.  The  EIB  is a 4-ring  

structure  (two  clockwise  and  two  counterclockwise)  for  data,  and  a tree  structure  

for  commands.  The  EIB’s  internal  bandwidth  is 96  bytes  per  cycle,  and  it can  

support  more  than  100  outstanding  DMA  memory  requests  between  main  

storage  and  the  SPEs.

 

The  memory-coherent  EIB  has  two  external  interfaces,  as  shown  in  Figure  1: 

v   The  Memory  Interface  Controller  (MIC)  provides  the  interface  between  the  EIB  and  

main  storage.  It  supports  two  Rambus  Extreme  Data  Rate  (XDR)  I/O  (XIO)  

memory  channels  and  memory  accesses  on  each  channel  of  1-8,  16,  32,  64,  or  128  

bytes.  

v   The  Cell  Broadband  Engine  Interface  (BEI)  manages  data  transfers  between  the  EIB  

and  I/O  devices.  It provides  address  translation,  command  processing,  an  

internal  interrupt  controller,  and  bus  interfacing.  It supports  two  Rambus  FlexIO  

external  I/O  channels.  One  channel  supports  only  non-coherent  I/O  devices.  

The  other  channel  can  be  configured  to  support  either  non-coherent  transfers  or  

coherent  transfers  that  extend  the  logical  EIB  to  another  compatible  external  

device,  such  as another  Cell  Broadband  Engine.

The  Cell  Broadband  Engine  supports  concurrent  real-time  and  non-real-time  

operating  systems  and  resource  management.  Software  development  in  the  C/C++  

language  is  supported  by  a rich  set  of language  extensions  that  define  C/C++  data  

types  for  SIMD  operations  and  map  C/C++  intrinsics  (commands,  in the  form  of  

function  calls)  to  one  or  more  assembly  instructions.  

  

Figure  1. Overview  of Cell  Broadband  Engine  architecture
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These  language  extensions  give  C/C++  programmers  much  greater  control  over  

code  performance,  without  the  need  for  assembly-language  programming.  Software  

development  is  further  supported  by:  

v   a complete  Linux-based  SDK,  

v   a full-system  simulator,  and  

v   a rich  set  of  application  libraries,  performance  tools  and  debug  tools.

The PowerPC Processor Element 

The  PowerPC  Processor  Element  (PPE)  is a general-purpose,  dual-threaded,  64-bit  

RISC  processor  that  conforms  to the  PowerPC  Architecture,  version  2.02,  with  the  

Vector/SIMD  Multimedia  Extension.  

Programs  written  for  the  PowerPC  970  processor,  for  example,  should  run on  the  

Cell  Broadband  Engine  without  modification.  

As  shown  in  Figure  2, the  PPE  consists  of  two  main  units:  

v   The  Power  Processor  Unit  (PPU).  

v   The  Power  Processor  Storage  Subsystem  (PPSS).

The  PPE  is responsible  for  overall  control  of  the  system.  It  runs the  operating  

systems  for  all  applications  running  on  the  Cell  Broadband  Engine.  

 

The  PPU  deals  with  instruction  control  and  execution.  It  includes:  

v   the  full  set  of  64-bit  PowerPC  registers,  

v   32  128-bit  vector  registers,  

v   a 32-KB  level  1 (L1)  instruction  cache,  

v   a 32-KB  level  1 (L1)  data  cache,  

v   an  instruction-control  unit,  

v   a load  and  store  unit,  

v   a fixed-point  integer  unit,  

  

Figure  2. PowerPC  Processor  Element  (PPE)  block  diagram
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v   a floating-point  unit,  

v   a vector  unit,  

v   a branch  unit,  

v   a virtual-memory  management  unit.

The  PPU  supports  two  simultaneous  threads  of  execution  and  can  be  viewed  as  a 

2-way  multiprocessor  with  shared  dataflow.  This  appears  to software  as  two  

independent  processing  units.  The  state  for  each  thread  is  duplicated,  including  all 

architected  and  special-purpose  registers  except  those  that  deal  with  system-level  

resources,  such  as  logical  partitions,  memory,  and  thread-control.  Most  

non-architected  resources,  such  as  caches  and  queues,  are  shared  by  both  threads,  

except  in cases  where  the  resource  is small  or  offers  a critical  performance  

improvement  to  multithreaded  applications.  

The  PPSS  handles  memory  requests  from  the  PPE  and  external  requests  to the  PPE  

from  other  processors  or  I/O  devices.  It includes:  

v   a unified  512-KB  level  2 (L2)  instruction  and  data  cache,  

v   various  queues,  

v   a bus  interface  unit  that  handles  bus  arbitration  and  pacing  on  the  EIB.

Memory  is seen  as  a linear  array  of bytes  indexed  from  0 to  2⁶⁴  - 1.  Each  byte  is 

identified  by  its  index,  called  an  address, and  each  byte  contains  a value.  One  

storage  access  occurs  at a time,  and  all  accesses  appear  to occur  in  program  order.  

The  L2  cache  and  the  address-translation  caches  use  replacement-management  

tables  that  allow  software  to  control  use  of  the  caches.  This  software  control  over  

cache  resources  is  especially  useful  for  real-time  programming.  

Synergistic Processor Elements 

Each  of  the  eight  Synergistic  Processor  Elements  (SPEs)  is  a 128-bit  RISC  processor  

specialized  for  data-rich,  compute-intensive  SIMD  applications.  

As  shown  in  Figure  3 on  page  8,  each  SPE  consists  of two  main  units:  

v   The  Synergistic  Processor  Unit  (SPU).  

v   The  Memory  Flow  Controller  (MFC).
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The  SPU  deals  with  instruction  control  and  execution.  It includes  a single  register  

file  with  128  registers  (each  one  128  bits  wide),  a unified  (instructions  and  data)  

256-KB  local  store  (LS),  an  instruction-control  unit,  a load  and  store  unit,  two  

fixed-point  units,  a floating-point  unit,  and  a channel-and-DMA  interface.  The  SPU  

implements  a new  SIMD  instruction  set,  the  SPU  Instruction  Set  Architecture, that  is 

specific  to  the  Broadband  Processor  Architecture. 

Each  SPU  is an  independent  processor  with  its  own  program  counter  and  is  

optimized  to  run SPE  threads  spawned  by  the  PPE.  The  SPU  fetches  instructions  

from  its  own  LS,  and  it loads  and  stores  data  from  and  to its  own  LS.  With  respect  

to  accesses  by  its  SPU,  the  LS  is unprotected  and  un-translated  storage.  The  MFC  

contains  a DMA  controller  that  supports  DMA  transfers.  Programs  running  on  the  

SPU,  the  PPE,  or  another  SPU,  use  the  MFC’s  DMA  transfers  to  move  instructions  

and  data  between  the  SPU’s  LS  and  main  storage.  (Main  storage  is the  

effective-address  space  that  includes  main  memory,  other  SPEs’  LS,  and  

memory-mapped  registers  such  as  memory-mapped  I/O  [MMIO]  registers.)  The  

MFC  interfaces  the  SPU  to  the  EIB,  implements  bus  bandwidth-reservation  

features,  and  synchronizes  operations  between  the  SPU  and  all  other  processors  in  

the  system.  

To support  DMA  transfers,  the  MFC  maintains  and  processes  queues  of  DMA  

commands.  After  a DMA  command  has  been  queued  to the  MFC,  the  SPU  can  

continue  to  execute  instructions  while  the  MFC  processes  the  DMA  command  

autonomously  and  asynchronously.  The  MFC  also  can  autonomously  execute  a 

sequence  of DMA  transfers,  such  as scatter-gather  lists,  in  response  to a DMA-list  

command.  This  autonomous  execution  of MFC  DMA  commands  and  SPU  

instructions  allows  DMA  transfers  to  be  conveniently  scheduled  to hide  memory  

latency.  

Each  DMA  transfer  can  be  up  to  16  KB  in  size.  However,  only  the  MFC’s  

associated  SPU  can  issue  DMA-list  commands.  These  can  represent  up  to  2,048  

DMA  transfers,  each  one  up  to  16  KB  in size.  DMA  transfers  are  coherent  with  

respect  to  main  storage.  Virtual-memory  address-translation  information  is 

provided  to  each  MFC  by  the  operating  system  running  on  the  PPE.  Attributes  of 

system  storage  (address  translation  and  protection)  are  governed  by  the  page  and  

  

Figure  3. Synergistic  Processor  Element  (SPE)  block  diagram
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segment  tables  of  the  PowerPC  Architecture.  Although  privileged  software  on  the  

PPE  can  map  LS  addresses  and  certain  MFC  resources  to  the  main-storage  address  

space,  enabling  the  PPE  or  other  SPUs  in  the  system  to  access  these  resources,  this  

aliased  memory  is  not  coherent  in the  system.  

The  SPEs  provide  a deterministic  operating  environment.  They  do  not  have  caches,  

so  cache  misses  are  not  a factor  in  their  performance.  Pipeline-scheduling  rules are  

simple,  so  it  is  easy  to  statically  determine  the  performance  of  code.  Although  the  

LS  is shared  between  DMA  read  and  write  operations,  load  and  store  operations,  

and  instruction  prefetch,  DMA  operations  are  accumulated  and  can  only  access  the  

LS  for  at  most  one  of every  eight  cycles.  Instruction  prefetch  delivers  at least  17  

instructions  sequentially  from  the  branch  target.  Thus,  the  impact  of  DMA  

operations  on  loads  and  stores  and  program-execution  times  is,  by  design,  limited.  

Programming Overview 

The  instruction  set  for  the  PPE  is an  extended  version  of the  PowerPC  instruction  

set.  The  extensions  consist  of  the  Vector/SIMD  Multimedia  Extension  instruction  set  

plus  a few  additions  and  changes  to  PowerPC  instructions.  

The  instruction  set  for  the  SPE  is similar  to  that  of  the  PPE’s  Vector/SIMD  

Multimedia  Extension  instruction  set.  Although  the  PPE  and  the  SPEs  execute  

SIMD  instructions,  the  two  instruction  sets  are  different,  and  programs  for  the  PPE  

and  SPEs  must  be  compiled  by  different  compilers.  

Byte ordering and bit numbering 

Storage  of  data  and  instructions  in  the  Cell  Broadband  Engine  is  big-endian. 

Big-endian  ordering  has  the  following  characteristics:  

v   Most-significant  byte  is stored  at the  lowest  address,  and  least-significant  byte  is 

stored  at  the  highest  address.  

v   Bit  numbering  within  a byte  goes  from  most-significant  bit  (bit  0) to 

least-significant  bit  (bit  n).  This  differs  from  some  other  big-endian  processors.

Figure  4 on  page  10  shows  a summary  of the  byte-ordering  and  bit-ordering  in  

memory,  as  well  as  the  bit-numbering  conventions.  
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SIMD vectorization 

A  vector  is an  instruction  operand  containing  a set  of data  elements  packed  into  a 

one-dimensional  array.  The  elements  can  be  integer  or  floating-point  values.  Most  

Vector/SIMD  Multimedia  Extension  and  SPU  instructions  operate  on  vector  

operands.  Vectors  are  also  called  SIMD  operands  or  packed  operands. 

SIMD  processing  exploits  data-level  parallelism.  Data-level  parallelism  means  that  

the  operations  required  to  transform  a set  of vector  elements  can  be  performed  on  

all  elements  of  the  vector  at  the  same  time.  That  is,  a single  instruction  can  be  

applied  to  multiple  data  elements  in parallel.  

Support  for  SIMD  operations  is  pervasive  in  the  Cell  Broadband  Engine.  In  the  

PPE,  they  are  supported  by  the  Vector/SIMD  Multimedia  Extension  instruction  set.  

In  the  SPEs,  they  are  supported  by  the  SPU  instruction  set.  

In  both  the  PPE  and  SPEs,  vector  registers  hold  multiple  data  elements  as  a single  

vector.  The  data  paths  and  registers  supporting  SIMD  operations  are  128  bits  wide,  

corresponding  to  four  full  32-bit  words.  This  means  that  four  32-bit  words  can  be  

loaded  into  a single  register,  and,  for  example,  added  to  four  other  words  in  a 

different  register  in  a single  operation.  Figure  5 on  page  11 shows  such  an  

operation.  Similar  operations  can  be  performed  on  vector  operands  containing  16  

bytes,  8 halfwords,  or  2 doublewords.  

 

  

Figure  4. Big-endian  byte  and  bit  ordering
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The  process  of  preparing  a program  for  use  on  a vector  processor  is  called  

vectorization  or  SIMDization. It can  be  done  manually  by  the  programmer,  or  it  can  

be  done  by  a compiler  that  does  auto-vectorization. 

Figure  6 shows  another  example  of  an  SIMD  operation–  in  this  case,  a byte-shuffle  

operation.  Here,  the  bytes  selected  for  the  shuffle  from  the  source  registers,  VA  and  

VB,  are  based  on  byte  entries  in  the  control  vector,  VC,  in  which  a 0 specifies  VA  

and  a 1 specifies  VB.  The  result  of  the  shuffle  is  placed  in  register  VT. 

   

SIMD C-language intrinsics 

Both  the  Vector/SIMD  Multimedia  Extension  and  SPU  instruction  sets  have  

extensions  that  support  C-language  intrinsics.  Intrinsics  are  C-language  commands,  

in  the  form  of  function  calls,  that  are  convenient  substitutes  for  one  or  more  inline  

assembly-language  instructions.  

In  a specific  instruction  set,  most  intrinsic  names  use  a standard  prefix  in  their  

mnemonic,  and  some  intrinsic  names  incorporate  the  mnemonic  of  an  associated  

  

Figure  5. Four  concurrent  Add  operations

  

Figure  6. Byte-shuffle  operation
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assembly-language  instruction.  For  example,  the  Vector/SIMD  Multimedia  

Extension  intrinsic  that  implements  the  add  Vector/SIMD  Multimedia  Extension  

assembly-language  instruction  is named  vec_add,  and  the  SPU  intrinsic  that  

implements  the  stop  SPU  assembly-language  instruction  is named  spu_stop. 

The  PPE’s  Vector/SIMD  Multimedia  Extension  instruction  set  and  the  SPE’s  SPU  

instruction  set  both  have  extensions  that  define  somewhat  different  sets  of  

intrinsics,  but  they  all  fall  into  four  types  of  intrinsics.  These  are  listed  in Table 1-1.  

Although  the  intrinsics  provided  by  the  two  instruction  sets  are  similar  in  function,  

their  naming  conventions  and  function-call  forms  are  different.  

 Table 1. PPE  and  SPE  intrinsic  classes  

Types of 

Intrinsic  Definition  PPE  SPE  

Specific  One-to-one  mapping  to a single  assembly-language  

instruction.  

X X 

Generic  Map  to one  or more  assembly-language  instructions,  

depending  on types  of input  parameters.  

X X 

Composite  Constructed  from  a sequence  of Specific  or Generic  

intrinsics.  

X 

Predicates  Evaluate  SIMD  conditionals.  X 

  

For  more  information  about  the  PPE  intrinsics,  see  “C/C++  language  extensions  

(intrinsics)”  on  page  25.  

For  more  information  about  the  SPE  intrinsics,  see  “SPU  C/C++  language  

extensions  (intrinsics)”  on  page  64.  

Threads and tasks 

In  a system  running  the  Linux  operating  system,  the  main  thread  of a program  is a 

Linux  thread  running  on  the  PPE.  The  program’s  main  Linux  thread  can  spawn  

one  or  more  Cell  Broadband  Engine  Linux  tasks.  

A  Cell  Broadband  Engine  Linux  task  has  one  or  more  Linux  threads  associated  

with  it that  may  execute  on  either  a PPE  or a SPE.  An  SPE  thread  is a Linux  thread  

that  is executing  on  a SPE.  These  terms  are  defined  in  Table  2.  

The  software  threads  described  in  this  section  are  unrelated  to  the  hardware  

multithreading  capability  of  the  PPE.  

 Table 2. Definition  of threads  and  tasks  

Term  Definition  

Linux  thread  A thread  running  in the  Linux  operating-system  environment.  

PPE  thread  A Linux  thread  running  on a PPE.  

SPE  thread  A Linux  thread  running  on an SPE.  Each  such  thread:  

v   has  its own  SPE  context  which  includes  the  128  x 128-bit  

register  file,  program  counter,  and  MFC  Command  Queues.  

v   can  communicate  with  other  execution  units  (or with  

effective-address  memory  through  the  MFC  channel  

interface).  
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Table 2. Definition  of threads  and  tasks  (continued)  

Term  Definition  

Cell  Broadband  Engine  

Linux  task  

A task  running  on the PPE  and  SPE.  

v   Each  such  task  has  one  or more  Linux  threads.  

v   All  the  Linux  threads  within  the  task  share  the  task’s  

resources.
  

A Linux  thread  can  interact  directly  with  an  SPE  thread  through  the  SPE’s  local  

store  or  its  problem  state.  It can  interact  indirectly  through  effective-address  (EA)  

memory  or  the  interface  provided  by  the  SPE  Runtime  Management  library  

subroutines.  

The  operating  system  defines  the  mechanism  and  policy  for  scheduling  an  

available  SPE.  It must  prioritize  among  all  the  Cell  Broadband  Engine  Linux  

applications  in  the  system,  and  it  must  schedule  SPE  execution  independent  from  

regular  Linux  threads.  It  is also  responsible  for  runtime  loading,  passing  

parameters  to  SPE  programs,  notification  of  SPE  events  and  errors,  and  debugger  

support.  

The runtime environment 

The  PPE  runs PowerPC  applications  and  operating  systems,  which  may  include  

Vector/SIMD  Multimedia  Extension  instructions.  

The  PPE  requires  an  operating  system  that  is extended  to  support  the  hardware  

features  of  Cell  Broadband  Engines,  such  as multiprocessing  with  the  SPEs,  access  

to  the  PPE  Vector/SIMD  Multimedia  Extension  functions,  the  Cell  Broadband  

Engine  interrupt  controller,  and  all  other  functions  on  the  Cell  Broadband  Engine.  

The  assumed  development  and  operating-system  environment  for  this  tutorial  are  

described  in  the  “Preface”  on  page  iii.  In  this  operating  environment,  the  PPE  

handles  thread  allocation  and  resource  management  among  SPEs.  The  PPE’s  Linux  

kernel  controls  the  SPUs’  execution  of programs.  

SPE  threads  follow  the  M:N  thread  model,  meaning  M  threads  distributed  over  N 

processor  elements.  Typically  SPE  threads  run to  completion.  However,  the  SPE  

threads  are  pre-emptible  in  accordance  with  the  thread’s  scheduling  policy  and  

priority.  Time  slice  quanta  for  the  SPE  threads  is typically  longer  than  PPE  threads  

because  of  the  SPE  context  switch  is relatively  heavy.  

The  Linux  kernel  manages  virtual  memory,  including  mapping  each  SPE’s  local  

store  (LS)  and  problem  state  (PS)  into  the  effective-address  space.  The  kernel  also  

controls  virtual-memory  mapping  of MFC  resources,  as  well  as  MFC  segment-fault  

and  page-fault  handling.  Large  pages  (16-MB  pages),  using  the  hugetlbfs  Linux  

extension,  are  supported.  

Application partitioning 

Programs  running  on  the  Cell  Broadband  Engine’s  nine  processor  elements  

typically  partition  the  work  among  the  available  processor  elements.  

In  determining  when  and  how  to  distribute  the  workload  and  data,  take  into  

account  the  following  considerations:  

v   processing-load  distribution,  

v   program  structure,  

 

Chapter  1. Overview  of the Cell Broadband Engine 13



v   program  data  flow  and  data  access  patterns,  

v   cost,  in  time  and  complexity  of code  movement  and  data  movement  among  

processors,  and  

v   cost  of  loading  the  bus  and  bus  attachments.

The  main  model  for  partitioning  an  application  is PPE-centric, as  shown  in  

Figure  7.  

 

In  the  PPE-centric  model, the  main  application  runs on  the  PPE,  and  individual  

tasks  are  off-loaded  to  the  SPEs.  The  PPE  then  waits  for, and  coordinates,  the  

results  returning  from  the  SPEs.  This  model  fits  an  application  with  serial  data  and  

parallel  computation.  

In  the  SPE-centric  model, most  of  the  application  code  is distributed  among  the  

SPEs.  The  PPE  acts  as a centralized  resource  manager  for  the  SPEs.  Each  SPE  

fetches  its  next  work  item  from  main  storage  (or  its  own  local  store)  when  it 

completes  its  current  work.  

There  are  three  ways  in  which  the  SPEs  can  be  used  in  the  PPE-centric  model:  

v   the  multistage  pipeline  model,  

v   the  parallel  stages  model,  and  

v   the  services  model.

The  first  two  of  these  are  shown  in  Figure  8 on  page  15.  

If a task  requires  sequential  stages,  the  SPEs  can  act  as  a multistage  pipeline. The  left  

side  of  Figure  8 on  page  15  shows  a multistage  pipeline.  Here,  the  stream  of data  is 

sent  into  the  first  SPE,  which  performs  the  first  stage  of  the  processing.  The  first  

SPE  then  passes  the  data  to the  next  SPE  for  the  next  stage  of  processing.  After  the  

last  SPE  has  done  the  final  stage  of  processing  on  its  data,  that  data  is returned  to  

the  PPE.  As  with  any  pipeline  architecture,  parallel  processing  occurs,  with  various  

portions  of  data  in  different  stages  of  being  processed.  

Multistage  pipelining  is typically  avoided  because  of the  difficulty  of  load  

balancing.  In  addition,  the  multistage  model  increases  the  data-movement  

requirement  because  data  must  be  moved  for  each  stage  of the  pipeline.  

 

  

Figure  7. Application  partitioning  model
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If  the  task  to  be  performed  is not  a multistage  task,  but  a task  in  which  there  is a 

large  amount  of  data  that  can  be  partitioned  and  acted  on  at the  same  time,  then  it 

typically  make  sense  to  use  SPEs  to  process  different  portions  of that  data  in  

parallel.  This  parallel  stages  model  is shown  on  the  right  side  of Figure  8. 

The  third  way  in which  SPEs  can  be  used  in  a PPE-centric  model  is the  services  

model. In  the  services  model,  the  PPE  assigns  different  services  to  different  SPEs,  

and  the  PPE’s  main  process  calls  upon  the  appropriate  SPE  when  a particular  

service  is needed.  

Figure  9 shows  the  PPE-centric  services  model. Here,  one  SPE  processes  data  

encryption,  another  SPE  processes  MPEG  encoding,  and  a third  SPE  processes  

curve  analysis.  Fixed  static  allocation  of SPU  services  should  be  avoided.  These  

services  should  be  virtualized  and  managed  on  a demand-initiated  basis.  

 

For  a more  detailed  view  of programming  models,  see  Chapter  4,  “Programming  

models,”  on  page  117. 

  

Figure  8. PPE-centric  multistage  pipeline  model  and  parallel  stages  model

  

Figure  9. PPE-centric  services  model
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The software development kit 

A  software  development  kit  (SDK)  is available  for  the  Cell  Broadband  Engine.  

The  SDK  contains  the  essential  tools  required  for  developing  programs  for  the  Cell  

Broadband  Engine.  “Preface”  on  page  iii describes  the  assumptions  with  respect  to  

the  available  SDK.  

The  SDK  consists  of  numerous  components  including  the  following:  

v   The  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine,  systemsim  (see  

Chapter  5,  “The  simulator,”  on  page  123).  

v   system  root  image  containing  Linux  execution  environment  for  use  within  

systemsim. 

v   GNU  tools  including  C and  C++  compilers,  linkers,  assemblers  and  binary  

utilities  for  both  PPU  and  SPU.  

v   IBM  xlc  (C  and  C++)  compiler  for  both  PPU  and  SPU.  

v   IBM  xlf  (Fortran)  compiler  for  both  PPU  and  SPU.  

v   newlib  for  the  SPU.  newlib  is a C  standard  library  designed  for  use  on  

embedded  systems.  

v   gdb  debuggers  for  both  PPU  and  SPU  with  support  for  remote  gdbserver  

debugging.  The  PPU  debugger  also  provides  combined,  PPU  and  SPU,  

debugging.  

v   PPC64  Linux  with  CBE  enhancements.  

v   SPE  Runtime  Management  Library  providing  a standardized,  low-level  

application  programming  interface  for  application  access  to  the  SPEs.  

v   Libraries  to  assist  in  the  development  and  execution  of  parallel  applications, 

including  the:  

–   Accelerated  Library  Framework  library  (ALF)  support  SM,  and  the  

–   Data  Communication  and  Synchronization  (DaCS)  library.
v    Performance  tools  including:  

–   oprofile  – a system-wide  profiler  for  Linux,  

–   CellPerfCount  – a low  level  tool  to configure  and  access  HW  performance  

counters,  

–   FDPR-Pro  – a tool  for  gather  information  for  feedback  directed  optimization,  

–   CodeAnalyzer  – examines  executable  files  and  displays  detailed  information  

about  functions,  basic  blocks,  and  assembly  instructions,  and  

–   Visual  Performance  Analyzer  (VPA)  – an  Eclipse-based  performance  

visualization  toolkit.  

–   spu_timing  – a static  timing  analysis  timing  tool  that  instruments  assembly  

source  (either  compiler  or  programmer  generated)  with  expected,  linear,  

instruction  timing  details.  

–   PDT  – a performance  debugging  tool  which  provides  a tracing  infrastructure  

for  application  timing  analysis.
v    An  Eclipse-based  Integrated  Development  Environment  (IDE)  to improve  

programmer  productivity  and  integration  of  development  tools.  

v   Standardized  SIMD  math  libraries  for  the  PPU’s  Vector/SIMD  Multimedia  

Extension  and  the  SPU.  

v   Mathematical  Acceleration  Subsystem  (MASS)  libraries  supporting  both  long  and  

short  (SIMD)  vectors.  

v   Cell  optimized  domain-specific  application  libraries,  including  Basic  Linear  

Algebra  Subprograms  (BLAS)  library,  Fast  Fourier  Transform  (FFT)  library,  and  

Monte  Carlo  Random  Number  Generator  library.  
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v   Example  source  code  containing  programming  examples,  example  libraries,  

benchmarks,  and  demos.
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Chapter  2.  The  PPE  and  the  programming  process  

This  chapter  describes  the  PowerPC  Processor  Element  (PPE)  registers,  the  PPE’s  

two  instruction  sets,  and  the  C-language  intrinsics  for  the  PPE  and  Vector/SIMD  

Multimedia  Extension  instructions.  

“The  PowerPC  Processor  Element”  on  page  6 introduced  the  organization  and  

functions  of  the  PowerPC  Processor  Element  (PPE).  This  chapter  describes  the  

relation  between  the  PPE  and  Synergistic  Processor  Element  (SPE)  address  spaces. 

Examples  are  provided  of:  

v   PPE-initiated  DMA  transfers  between  main  storage  and  an  SPE’s  local  store  (LS).  

v   PPE  thread-creation  for  the  SPE.

PPE registers 

This  section  describes  the  complete  set  of  PowerPC  Processor  Element  (PPE)  user  

(problem-state)  registers.  

Figure  10  on  page  20  shows  all  the  PPE  user  (problem-state)  registers.  All  

computational  instructions  operate  only  on  registers  – there  are  no  computational  

instructions  that  modify  storage.  

To use  a storage  operand  in  a computation  and  then  modify  the  same  or  another  

storage  location,  the  contents  of the  storage  operand  must  be:  

1.   loaded  into  a register,  

2.   modified,  

3.   stored  back  to  the  target  location.
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The  PPE  registers  include:  

v   General-Purpose  Registers  (GPRs)  – Fixed-point  instructions  operate  on  the  full  

64-bit  width  of  the  GPRs,  of which  there  are  32.  The  instructions  are  

mode-independent,  except  that  in  32-bit  mode,  the  processor  uses  only  the  

low-order  32  bits  for  determination  of a memory  address  and  the  carry,  

overflow,  and  record  status  bits.  

v   Floating-Point  Registers  (FPRs)  – The  32  FPRs  are  64  bits  wide.  The  internal  

format  of  floating-point  data  is  the  IEEE  754  double-precision  format.  

Single-precision  results  are  maintained  internally  in  the  double-precision  format.  

v   Link  Register  (LR)  – The  64-bit  LR  can  be  used  to  hold  the  effective  address  of  a 

branch  target.  Branch  instructions  with  the  link  bit  (LK)  set  to  1 (that  is, 

subroutine-call  instructions)  copy  the  next  instruction  address  into  the  LR.  A  

Move  To Special-Purpose  Register  instruction  can  copy  the  contents  of a GPR  

into  the  LR.  

v   Count  Register  (CTR)  – The  64-bit  CTR  can  be  used  to  hold  either  a loop  counter  

or  the  effective  address  of  a branch  target.  Some  conditional-branch  instruction  

  

Figure  10. PPE  user-register  set
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forms  decrement  the  CTR  and  test  it for  a zero  value.  A  Move  To 

Special-Purpose  Register  instruction  can  copy  the  contents  of a GPR  into  the  

CTR.  

v   Fixed-Point  Exception  Register  (XER)  – The  64-bit  XER  contains  the  carry  and  

overflow  bits  and  the  byte  count  for  the  move-assist  instructions.  Most  

arithmetic  operations  have  instruction  forms  for  setting  the  carry  and  overflow  

bit.  

v   Condition  Register  (CR)  – Conditional  comparisons  are  performed  by  first  setting  

a condition  code  in  the  32-bit  CR  with  a compare  instruction  or  with  a recording  

instruction.  The  condition  code  is then  available  as  a value  or  can  be  tested  by  a 

branch  instruction  to  control  program  flow. The  CR  consists  of eight  

independent  4-bit  fields  grouped  together  for  convenient  save  or  restore  during  

a context  switch.  Each  field  can  hold  status  information  from  a comparison,  

arithmetic,  or  logical  operation.  The  compiler  can  schedule  CR  fields  to  avoid  

data  hazards  in  the  same  way  that  it  schedules  the  use  of  GPRs.  Writes  to the  

CR  occur  only  for  instructions  that  explicitly  request  them;  most  operations  have  

recording  and  non-recording  instruction  forms.  

v   Floating-Point  Status  and  Control  Register  (FPSCR)  – The  processor  updates  the  

32-bit  FPSCR  after  every  floating-point  operation  to record  information  about  the  

result  and  any  associated  exceptions.  The  status  information  required  by  IEEE  

754  is  included,  plus  some  additional  information  for  exception  handling.  

v   Vector Registers  (VRs)  – There  are  32  128-bit-wide  VRs.  They  serve  as source  and  

destination  registers  for  all  vector  instructions.  

v   Vector Status  and  Control  Register  (VSCR)  – The  32-bit  VSCR  is read  and  written  

in  a manner  similar  to  the  FPSCR.  It has  2 defined  bits,  a non-Java™ mode  bit  

and  a saturation  bit;  the  remaining  bits  are  reserved.  Special  instructions  are  

provided  to  move  the  VSCR  to  a VR  register.  

v   Vector Save  Register  (VRSAVE)  – The  32-bit  VRSAVE  register  assists  user  and  

privileged  software  in saving  and  restoring  the  architectural  state  across  context  

switches.

PPE instruction sets 

The  PowerPC  Processor  Element  (PPE)  supports  two  instruction  sets:  the  PowerPC  

instruction  set  and  the  Vector/SIMD  Multimedia  Extension  instruction  set.  

Although  most  of  the  coding  for  the  Cell  Broadband  Engine  will  be  in  a high-level  

language  like  C or  C++,  an  understanding  of the  PPE  architecture  and  instruction  

sets  adds  considerably  to  a developer’s  ability  to  produce  efficient,  optimized  code.  

This  is  particularly  true because  C-language  intrinsics  are  provided  for  the  PPE’s  

Vector/SIMD  Multimedia  Extension  instruction  set,  and  these  intrinsics  map  

directly  to  one  or  more  Vector/SIMD  Multimedia  Extension  assembly-language  

instructions.  

The  PowerPC  instruction  set  uses  instructions  that  are  4 bytes  long  and  

word-aligned.  It supports  byte,  halfword,  word,  and  doubleword  operand  accesses  

between  storage  and  its  32  general-purpose  registers  (GPRs).  The  instruction  set  

also  supports  word  and  doubleword  operand  accesses  between  storage  and  a set  of  

32  floating-point  registers  (FPRs).  Signed  integers  are  represented  in  

twos-complement  form.  

The  Vector/SIMD  Multimedia  Extension  instruction  set  uses  instructions  that,  like  

PowerPC  instructions,  are  4 bytes  long  and  word-aligned.  However,  all  of  its  

operands  are  128  bits  wide.  Most  of  the  Vector/SIMD  Multimedia  Extension  
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operands  are  vectors,  including  single-precision  floating-point,  integer,  scalar, and  

fixed-point  of  vector-element  sizes  of  8,16,  and  32  bits.  

The  sections  that  follow  briefly  summarize  key  points  of the  instruction  sets.  

However,  for  a complete  description  of the  PowerPC  instruction  sets,  refer  to  these  

publications:  

v   PowerPC  Microprocessor  Family,  Programming  Environments  Manual  for  64-Bit  

Microprocessors  

v   PowerPC  Microprocessor  Family,  Vector/SIMD  Multimedia  Extension  Technology  

Programming  Environments  Manual

PowerPC instructions 

Whenever  instruction  addresses  are  presented  to  the  processor,  the  low-order  2 bits  

are  ignored.  

Similarly,  whenever  the  processor  develops  an  instruction  address,  the  low-order  2 

bits  are  zero.  The  address  of  either  an  instruction  or  a multiple-byte  data  value  is 

its  lowest-numbered  byte.  This  address  points  to  the  most-significant  end  

(big-endian  convention).  The  little-endian  convention  is not  supported.  

Arithmetic  for  address  computation  is unsigned  and  ignores  any  carry  out  of  bit  0 

(the  MSb). 

For  an  overview  of  the  big-endian  bit  and  byte  numbering  used  by  the  PPE,  see  

“Byte  ordering  and  bit  numbering”  on  page  9.  

Addressing modes 

All  instructions,  except  branches,  generate  addresses  by  incrementing  a program  

counter.  All  load  and  store  instructions  specify  a base  register.  

The  effective  address  in  memory  for  a data  value  is calculated  relative  to  the  base  

register  in  one  of  three  ways:  

v   Register  + Displacement  – The  displacement  forms  of  the  load  and  store  

instructions  calculate  an  address  that  is the  sum  of  a displacement  specified  by  

the  sign-extended  16-bit  immediate  field  of the  instruction  plus  the  contents  of 

the  base  register.  

v   Register  + Register  – The  indexed  forms  of the  load  and  store  instructions  

calculate  an  address  that  is the  sum  of  the  contents  of the  index  register,  which  

is a GPR,  plus  the  contents  of  the  base  register.  

v   Register  – The  Load  String  Immediate  and  Store  String  Immediate  instructions  

use  the  unmodified  contents  of the  base  register  to calculate  an  address.

Loads  and  stores  can  specify  an  update  form  that  reloads  the  base  register  with  the  

computed  address,  unless  the  base  register  is the  target  register  of the  load.  

Branches  are  the  only  instructions  that  explicitly  specify  the  address  of  the  next  

instruction.  A branch  instruction  specifies  the  effective  address  of the  branch  target  

in  one  of  the  following  ways:  

v   Branch  Not  Taken  – The  byte  address  of  the  next  instruction  is  the  byte  address  of 

the  current  instruction,  plus  4. 

v   Absolute  – The  word  address  of  the  next  instruction  is  given  in  an  immediate  

field  of  the  branch  instruction.  
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v   Relative  – The  word  address  of  the  next  instruction  is given  by  the  sum  of  the  

immediate  field  of  the  branch  instruction  and  the  word  address  of  the  branch  

instruction  itself.  

v   Link  Register  or  Count  Register  – The  byte  address  of  the  next  instruction  is the  

effective  byte  address  of the  branch  target  specified  in  the  Link  Register  or  

Count  Register,  respectively.

Instruction types 

The  PowerPC  Processor  Element  (PPE)’s  PowerPC  instructions  can  have  up  to three  

operands.  Most  computational  instructions  specify  two  source  operands  and  one  

destination  operand.  

The  PPE’s  PowerPC  instructions  include  the  following  types:  

v   Integer  Instructions  – These  include  arithmetic,  compare,  logical,  and  rotate/shift  

instructions.  They  operate  on  byte,  halfword,  word,  and  doubleword  operands.  

v   Floating-Point  Instructions  – These  include  floating-point  arithmetic,  multiply-add,  

compare,  and  move  instructions,  as  well  as  instructions  that  affect  the  

Floating-Point  Status  and  Control  Register  (FPSCR).  Floating-point  instructions  

operate  on  single-precision  and  double-precision  floating-point  operands.  

v   Load  and  Store  Instructions  – These  include  integer  and  floating-point  load  and  

store  instructions,  with  byte-reverse,  multiple,  and  string  options  for  the  integer  

loads  and  stores.  

v   Memory  Synchronization  Instructions  – These  instructions  control  the  order  in  

which  memory  operations  are  completed  with  respect  to asynchronous  events,  

and  the  order  in  which  memory  operations  are  seen  by  other  processors  or  

memory-access  mechanisms.  The  instruction  types  include  load  and  store  with  

reservation,  synchronization,  and  enforce  in-order  execution  of I/O.  They  are  

especially  useful  for  multiprocessing.  

v   Flow  Control  Instructions  – These  include  branch,  Condition-Register  logical,  trap,  

and  other  instructions  that  affect  the  instruction  flow. 

v   Processor  Control  Instructions  – These  instructions  are  used  for  synchronizing  

memory  accesses  and  managing  caches,  Translation  Lookaside  Buffers  (TLBs),  

segment  registers,  and  other  privileged  processor  states.  They  include  

move-to/from  special-purpose  register  instructions.  

v   Memory  and  Cache  Control  Instructions  – These  instructions  control  caches,  TLBs,  

and  segment  registers.  

v   External  Control  Instructions  – These  instructions  allow  a user-level  program  to  

communicate  with  a special-purpose  device.

Compatibility with existing PowerPC code 

The  PowerPC  Processor  Element  (PPE)  complies  with  version  2.0.2  of  the  PowerPC  

architecture,  with  only  minor  exceptions. 

The  following  optional  user-mode  instructions  are  implemented:  

v   fsqrt(.)  – Floating-point  square  root  

v   fsqrts(.)  – Floating-point  square  root  single  

v   fres(.)  – Floating-point  reciprocal  estimate  single,  A-form  

v   frsqrte(.)  – Floating-point  reciprocal  square  root  estimate,  A-form  

v   fsel(.)  – Floating-point  select  

v   mtocrf  – Move  to  one  condition  register  field,  XFX-form  

v   mfocrf  – Move  from  one  condition  register  field,  XFX-form

The  following  optional  instructions  that  are  defined  in  the  PowerPC  Book  I are  not  

implemented.  Use  of  these  instructions  will  cause  an  illegal-instruction  interrupt:  
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v   mcrxr  – Move  to  condition  register  from  XER  

v   bccbr  – Branch  condition  to  CBR

The  following  instructions  that  are  not  defined  in  the  PowerPC  Architecture  are  

implemented.  Since  these  instructions  are  not  part  of the  architecture,  they  should  

be  considered  highly  implementation-specific.  

v   ldbrx  – Load  doubleword  byte  reverse  indexed,  X-form  

v   sdbrx  – Store  doubleword  byte  reverse  indexed,  X-form

In  addition,  the  little  endian  option  for  data  ordering  is not  available.  A  complete  

list  of  differences  can  be  found  in  the  Cell  Broadband  Engine,  Programming  Handbook. 

Vector/SIMD Multimedia Extension instructions 

The  128-bit  Vector/SIMD  Multimedia  Extension  unit  (VXU)  operates  concurrently  

with  the  PPU’s  fixed-point  integer  unit  (FXU)  and  floating-point  execution  unit  

(FPU).  

Like  PowerPC  instructions,  the  Vector/SIMD  Multimedia  Extension  instructions  are  

4 bytes  long  and  word-aligned.  The  Vector/SIMD  Multimedia  Extension  

instructions  support  simultaneous  execution  on  multiple  elements  that  make  up  

the  128-bit  vector  operands.  These  vector  elements  may  be  byte,  halfword,  or  

word.  

 

The  Vector/SIMD  Multimedia  Extension  instructions  are  fully  described  in  the  

PowerPC  Microprocessor  Family,  Vector/SIMD  Multimedia  Extension  Technology  

Programming  Environments  manual.  

All  Vector/SIMD  Multimedia  Extension  instructions  are  designed  to  be  easily  

“pipelined”.  Parallel  execution  with  the  PPE’s  integer  and  floating-point  

instructions  is simplified  by  the  fact  that  Vector/SIMD  Multimedia  Extension  

instructions:  

v   do  not  generate  exceptions  (other  than  data-storage  interrupt  exceptions  on  loads  

and  stores),  

  

Figure  11.  Concurrent  execution  of integer,  floating-point,  and  vector  units
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v   do  not  support  unaligned  memory  accesses  or  complex  functions,  and  

v   share  few  resources  or  communication  paths  with  the  other  PPE  execution  units.

Addressing modes 

The  PowerPC  Processor  Element  (PPE)  supports  not  only  basic  load  and  store  

operations,  but  also  load  and  store  vector  left-  or  right-indexed  forms.  

All  Vector/SIMD  Multimedia  Extension  load  and  store  operations  use  the  register  

+  register  indexed  addressing  mode,  which  forms  the  sum  of  the  contents  of an  

index  GPR  plus  the  contents  of  a base-address  GPR.  This  addressing  mode  is  very  

useful  for  accessing  arrays.  

In  addition  to  the  load  and  store  operations,  the  Vector/SIMD  Multimedia  

Extension  instruction  set  provides  a powerful  set  of element-manipulation  

instructions  – for  example,  shuffle,  permute  (similar  to  the  SPEs’  shuffle),  rotate,  

and  shift  – to  manipulate  vector  elements  into  the  desired  alignment  and  

arrangement  after  the  vectors  have  been  loaded  into  vector  registers.  

Instruction types 

Most  Vector/SIMD  Multimedia  Extension  instructions  have  three  or  four  128-bit  

vector  operands  – two  or  three  source  operands  and  one  result.  Also,  most  

instructions  are  SIMD  in  nature.  

The  instructions  have  been  chosen  for  their  utility  in  digital  signal  processing  

(DSP)  algorithms,  including  3D  graphics.  

The  Vector/SIMD  Multimedia  Extension  instructions  include  the  following  types:  

v   Vector Integer  Instructions  – These  include  vector  arithmetic,  compare,  logical,  

rotate,  and  shift  instructions.  They  operate  on  byte,  halfword,  and  word  vector  

elements.  The  instructions  use  saturation-clamping.  

v   Vector Floating-Point  Instructions  – These  include  floating-point  arithmetic,  

multiply/add,  rounding  and  conversion,  compare,  and  estimate  instructions.  

They  operate  on  single-precision  floating-point  vector  elements.  

v   Vector Load  and  Store  Instructions  – These  include  only  basic  integer  and  

floating-point  load  and  store  instructions.  No  update  forms  of the  load  and  store  

instruction  are  provided.  They  operate  on  128-bit  vectors.  

v   Vector Permutation  and  Formatting  Instructions  – These  include  vector  pack,  

unpack,  merge,  splat,  permute,  select,  and  shift  instructions.  

v   Processor  Control  Instructions  – These  include  instructions  that  read  and  write  the  

vector  status  and  control  register  (VSCR).  

v   Memory  Control  Instructions  – These  include  instructions  for  managing  caches  

(user-level  and  supervisor-level).  These  instructions  are  “no-ops”.

C/C++ language extensions (intrinsics) 

A set  of  C-language  extensions  are  available  for  PowerPC  Processor  Element  (PPE)  

and  Vector/SIMD  Multimedia  Extension  programming.  

These  extensions  include  additional  vector  data  types  and  a large  set  of  scalar  and  

vector  commands  (intrinsics).  The  intrinsics  are  essentially  inline  

assembly-language  instructions,  in  the  form  of function  calls,  that  have  syntax  

familiar  to  high-level  programmers  using  the  C  language.  

The  intrinsics  provide  explicit  control  of the  PPE  or  Vector/SIMD  Multimedia  

Extension  instructions  without  directly  managing  registers  and  scheduling  
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instructions,  as  assembly-language  programming  requires.  A compiler  that  

supports  these  C-language  extensions  will  emit  code  optimized  for  the  PPE  and/or  

the  Vector/SIMD  Multimedia  Extension  architecture.  

Scalar intrinsics 

A  minimal  set  of  specific  intrinsincs, to make  the  underlying  PPU  instruction  set  

accessible  from  the  C programming  language,  have  been  provided.  These  intrinsics  

are  declared  in  the  system  header  file  ppu_intrinsics.h.  

 Table 3. PPE-specific  scalar  intrinsics  

Intrinsic  Description  

__cctph()  Change  Thread  Priority  to High  

__cctpl()  Change  Thread  Priority  to Low  

__cctpm()  Change  Thread  Priority  to Medium  

d = __cntlz(a)  Count  Leading  Doubleword  Zeros  

d = __cntlzw(a)  Count  Leading  Word Zeros  

__db10cyc()  Delay  10 Cycles  at Dispatch  

__db12cyc()  Delay  12 Cycles  at Dispatch  

__db16cyc()  Delay  16 Cycles  at Dispatch  

__db8cyc()  Delay  8 Cycles  at Dispatch  

__dcbf(pointer)  Data  Cache  Block  Flush  

__dcbst(pointer)  Data  Cache  Block  Store  

__dcbt(pointer)  Data  Cache  Block  Touch 

__dcbt_TH1000(eatrunc,  d, ug,  id) Start  Streaming  Data  

__dcbt_TH1010(g0,  s, unitcnt,  t, u, id) Stop  Streaming  Data  

__dcbtst(pointer)  Data  Cache  Block  Touch for Store  

__dcbz(pointer)  Data  Cache  Block  Set  to Zero  

__eieio()  Enforce  In-Order  Execution  of I/O  

d = __fabs(a)  Double  Absolute  Value 

d = __fabsf(a)  Float  Absolute  Value 

d = __fcfid(a)  Convert  Doubleword  to Double  

d = __fctid(a)  Convert  Double  to Doubleword  

d = __fctidz(a)  Convert  Double  to Doubleword  with  

Round  Towards  Zero  

d = __fctiw(a)  Convert  Double  to Word 

d = __fctiwz(a)  Convert  Double  to Word with  Round  

Toward  Zero  

d = __fmadd(a,b,c)  Double  Fused  Multiply  and  Add  

d = __fmadds(a,b,c)  Float  Fused  Multiply  and  Add  

d = __fmsub(a,b,c)  Double  Fused  Multiply  and  Subtract  

d = __fmsubs(a,b,c)  Float  Fused  Multiply  and  Subtract  

d = __fmul(a,b)  Double  Mulitply  

d = __fmuls(a,b)  Float  Multiply  

d = __fnabs(a)  Double  Negative  Absolute  Value 

d = __fnabsf(a)  Float  Negative  Absolute  Value 
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Table 3. PPE-specific  scalar  intrinsics  (continued)  

Intrinsic  Description  

d = __fnmadd(a,b,c)  Double  Fused  Negative  Multiply  and 

Add  

d = __fnmadds(a,b,c)  Float  Fused  Negative  Multiply  and  Add  

d = __fnmsub(a,b,c)  Double  Fused  Negative  Multiply  and 

Subtract  

d = __fnmsubs(a,b,c)  Float  Fused  Negative  Multiply  and  

Subtract  

d = __fres(a)  Float  Reciprocal  Estimate  

d = __frsp(a)  Round  to Single  Precision  

d = __fsel(a,b,c)  Floating  Point  Select  of Double  

d = __fsels(a,b,c)  Floating  Point  Select  of Float  

d = __fsqrt(a)  Double  Square  Root  

d = __fsqrts(a)  Float  Square  Root  

__icbi(pointer)  Instruction  Cache  Block  Invalidate  

__isync()  Instruction  Sync  

d = __ldarx(pointer)  Load  Doubleword  with  Reserved  

d = __ldbrx(pointer)  Load  Reversed  Doubleword  

d = __lhbrx(pointer)  Load  Reversed  Halfword  

d = __lwarx(pointer)  Load  Word with  Reserved  

d = __lwbrx(pointer)  Load  Reversed  Word 

__lwsync()  Light  Weight Sync  

d = __mffs()  Move  from  Floating-Point  Status  and  

Control  Register  

d = __mfspr(spr)  Move  from  Special  Purpose  Regiser  

d = __mftb()  Move  from  Time Base  

__mtfsb0(bt)  Unset  Field  of FPSCR  

__mtfsb1(bt)  Set Field  of FPSCR  

__mtfsf(flm,b)  Set Fields  of FPSCR  

__mtfsfi(bf,u)  Set Field  FPSCR  from  other  Field  

__mtspr(spr,value)  Move  to Special  Purpose  Register  

d = __mulhdu(a,b)  Multiply  Double  Unsigned  Word, High  

Part  

d = __mulhd(a,b)  Multiply  Doubleword,  High  Part  

d = __mulhwu(a,b)  Multiply  Unsigned  Word, High  Part  

d = __mulhw(a,b)  Multiply  Word, High  Part  

__nop()  No Operation  

__protected_stream_count(count,id)  Set the  Number  of Blocks  to Stream  

__protected_stream_go()  Start  All  Streams  

__protected_stream_set(d,addr,id)  Set Up  a Stream  

__protected_stream_stop(id)  Stop  a Stream  

__protected_stream_stop_all()  Stop  All Streams  
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Table 3. PPE-specific  scalar  intrinsics  (continued)  

Intrinsic  Description  

__protected_unlimited_stream_set(d,addr,id)  Set Up  an Unlimited  Stream  

d = __rldcl(a,b,mb)  Rotate  Left  Doubleword  then  Clear  Left  

d = __rldcr(a,b,me)  Rotate  Left  Doubleword  then  Clear  Right  

d = __rldic(a,sh,mb)  Rotate  Left  Doubleword  Immediate  then  

Clear  

d = __rldicl(a,sh,mb)  Rotate  Left  Doubleword  Immediate  then  

Clear  Left  

d = __rldicr(a,sh,me)  Rotate  Left  Doubleword  Immediate  then  

Clear  Right  

d = __rldimi(a,b,sh.mb)  Rotate  Left  Doubleword  Immediate  then  

Mask  Insert  

d = __rlwimi(a,b,sh,mb,me)  Rotate  Left  Word Immediate  the  Mask  

Insert  

d = __rlwinm(a,sh,mb,me)  Rotate  Left  Word Immediate  then  AND  

with  Mask  

d = __rlwnm(a,v,mb,me)  Rotate  Left  Word then  AND  with  Mask  

d = __setflm(a)  Save  and  Set  the  FPSCR  

__stdbrx(pointer,b)  Store  Reversed  Doubleword  

d = __stdcx(pointer,b)  Store  Doubleword  Conditional  

__sthbrx(pointer,b)  Store  Reversed  Halfword  

__stwbrx(pointer,b)  Store  Reversed  Word 

d = __stwcx(pointer,b)  Store  Word Conditional  

__sync()  Sync
  

Vector data types 

The  Vector/SIMD  Multimedia  Extension  model  adds  a set  of  fundamental  data  

types,  called  vector  types. 

Vector  types  are  shown  in  Table 4 on  page  29.  The  represented  values  are  in  

decimal  (base-10)  notation.  The  vector  registers  are  128  bits  and  can  contain:  

v   Sixteen  8-bit  values,  signed  or  unsigned  

v   Eight  16-bit  values,  signed  or unsigned  

v   Four  32-bit  values,  signed  or  unsigned  

v   Four  single-precision  IEEE-754  floating-point  values

The  vector  types  use  the  prefix  vector  in  front  of  one  of standard  C data  

types—for  example  vector  signed  int  and  vector  unsigned  short. A vector  type  

represents  a vector  of as  many  of  the  specified  C data  type  as  will  fit  in a 128-bit  

register.  Hence,  the  vector  signed  int  is a 128-bit  operand  containing  four  32-bit  

signed  ints. The  vector  unsigned  short  is a 128-bit  operand  containing  eight  

unsigned  values.  

Note:  Since  the  token,  vector,  is a keyword  in  the  Vector/SIMD  Multimedia  

Extension  data  types,  you  are  recommended  not  to  use  the  term  elsewhere  in  the  

program  (for  example,  as  a variable  name).
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Table 4. Vector/SIMD  Multimedia  Extension  data  types  

Vector  Data  Type Meaning  Values  

vector  unsigned  char  Sixteen  8-bit  unsigned  values  0 ... 255  

vector  signed  char  Sixteen  8-bit  signed  values  -128  ... 127 

vector  bool  char  Sixteen  8-bit  unsigned  boolean  0 (false),  255  (true)  

vector  unsigned  short  Eight  16-bit  unsigned  values  0 ... 65535  

vector  unsigned  short  int Eight  16-bit  unsigned  values  0 ... 65535  

vector  signed  short  Eight  16-bit  signed  values  -32768  ... 32767  

vector  signed  short  int Eight  16-bit  signed  values  -32768  ... 32767  

vector  bool  short  Eight  16-bit  unsigned  boolean  0 (false),  65535  (true)  

vector  bool  short  int Eight  16-bit  unsigned  boolean  0 (false),  65535  (true)  

vector  unsigned  int  Four  32-bit  unsigned  values  0 ... 2³²  - 1 

vector  signed  int  Four  32-bit  signed  values  -2³¹  ... 2³¹ - 1 

vector  bool  int  Four  32-bit  unsigned  values  0 (false),  2³¹  - 1 (true)  

vector  float  Four  32-bit  single  precision  IEEE-754  values  

vector  pixel  Eight  16-bit  unsigned  values  1/5/5/5  pixel
  

Introducing  fundamental  vector  data  types  permits  the  compiler  to provide  

stronger  type-checking  and  supports  overloaded  operations  on  vector  types.  

Vector intrinsics 

Vector/SIMD  Multimedia  Extension  intrinsics  are  grouped  into  three  classes.  

These  classes  are:  

v   Specific  Intrinsics  – Intrinsics  that  have  a one-to-one  mapping  with  a single  

assembly-language  instruction  

v   Generic  Intrinsics  – Intrinsics  that  map  to  one  or  more  assembly-language  

instructions  as  a function  of  the  type  of  input  parameters  

v   Predicates  Intrinsics  – Intrinsics  that  compare  values  and  return  an  integer  that  

may  be  used  directly  as  a value  or  as a condition  for  branching  

The  Vector/SIMD  Multimedia  Extension  intrinsics  and  predicates  use  the  prefix  

vec_  in  front  of  an  assembly-language  or  operation  mnemonic;  predicate  intrinsics  

use  the  prefixes  vec_all  and  vec_any.  When  compiled,  the  intrinsics  generate  one  

or  more  Vector/SIMD  Multimedia  Extension  assembly-language  instructions.  

The  specific  and  generic  intrinsics  are  shown  in  Table  5. The  predicate  intrinsics  are  

shown  in  Table 6 on  page  32.  

 Table 5. Vector/SIMD  Multimedia  Extension  specific  and  generic  intrinsics  

Intrinsic  Description  

Arithmetic  Intrinsics  

d = vec_abs(a)  Vector  Absolute  Value 

d = vec_abss(a)  Vector  Absolute  Value Saturated  

d = vec_add(a,b)  Vector  Add  

d = vec_addc(a,b)  Vector  Add  Carryout  Unsigned  Word 

d = vec_adds(a,b)  Vector  Add  Saturated  
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Table 5. Vector/SIMD  Multimedia  Extension  specific  and  generic  intrinsics  (continued)  

Intrinsic  Description  

d = vec_avg(a,b)  Vector  Average 

d = vec_madd(a,b,c)  Vector  Multiply  Add  

d = vec_madds(a,b,c)  Vector  Multiply  Add  Saturated  

d = vec_max(a,b)  Vector  Maximum  

d = vec_min(a,b)  Vector  Minimum  

d = vec_mladd(a,b,c)  Vector  Multiply  Low  and  Add  Unsigned  Half  Word 

d = vec_mradds(a,b,c)  Vector  Multiply  Round  and  Add  Saturated  

d = vec_msum(a,b,c)  Vector  Multiply  Sum  

d = vec_msums(a,b,c)  Vector  Multiply  Sum  Saturated  

d = vec_mule(a,b)  Vector  Multiply  Even  

d = vec_mulo(a,b)  Vector  Multiply  Odd  

d = vec_nmsub(a,b,c)  Vector  Negative  Multiply  Subtract  

d = vec_sub(a,b)  Vector  Subtract  

d = vec_subc(a,b)  Vector  Subtract  Carryout  

d = vec_subs(a,b)  Vector  Subtract  Saturated  

d = vec_sum4s(a,b)  Vector  Sum  Across  Partial  (1/4)  Saturated  

d = vec_sum2s(a,b)  Vector  Sum  Across  Partial  (1/2)  Saturated  

d = vec_sums(a,b)  Vector  Sum  Saturated  

Rounding  And  Conversion  Intrinsics  

d = vec_ceil(a)  Vector  Ceiling  

d = vec_ctf(a,b)  Vector  Convert  from  Fixed-Point  Word 

d = vec_cts(a,b)  Vector  Convert  to Signed  Fixed-Point  Word Saturated  

d = vec_ctu(a,b)  Vector  Convert  to Unsigned  Fixed-Point  Word Saturated  

d = vec_floor(a)  Vector  Floor  

d = vec_trunc(a)  Vector  Truncate  

Floating-Point  Estimate  Intrinsics  

d = vec_expte(a)  Vector  Is 2 Raised  to the  Exponent  Estimate  

Floating-Point  

d = vec_loge(a)  Vector  Log2  Estimate  Floating-Point  

d = vec_re(a)  Vector  Reciprocal  Estimate  

d = vec_rsqrte(a)  Vector  Reciprocal  Square  Root  Estimate  

Compare  Intrinsics  

d = vec_cmpb(a,b)  Vector  Compare  Bounds  Floating-Point  

d = vec_cmpeq(a,b)  Vector  Compare  Equal  

d = vec_cmpge(a,b)  Vector  Compare  Greater  Than  or Equal  

d = vec_cmpgt(a,b)  Vector  Compare  Greater  Than  

d = vec_cmple(a,b)  Vector  Compare  Less  Than  or Equal  

d = vec_cmplt(a,b)  Vector  Compare  Less  Than  

Logical  Intrinsics  

d = vec_and(a,b)  Vector  Logical  AND  
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Table 5. Vector/SIMD  Multimedia  Extension  specific  and  generic  intrinsics  (continued)  

Intrinsic  Description  

d = vec_andc(a,b)  Vector  Logical  AND  with  Complement  

d = vec_nor(a,b)  Vector  Logical  NOR  

d = vec_or(a,b)  Vector  Logical  OR  

d = vec_xor(a,b)  Vector  Logical  XOR  

Rotate  and  Shift  Intrinsics  

d = vec_rl(a,b)  Vector  Rotate  Left  

d = vec_round(a)  Vector  Round  

d = vec_sl(a,b)  Vector  Shift  Left  

d = vec_sld(a,b,c)  Vector  Shift  Left  Double  

d = vec_sll(a,b)  Vector  Shift  Left  Long  

d = vec_slo(a,b)  Vector  Shift  Left  by Octet  

d = vec_sr(a,b)  Vector  Shift  Right  

d = vec_sra(a,b)  Vector  Shift  Right  Algebraic  

d = vec_srl(a,b)  Vector  Shift  Right  Long  

d = vec_sro(a,b)  Vector  Shift  Right  by Octet  

Load  and  Store  Intrinsics  

d = vec_ld(a,b)  Vector  Load  Indexed  

d = vec_lde(a,b)  Vector  Load  Element  Indexed  

d = vec_ldl(a,b)  Vector  Load  Indexed  LRU  

d = vec_lvlx(a,b)  Load  Vector  Left  Indexed  

d = vec_lvlxl(a,b)  Load  Vector  Left  Indexed  Last  

d = vec_lvrx(a,b)  Load  Vector  Right  Indexed  

d = vec_lvrxl(a,b)  Load  Vector  Right  Indexed  Last  

d = vec_lvsl(a,b)  Vector  Load  for Shift  Left  

d = vec_lvsr(a,b)  Vector  Load  Shift  Right  

d = vec_stvlx(a,b)  Store  Vector  Left  Indexed  

d = vec_stvlxl(a,b)  Store  Vector  Left  Indexed  Last  

d = vec_stvrx(a,b)  Store  Vector  Right  Indexed  

d = vec_stvrxl(a,b)  Store  Vector  Right  Indexed  Last  

vec_st(a,b,c)  Vector  Store  Indexed  

vec_ste(a,b,c)  Vector  Store  Element  Indexed  

vec_stl(a,b,c)  Vector  Store  Indexed  LRU  

Pack  and  Unpack  Intrinsics  

d = vec_pack(a,b)  Vector  Pack  

d = vec_packpx(a,b)  Vector  Pack  Pixel  

d = vec_packs(a,b)  Vector  Pack  Saturated  

d = vec_packsu(a,b)  Vector  Pack  Saturated  Unsigned  

d = vec_unpackh(a)  Vector  Unpack  High  Element  

d = vec_unpackl(a)  Vector  Unpack  Low  Element  

Merge  Intrinsics  
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Table 5. Vector/SIMD  Multimedia  Extension  specific  and  generic  intrinsics  (continued)  

Intrinsic  Description  

d = vec_mergeh(a,b)  Vector  Merge  High  

d = vec_mergel(a,b)  Vector  Merge  Low  

Permute  and  Select  Intrinsics  

d = vec_perm(a,b,c)  Vector  Permute  

d = vec_sel(a,b,c)  Vector  Select  

Stream  Intrinsics  

vec_dss(a)  Vector  Data  Stream  Stop  

vec_dssall()  Vector  Stream  Stop  All  

vec_dst(a,b,c)  Vector  Data  Stream  Touch 

vec_dstst(a,b,c)  Vector  Data  Stream  Touch for Store  

vec_dststt(a,b,c)  Vector  Data  Stream  Touch for Store  Transient  

vec_dstt(a,b,c)  Vector  Data  Stream  Touch Transient 

Move  Intrinsics  

d = vec_mfvscr  Vector  Move  from  Vector  Status  and  Control  Register  

vec_mtvscr(a)  Vector  Move  to Vector  Status  and  Control  Register  

Replicate  Intrinsics  

d = vec_splat(a,b)  Vector  Splat  

d = vec_splat_s8(a)  Vector  Splat  Signed  Byte  

d = vec_splat_s16(a)  Vector  Splat  Signed  Half-Word  

d = vec_splat_s32(a)  Vector  Splat  Signed  Word 

d = vec_splat_u8(a)  Vector  Splat  Unsigned  Byte  

d = vec_splat_u16(a)  Vector  Splat  Unsigned  Half-Word  

d = vec_splat_u32(a)  Vector  Splat  Unsigned  Word 

Scalar  Intrinsics  

d = vec_extract(a,element)  Extract  Vector  Element  from  Vector  

d = vec_insert(a,b,element)  Insert  Scalar  into  Specified  Vector  Element  

d = vec_promote(a,element)  Promote  Scalar  to a Vector  

d = vec_splats(a)  Splat  Scalar  to Vector
  

 Table 6. Vector/SIMD  Multimedia  Extension  predicate  intrinsics  

Predicate  Description  

All  Predicates  

d = vec_all_eq(a,b)  All Elements  Equal  

d = vec_all_ge(a,b)  All Elements  Greater  Than  or Equal  

d = vec_all_gt(a,b)  All Elements  Greater  Than  

d = vec_all_in(a,b)  All Elements  in Bounds  

d = vec_all_le(a,b)  All Elements  Less  Than  or Equal  

d = vec_all_lt(a,b)  All Elements  Less  Than  

d = vec_all_nan(a)  All Elements  Not  a Number  

d = vec_all_ne(a,b)  All Elements  Not  Equal  
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Table 6. Vector/SIMD  Multimedia  Extension  predicate  intrinsics  (continued)  

Predicate  Description  

d = vec_all_nge(a,b)  All  Elements  Not  Greater  Than  or Equal  

d = vec_all_ngt(a,b)  All  Elements  Not  Greater  Than  

d = vec_all_nle(a,b)  All  Elements  Not  Less  Than  or Equal  

d = vec_all_nlt(a,b)  All  Elements  Not  Less  Than  

d = vec_all_numeric(a)  All  Elements  Numeric  

Any  Predicates  

d = vec_any_eq(a,b)  Any  Element  Equal  

d = vec_any_ge(a,b)  Any  Element  Greater  Than  or Equal  

d = vec_any_gt(a,b)  Any  Element  Greater  Than  

d = vec_any_le(a,b)  Any  Element  Less  Than  or Equal  

d = vec_any_lt(a,b)  Any  Element  Less  Than  

d = vec_any_nan(a)  Any  Element  Not  a Number  

d = vec_any_ne(a,b)  Any  Element  Not  Equal  

d = vec_any_nge(a,b)  Any  Element  Not  Greater  Than  or Equal  

d = vec_any_ngt(a,b)  Any  Element  Not  Greater  Than  

d = vec_any_nle(a,b)  Any  Element  Not  Less  Than  or Equal  

d = vec_any_nlt(a,b)  Any  Element  Not  Less  Than  

d = vec_any_numeric(a)  Any  Element  Numeric  

d = vec_any_out(a,b)  Any  Element  Out  of Bounds
  

Programming with Vector/SIMD Multimedia Extension 

intrinsics 

Vector/SIMD  Multimedia  Extension  data  types  and  Vector/SIMD  Multimedia  

Extension  intrinsics  can  be  used  in  a seamless  way  throughout  a C-language  

program.  

You do  not  need  to  setup,  to enter  a special  mode,  or to include  a special  header  

file.  

Example: incorporating Vector instructions into a PPE program 

The  sample  program  vmx_sample  illustrates  the  ease  with  which  vector  instructions  

can  be  incorporated  into  a PPE  program.  

The  program  vmx_sample  performs  this  processing:  

1.   “typedefs”  a union  of an  array  of  four  ints  and  a vector  of signed  ints. This  is 

only  done  so  we  can  refer  to  the  values  in  two  different  ways.  (Vector  elements  

can  also  be  accessed  using  the  SPU  intrinsic,  spu_extract. For  more  information  

about  SPU  intrinsics,  see  “Intrinsic  classes”  on  page  66.  

2.   Loads  the  literal  value  2 into  each  of the  four  32-bit  fields  of vector  vConst. 

3.   Loads  four  different  integer  values  into  the  fields  of vector  v1.  

4.   Calls  the  vec_add  intrinsic,  and  the  two  vectors  are  added  with  the  result  being  

assigned  to  v2.
#include  <stdio.h>  

  

// Define  a type  we can  look  at either  as  an array  of ints  or as a vector.
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typedef  union  { 

 int  iVals[4];  

 vector  signed  int  myVec;  

} vecVar;  

  

int  main()  

{ 

 vecVar  v1,  v2,  vConst;   // define  variables  

  

 // load  the  literal  value  2 into  the 4 positions  in vConst,  

 vConst.myVec  = (vector  signed  int){2,  2, 2, 2};  

  

 // load  4 values  into  the  4 element  of vector  v1 

 v1.myVec  = (vector  signed  int){10,  20,  30,  40};  

  

 // call  vector  add  function  

 v2.myVec  = vec_add(  v1.myVec,  vConst.myVec  ); 

  

 // see  what  we got!  

 printf("\nResults:\nv2[0]  = %d,  v2[1]  = %d,  v2[2]  = %d,  v2[3]  = %d\n\n",  

   v2.iVals[0],  v2.iVals[1],  v2.iVals[2],  v2.iVals[3]);  

  

 return  0; 

} 

See  “Developing  code  for  the  Cell  Broadband  Engine”  on  page  41  for  more  

information  on  how  to  run the  example  on  the  simulator.  

Figure  12  shows  the  results  of  running  the  sample  program.  

   

Example: array-summing 

This  example  illustrates  array-summing  using  a function  that  sums  an  input  array  

of  16-byte  values.  

The  following  code  contains  three  versions  of  a function  that  sums  an  input  array  

of  16-byte  values.  For  this  kind  of  array-summing  function,  you  have  several  

options:  

v   You can  unroll  the  scalar  code  to  slightly  improve  the  performance.  

v   You can  use  the  Vector/SIMD  Multimedia  Extension  to  significantly  improve  the  

performance.  

v   You can  eliminate  the  loop  entirely.

The  first  option  performs  16  iterations  of  the  loop.  The  second  option  performs  

only  four  iterations  of  the  loop  but  with  four  additions  in  each  iteration.  The  third  

option  uses  Vector/SIMD  Multimedia  Extension  intrinsics  to  eliminate  the  loop  

entirely.  

[user@bringup  /]#  callthru  source  vmx_sample  > vmx_sample  

[user@bringup  /]#  chmod  +x  vmx_sample  

[user@bringup  /]#  vmx_sample  

  

Results:  

v2[0]  = 12,  v2[1]  = 22,  v2[2]  = 32,  v2[3]  = 42 

  

[user@bringup  /]#  _ 

Figure  12.  Running  the  Vector/SIMD  Multimedia  Extension  sample  program
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// 16 iterations  of a loop  

int  rolled_sum(unsigned  char  bytes[16])  

{ 

 int  i; 

 int  sum  = 0; 

 for  (i = 0;  i < 16;  ++i)  { 

  sum  += bytes[i];  

 } 

 return  sum;  

} 

  

  

// 4 iterations  of a loop,  with  4 additions  in each  iteration  

int  unrolled_sum(unsigned  char  bytes[16])  

{ 

 int  i; 

 int  sum[4]  = {0,  0, 0, 0};  

 for  (i = 0;  i < 16;  i += 4) { 

  sum[0]  +=  bytes[i  + 0];  

  sum[1]  +=  bytes[i  + 1];  

  sum[2]  +=  bytes[i  + 2];  

  sum[3]  +=  bytes[i  + 3];  

 } 

 return  sum[0]  + sum[1]  + sum[2]  + sum[3];  

} 

  

// Vectorized  for   Vector/SIMD  Multimedia  Extension  

int  vectorized_sum(unsigned  char  bytes[16])  

{ 

  vector  unsigned  char  vbytes;  

  union  { 

    int  i[4];  

    vector  signed  int  v; 

  } sum;  

  vector  unsigned  int zero  = (vector  unsigned  int){0};  

  

  //  Perform  a misaligned  vector  load  of the 16  bytes.  

  vbytes  = vec_perm(vec_ld(0,  bytes),  vec_ld(16,  bytes),  vec_lvsl(0,  bytes));  

  

  //  Sum  the  16  bytes  of the vector  

  sum.v  = vec_sums((vector  signed  int)vec_sum4s(vbytes,  zero),  

    (vector  signed  int)zero);  

  

  //  Extract  the  sum  and  return  the  result.  

  return  (sum.i[3]);  

} 

The PPE and the SPEs 

This  section  describes  the  relationship  between  the  PowerPC  Processor  Element  (PPE)  

and  the  Synergistic  Processor  Elements  (SPEs). 

Storage Domains 

Three  types  of  storage  domains  are  defined  in  the  Cell  Broadband  Engine:  one  

main-storage  domain  , eight  SPE  local  store  domains  , and  eight  SPE  channel  domains. 

The  three  types  of  storage  domains  are  shown  in  Figure  13  on  page  36.  The  

main-storage  domain,  which  is  the  entire  effective-address  space,  can  be  configured  

by  the  PPE  operating  system  to  be  shared  by  all  processors  and  memory-mapped  

devices  in  the  system  (all  I/O  is memory-mapped).  
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However,  the  local-storage  and  channel  problem-state  (user-state)  domains  are  

private  to  the  SPU,  LS,  and  MFC  of  each  SPE.  

 

 An  SPE  can  only  fetch  instructions  from  its  own  LS,  and  loads  and  stores  can  only  

access  the  LS.  An  SPE  or  PPE  performs  data  transfers  between  the  SPE’s  LS  and  

main  storage  primarily  using  DMA  transfers  controlled  by  the  MFC  DMA  

controller  for  that  SPE.  Software  on  the  SPE’s  SPU  interacts  with  the  MFC  through  

channels,  which  enqueue  DMA  commands  and  provide  other  facilities,  such  as  

mailboxes,  signal  notification,  and  access  auxiliary  resources.  

An  SPE  program  references  its  own  LS  using  a Local  Store  Address  (LSA).  The  LS  

of  each  SPE  is  also  assigned  a Real  Address  (RA)  range  within  the  system’s  

memory  map.  This  allows  privileged  software  to  map  LS  areas  into  the  effective  

address  (EA)  space,  where  the  PPE,  other  SPEs,  and  other  devices  that  generate  

EAs  can  access  the  LS.  

Each  SPE’s  MFC  serves  as  a data-transfer  engine.  DMA  transfer  requests  contain  

both  an  LSA  and  an  EA.  Thus,  they  can  address  both  an  SPE’s  LS  and  main  

storage  and  thereby  initiate  DMA  transfers  between  the  domains.  The  MFC  

accomplishes  this  by  maintaining  and  processing  an  MFC  command  queue.  DMA  

requests  can  be  sent  to  an  MFC  either  by  software  on  its  associated  SPU  or  on  the  

PPE,  or  by  any  other  processing  device  that  has  access  to  the  MFC’s  MMIO  

problem-state  registers.  

  

Figure  13.  Storage  domains  defined  in the Cell  Broadband  Engine
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The  queued  requests  are  converted  into  DMA  transfers.  Each  MFC  can  maintain  

and  process  multiple  in-progress  DMA  command  requests  and  DMA  transfers.  The  

MFC  can  also  autonomously  manage  a sequence  of  DMA  transfers  in response  to  a 

DMA-list  command  from  its  associated  SPU.  Each  DMA  command  is tagged  with  a 

5-bit  Tag Group  ID.  Software  can  use  this  identifier  to  check  or  wait  on  the  

completion  of  all  queued  commands  in  one  or  more  tag  groups.  

The  MFC  supports  naturally  aligned  transfer  sizes  of 1, 2,  4, or  8 bytes,  and  

multiples  of  16-bytes,  with  a maximum  transfer  size  of  16  KB.  Peak  performance  

can  be  achieved  for  transfers  when  both  the  EA  and  LSA  are  128-byte  aligned  and  

the  size  of the  transfer  is a multiple  of  128  bytes.  

Each  MFC  has  an  associated  memory  management  unit  (MMU)  that  holds  and  

processes  address-translation  and  access-permission  information  supplied  by  the  

PPE  operating  system.  This  MMU  is distinct  from  the  one  used  by  the  PPE.  To 

process  an  effective  address  provided  by  a DMA  command,  the  MMU  uses  the  

same  method  as  the  PPE  memory-management  functions.  Thus,  DMA  transfers  are  

coherent  with  respect  to  system  storage.  Attributes  of system  storage  are  governed  

by  the  page  and  segment  tables  of  the  PowerPC  Architecture.  

The  PPE  or  other  processing  devices  can  initiate  MFC  commands  on  a particular  

MFC  by  accessing  its  MFC  Command-Parameter  Registers, shown  in Table  7. These  

registers  are  mapped  to the  system’s  real-address  space.  The  PPE  performs  MMIO  

reads  and  writes  to  access  these  registers.  The  registers  are  contained  in  each  SPE’s  

memory  region,  and  DMA  command  requests  are  made  by  writing  parameters  to  

the  registers.  

 Table 7. MFC  command-parameter  registers  for PPE-initiated  DMA  transfers  

Name  Mnemonic  

Max.  

Entries  R/W  

Width  

(bits)  

MFC  Local-Storage  Address  MFC_LSA  1 W 32 

MFC  Effective  Address  High  MFC_EAH  1 W 32 

MFC  Effective  Address  Low  MFC_EAL  1 W 32 

MFC  Transfer  Size  

MFC  Command  Tag  Identification  

MFC_Size  

MFC_TagID  

1 W 32 

MFC  Class  ID and  Command  

Opcode  

MFC_ClassID_CMD  8 W 32 

MFC  Command  Status  MFC_CMDStatus  1 R 32
  

Note:  The  MFC_EAH  and  MFC_EAL  can  be  written  in  a single  64-bit  store.  Similarly,  

MFC_Size, MFC_TagID, and  MFC_ClassID_CMD  can  also  be  written  in  a single  64-bit  

store.  

Issuing DMA commands from the PPE 

To enqueue  a DMA  command  from  the  PPE,  access  the  MFC  Command-Parameter  

Registers  in  this  sequence:  

1.   Write the  LS  address  to  the  MFC_LSA  register.  

2.   Write the  effective  address  high  and  low  parts  to  the  MFC_EAH  and  MFC_EAL  

registers.  

3.   Write the  transfer  size  and  tag  ID  to  the  MFC_Size  and  MFC_TagID  registers.  

4.   Write the  class  ID  and  command  opcode  to the  MFC_ClassID_CMD  registers.  
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5.   Read  the  MFC_CMDStatus  register  to  determine  the  success  or  failure  of  the  

attempt  to  enqueue  a DMA  command.  

The  least-significant  2 bits  of  the  command  status  value  returned  from  the  read  of 

the  MFC_CMDStatus  register  indicate  the  success  or  error  of  the  attempt  to enqueue  a 

DMA.  The  values  of  these  two  bits  have  the  following  meanings:  

v   0 – Indicates  that  the  enqueue  was  successful.  

v   1 – Indicates  that  a sequence  error  occurred  while  enqueuing  the  DMA.  For  

example,  an  interrupt  occurred,  then  another  DMA  was  started  within  an  

interrupt  handler.  In  this  case,  the  DMA  enqueue  sequence  must  be  restarted  at  

step  1. 

v   2 – Indicates  that  the  enqueue  failed  due  to insufficient  space  in  the  command  

queue.  

v   3 – Indicates  that  both  errors  occurred.  

In  the  case  of  insufficient  space,  software  could  wait  for  space  to become  available  

before  attempting  the  DMA  transfer  again,  or  software  could  simply  continue  

attempting  to  enqueue  the  DMA  until  successful.  

Creating threads for the SPEs 

Programs  to  be  run on  an  SPE  are  most  often  written  in C  or  C++  (or  assembly  

language)  and  can  use  the  SPE  data  types  and  intrinsics  defined  in the  SPU  C/C++  

Language  Extensions. 

The  SPU  C/C++  Language  Extensions  are  described  in  “SPU  C/C++  language  

extensions  (intrinsics)”  on  page  64.  The  SPE  code  modules  must  be  written  and  

compiled  separately  from  the  PPE  code  modules,  using  different  compilers.  A  PPE  

module  starts  an  SPE  module  running  by  creating  a thread  on  the  SPE,  using  the  

spe_context_create, spe_program_load, and  spe_context_run  library  calls,  

provided  in  the  SPE  runtime  management  library.  

The  spe_context_create  call  creates  a context  for  the  SPE  thread  which  contains  

the  persistent  information  about  a logical  SPE.  This  information  should  not  be  

accessed  directly  by  the  application.  The  signature  and  parameter  synopsis  for  the  

spe_create_thread  library  call  is:  

spe_context_ptr_t   spe_context_create(unsigned  int flags,  

  spe_gang_context_ptr_t  gang)  

v   flags  – This  is a bit-wise  OR  of  modifiers  that  is applied  when  the  new  context  

is created.  The  following  values  are  accepted:  

–   0 – No  modifiers  are  applied.  

–   SPE_EVENTS_ENABLE  – Configure  the  context  with  event  handling  enabled.  

–   SPE_CFG_SIGNOTIFY1_OR  – Configure  the  SPU  Signal  Notification  1 Register  to  

be  in  “logical  OR”  mode  instead  of  the  default  “Overwrite”  mode.  

–   SPE_CFG_SIGNOTIFY2_OR  – Configure  the  SPU  Signal  Notification  2 Register  to  

be  in  “logical  OR”  mode  instead  of  the  default  “Overwrite”  mode.  

–   SPE_MAP_PS  – Request  permission  for  memory-mapped  access  to  the  SPE  

thread’s  problem  state  area.  

–   SPE_ISOLATE  – Specifies  that  the  SPE  will  execute  in the  isolation  mode.  

–   SPE_ISOLATED_EMULATE  – Specifies  that  the  SPE  will  execute  in  an  emulated  

isolation  mode.
v   gang  – Collection  of contexts  in  which  the  context  being  created  should  made  a 

part  of.
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Before  being  able  to  run an  SPE  context,  an  SPE  program  has  to be  loaded  into  the  

context  using  the  spe_program_load  subroutine.  The  signature  and  parameter  

synopsis  for  the  spe_program_load  library  call  is:  

int   spe_program_load(spe_context_ptr  spe,  spe_program_handle_t  *program)  

v   spe  – The  SPE  context  in  which  in  specified  program  is to be  loaded.  

v   program  – Indicates  the  program  to  be  loaded  into  the  SPE  context.  This  is  an 

opaque  pointer  to  an  SPE  Executable  and  Linking  Format  (ELF)  image  that  has  

already  been  loaded  and  mapped  into  system  memory.  This  pointer  is normally  

provided  as  a symbol  reference  to  an  SPE  ELF  executable  image  that  has  been  

embedded  into  a PPE  ELF  object  and  linked  with  the  calling  PPE  program.  This  

pointer  can  also  be  established  dynamically  by  loading  a shared  library  

containing  an  embedded  SPE  ELF  executable,  using  dlopen(2)  and  dlsym(2), or  

by  using  the  spe_image_open  function  to  load  and  map  a raw  SPE  ELF  

executable.  

An  SPE  context  is  executed  on  a physical  SPE  by  calling  the  spe_context_run  

function.  This  subroutine  causes  the  current  PPE  thread  to  transition  to  a SPE  

thread  by  passing  its  execution  control  from  the  PPE  to  the  SPE  whose  context  is 

scheduled  to  run on.  The  PPE  resumes  execution  when  the  SPE  stops.

Note:  In  order  to  achieve  multiple  threads  of  execution  (PPE  and  SPE  threads),  

separate  “pthreads”  must  be  created  for  each  thread  of execution  using  

pthread_create. An  example  is provided  in “Producing  a simple  multi-threaded  

CBE  program”  on  page  42.  

The  signature  and  parameter  synopsis  for  the  spe_context_run  library  call  is:  

int  spe_context_run(spe_context_ptr_t  spe,  unsigned  int *entry,  

  unsigned  int  runflags,  void  *argp,  void  *envp,  spe_stop_info_t  *stopinfo)  

v   spe  —  The  context  to be  run. 

v   entry  —  Pointer  initial  value  of the  instruction  pointer  in which  the  SPE  

program  should  start  executing.  If  the  value  pointed  to  by  entry  is 

SPE_DEFAULT_ENTRY, the  default  entry  for  the  main  program  obtained  from  

loaded  SPE  image  will  be  used.  Upon  return  from  the  spe_context_run  call,  the  

value  pointed  to  by  entry  contains  the  next  instruction  to  be  executed  upon  

resumption  of  the  program.  

v   runflags  —  This  is a bit-wise  OR  of  modifiers  which  request  specific  behavior  

when  the  SPE  context  is run. Flags  include:  

–   0 —  Default  behavior.  No  modifiers  are  applied.  

–   SPE_RUN_USER_REGS  —  Specifies  that  the  SPE  setup  registers,  r3,  r4,  and  r5,  are  

initialized  with  the  48  bytes  pointed  to  by  argp. 

–   SPE_NO_CALLBACKS  —  Specifies  that  register  SPE  library  callbacks  should  not  

be  automatically  executed.  This  includes  “PPE-assisted  library  calls”  that  are  

provided  by  the  SPE  Runtime  library.
v    argp  —  An  optional  pointer  to  application  specific  data.  It is  passed  as  the  

second  parameter  of  the  SPU  program.  

v   envp  —  An  optional  pointer  to  environment  specific  data.  It  is passed  as the  

third  parameter  of  the  SPU  program.  

v   stopinfo  —  An  optional  pointer  to  a structure  of  type  spe_stop_info_t  that  

provides  information  as  to  the  reason  why  the  SPE  stopped  running.  See  library  

documentation  for  more  details  on  this  structure.  

The  following  code  sample  shows  PPE  code  creating  a SPE  context,  loading  a SPE  

program  into  the  context  and  running  the  program  from  the  current  thread.  
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#include  <libspe2.h>  

extern  spe_program_handle_t  spe_code;  

...  

spe_context_ptr_t  ctx;  

unsigned  int  entry  = SPE_DEFAULT_ENTRY;  

  

if ((ctx  = spe_context_create(0,  NULL))  == NULL)  { 

 perror(“Failed  creating  SPE context);  

 exit(1);  

} 

if (spe_program_load(ctx,  &spe_code))  { 

 perror(“Failed  loading  program”);  

 exit(1);  

} 

if (spe_context_run(ctx,  &entry,  0, NULL,  NULL,  NULL)  < 0) { 

 perror(“Failed  running  context”);  

 exit(1);  

} 

Communication between the PPE and SPEs 

The  PPE  communicates  with  the  SPEs  through  privileged-state  and  problem-state  

MMIO  registers  supported  by  the  MFC  of  each  SPE.  

These  registers  are  accessed  by  the  associated  SPE  through  its  channel  mechanism  

(see“Channels”  on  page  55),  which  consist  of  unidirectional  registers  and  queues  

and  support  logic.  The  three  primary  communication  mechanisms  between  the  PPE  

and  SPEs  are  mailboxes,  signal  notification  registers,  and  DM)  

Mailboxes  are  queues  for  exchanging  32-bit  messages.  Two mailboxes  (the  SPU  

Write Outbound  Mailbox  and  the  SPU  Write Outbound  Interrupt  Mailbox)  are  

provided  for  sending  messages  from  the  SPE  to  the  PPE.  One  mailbox  (the  SPU  

Read  Inbound  Mailbox)  is provided  for  sending  messages  to  the  SPE.  Table 8 lists  

the  mailbox  channels  and  their  associated  MMIO  registers.  

Note:  Mailboxes  can  also  be  used  as  a communications  mechanism  between  SPEs.  

This  is  accomplished  by  an  SPE  DMAing  data  into  the  other  SPE’s  mailbox  using  

the  effective  addressed  problem  state  mapping.  

 Table 8. Mailbox  channels  and  MMIO  registers  

Name  

Channel  MMIO  Register  

Mnemonic  

Max.  

entries  R/W  

Width  

(bits)  Mnemonic  

Max.  

entries  R/W  

Width 

(bits)  

SPU  Write  

Outbound  Mailbox  

SPU_WrOutMbox  1 W 32 SPU_Out_Mbox  1 R 32 

SPU  Read  Inbound  

Mailbox  

SPU_RdInMbox  4 R 32 SPU_In_Mbox  4 W 32 

SPU  Write  

Outbound  

Interrupt  Mailbox  

SPU_WrOutIntrMbox  1 W 32 SPU_Out_Intr_Mbox  1 R 32

  

SPU  signal-notification  channels  are  inbound  (to  an  SPE)  32-bit  registers.  They  can  

be  configured  for  one-to-one  signaling  or  many-to-one  signaling.  An  SPE  read  of  

one  of  its  two  signal-notification  channels  clears  the  channel.  A  PPE  MMIO  read  

does  not  clear  the  channel.  Table 9 on  page  41  lists  the  signal-notification  channels  

and  associated  MMIO  registers.  
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Table 9. Signal  notification  channels  and  MMIO  registers  

Name  

Channel  MMIO  Register  

Mnemonic  

Max.  

entries  R/W  

Width 

(bits)  Mnemonic  

Max.  

entries  R/W  

Width  

(bits)  

SPU  Signal  

Notification  1 

SPU_RdSigNotify1  1 R 32 SPU_Sig_Notify_1  1 R/W  32 

SPU  Signal  

Notification  2 

SPU_RdSigNotify2  1 R 32 SPU_Sig_Notify_2  1 R/W  32

  

The  PPE  is  often  used  as  an  application  controller,  managing  and  distributing  work  

to  the  SPEs.  A large  part  of this  task  is  loading  main  storage  with  the  data  to  be 

processed,  and  then  notifying  the  SPE  by  either  writing  to  the  SPU  Read  Inbound  

Mailbox  or  writing  to  one  of  the  SPE’s  signal  notification  registers.  

Mailboxes  are  also  useful  when  the  SPE  places  computational  results  in  main  

storage  via  DMA.  After  requesting  the  DMA  transfer,  the  SPE  waits  for  the  DMAs  

to  complete,  and  then  writes  to an  SPU  Write Outbound  Mailbox  to  notify  the  PPE  

that  its  computation  is complete.  The  PPE  can  use  either  a mailbox  or  a signal  to 

let  an  SPE  know  that  the  PPE  has  placed  computational  results  in  main  storage  via 

DMA.  

Developing code for the Cell Broadband Engine 

There  can  be  several  types  of  programs,  including  PPE  programs,  SPE  programs,  

and  Cell  Broadband  Engine  programs  (PPE  programs  with  embedded  SPE  

programs).  

The  PPE  and  SPE  programs  use  different  compilers.  The  correct  compiler,  compiler  

flags,  and  libraries  must  be  used  for  the  intended  processor  and  program  type.  The  

PPE  typically  sets  up,  starts,  and  stops  an  SPE.  Communication  between  the  PPE  

and  SPEs  is  an  important  consideration.  

To aid  in  simplifying  the  process  of  producing  programs  for  the  Cell  Broadband  

Engine,  the  SDK’s  Samples  (see  “The  software  development  kit”  on  page  16)  

provides  a build  environment  based  upon  the  make  utility.  For  additional  details  

on  the  SDK’s  build  environment,  consult  the  file  README_build_env.txt  located  in  

/opt/cell/sdk/buildutils. 

Programmers  can  declare  the  types  of  programs  in the  makefile,  and  the  correct  

compiler,  compiler  options,  and  libraries  will  be  used  for  the  build.  The  most  

important  target  types  are  PROGRAM_ppu  and  PROGRAM_spu, for  building  PPE  

programs  and  SPE  programs,  respectively.  To use  makefile  definitions  supplied  by  

the  SDK  for  producing  programs,  include  the  following  line  at the  bottom  of the  

makefile:  

include  ../../../buildutils/make.footer  

Insert  as  many  instances  of “../”  as necessary  to  reach  the  top  of the  directory  tree  

where  buildutils  resides.  Alternatively,  make.footer  can  be  sourced  directly  

(useful  when  working  on  projects  within  the  Eclipse  IDE  framework),  by  defining  

CELL_TOP  environment  variable  and  sourcing  the  make.footer  as  follows:  

include  $(CELL_TOP)/buildutils/make.footer  

 

Chapter  2. The PPE and the programming  process 41



The  makefiles  in  the  SDK  Samples  support  both  methods  of importing  the  

make.footer. 

Figure  14  shows  a sample  directory  structure  and  makefiles  for  a system  with  a 

PPE  program  and  an  SPE  program.  This  sample  project  sampleproj  has  a project  

directory  and  two  subdirectories.  The  ppu  directory  contains  the  source  code  and  

makefile  for  the  PPE  program.  The  spu  directory  has  the  source  code  and  makefile  

for  the  SPE  program.  The  makefile  in the  project  directory  executes  the  makefiles  

in  the  two  subdirectories.  This  is only  one  of  the  possible  project  directory  

structures.  

   

Producing a simple multi-threaded CBE program 

To produce  a simple  program  for  the  CBE,  you  should  follow  the  steps  listed  

below  (this  example  is included  in  the  SDK  in  /opt/cell/sdk/src/tutorial/
simple).  

The  project  is called  simple. For  this  example,  the  PPE  code  will  be  built  in  the  

project  directory,  instead  of a ppu  sub-directory.  

1.   Create  a directory  named  simple. 

2.   In  directory  simple, create  a file  named  Makefile  using  the  following  code:  

########################################################################  

#   Subdirectories  

########################################################################  

  

DIRS   :=  spu  

  

########################################################################  

#                       Target  

########################################################################  

  

PROGRAM_ppu    :=  simple  

  

########################################################################  

#                       Local  Defines  

########################################################################  

 

  

Figure  14.  Sample  project  directory  structure  and  makefiles
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IMPORTS          := spu/lib_simple_spu.a  -lspe2  -lpthread  

# imports  the  embedded  simple_spu  library  

# allows  consolidation  of spu  program  into  ppe  binary  

  

########################################################################  

#   make.footer  

########################################################################  

  

# make.footer  is in the top  of the SDK 

ifdef  CELL_TOP  

 include  $(CELL_TOP)/buildutils/make.footer  

else  

 include  ../../../../buildutils/make.footer  

endif  

3.   In  directory  simple, create  a file  simple.c  using  the  following  code:  

#include  <stdlib.h>  

#include  <stdio.h>  

#include  <errno.h>  

#include  <libspe2.h>  

#include  <pthread.h>  

  

extern  spe_program_handle_t  simple_spu;  

  

#define  MAX_SPU_THREADS   16  

  

  

void  *ppu_pthread_function(void  *arg)  { 

 spe_context_ptr_t  ctx;  

 unsigned  int  entry  = SPE_DEFAULT_ENTRY;  

  

 ctx  = *((spe_context_ptr_t  *)arg);  

 if (spe_context_run(ctx,&entry,  0, NULL,  NULL,  NULL)  < 0) { 

  perror  ("Failed  running  context");  

  exit  (1);  

 } 

 pthread_exit(NULL);  

} 

  

  

int  main()  

{ 

 int  i,spu_threads;  

 spe_context_ptr_t  ctxs[MAX_SPU_THREADS];  

 pthread_t  threads[MAX_SPU_THREADS];  

  

/* Determine  the  number  of SPE threads  to create  */ 

spu_threads  = spe_cpu_info_get(SPE_COUNT_USABLE_SPES,  -1);  

if (spu_threads  > MAX_SPU_THREADS)  spu_threads  = MAX_SPU_THREADS;  

  

 /* Create  several  SPE-threads  to execute  ’simple_spu’  */ 

 for(i=0;  i<spu_threads;  i++)  { 

  /* Create  context  */ 

  if ((ctxs[i]  = spe_context_create  (0,  NULL))  == NULL)  { 

   perror  ("Failed  creating  context");  

   exit  (1);  

  } 

  /* Load  program  into  context  */ 

  if (spe_program_load  (ctxs[i],&simple_spu))  { 

   perror  ("Failed  loading  program");  

   exit  (1);  

  } 

   /* Create  thread  for  each  SPE  context  */ 

      if (pthread_create  (&threads[i],  NULL,&ppu_pthread_function,&ctxs[i]))   { 

   perror  ("Failed  creating  thread");  

   exit  (1);  

    }
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/* Wait  for  SPU-thread  to complete  execution.  */ 

 for  (i=0;  i<spu_threads;  i++)  { 

  if (pthread_join  (threads[i],  NULL))  { 

   perror("Failed  pthread_join");  

   exit  (1);  

  } 

 } 

  

 printf("\nThe  program  has  successfully  executed.\n");  

  

 return  (0);  

} 

4.   Create  a directory  named  spu. 

5.   In  the  directory  spu, create  a file  named  Makefile  using  the  following  code:  

#######################################################################  

#   Target  

########################################################################  

  

PROGRAMS_spu     := simple_spu  

  

# created  embedded  library  

LIBRARY_embed    := lib_simple_spu.a  

  

########################################################################  

#   make.footer  

########################################################################  

  

# make.footer  is  in  the top of the SDK 

ifdef  CELL_TOP  

 include  $(CELL_TOP)/buildutils/make.footer  

else  

 include  ../../../../../buildutils/make.footer  

endif  

6.   In  the  same  directory,  create  a file  simple_spu.c  using  the  following  code:  

#include  <stdio.h>  

  

int  main(unsigned  long  long  id) 

{ 

  

 /* The  first  parameter  of an spu program  will  always  be the  spe_id  of the  spe  

  * thread  that  issued  it.  

  */ 

 printf("Hello  Cell  (0x%llx)\n",  id);  

  

 return  0; 

} 

7.   Compile  the  program  by  entering  the  following  command  at the  command  line  

while  in  the  simple  directory:  

make  

This  CBE  program  then  creates  SPE  threads  that  output  “Hello  Cell  (#)\n”  to  the  

systemsim  output  window,  where  # is the  spe_id  of the  SPE  thread  that  issued  the  

print.  

Running the program in the simulator 

Now  that  we  have  compiled  the  program,  it  can  now  be  executed  either  on  a CBE  

system  or  a simulation  of a CBE  system. In  this  case,  we  will  use  the  IBM  Full  System  

Simulator  for  the  Cell  Broadband  Engine  as  a simulation  of a CBE  system  by  

starting  the  simulator,  importing  the  program,  and  executing  it. 
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To start  the  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine  with  a 

graphics  user  interface:  

1.   Create  a private,  non-root,  simulator  execution  environment.  

  mkdir  sim  

  cd sim  

  cp /opt/ibm/systemsim-cell/run/cell/linux/.systemsim.tcl  . 

  export  PATH=/opt/ibm/systemsim-cell/bin:$PATH  

2.   Start  the  simulator  with  a graphical  user  interface:  

  systemsim  -g 

3.   Two  new  windows  will  appear  on  the  screen.  The  first  is a 

command-line/console  window  labeled  mysim  in  the  window’s  title  bar. The  

second  is  the  simulator  graphical  user  interface  (GUI)  window.  These  windows  

are  shown  in  Figure  15.  

 

The  window  labeled  mysim  is an  uart  window  that,  when  Linux  boots,  it 

becomes  a Linux  console  window.  When  the  console  window  first  appears,  it is 

empty  and  there  is no  user  prompt,  because  Linux  has  not  yet  been  booted  on  

the  simulated  system.  

  

Figure  15. Windows  visible  after  starting  the  simulator  GUI
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The  window  in  which  the  simulator  was  started  (systemsim  -g)  is the  simulator  

command-line  window.  

4.   Boot  the  Linux  operating  system  on  the  simulator  by  clicking  the  Go  button  on  

the  graphical  user  interface  (GUI).  To make  the  simulator  run “quickly”,  click  

the  Fast  Mode  button  prior  to  Go.  This  forces  the  simulator  to  bypass  its  

standard  analysis  and  statistic  collection  features.  The  console  window  will  

begin  to  display  the  Linux  booting  process.  When  Linux  has  finished  booting  

on  the  simulator,  a command  prompt  will  be  visible  in  the  window.  Figure  16  

shows  the  window  on  completion  of the  boot  process.  

 

The  simulator  is now  ready  to import  the  sample  program  into  its  environment.  

Before  doing  that,  however,  you  can  confirm  that  the  program  is not  in  the  

simulator  environment,  by  entering  the  ls  command  at  the  prompt  in the  

console  window,  and  observing  that  simple  is not  listed  in  the  directory  listing.  

5.   Import  the  program  from  the  base  simulator  hosting  environment  into  the  

simulator  environment  by  entering  the  following  command:  

callthru  source  /tmp/simple  > simple  

This  command  tells  the  simulator  environment  to  “call  through”  to  the  

simulator  hosting  environment’s  /tmp  directory,  retrieve  the  file  called  simple, 

and  copy  that  file  to  the  simulator  file  system.  If you  now  enter  an  ls  

command  in  the  console  window,  you  will  see  simple  listed  in  the  current  

directory.  Figure  17  on  page  47  shows  the  process  of  loading  the  program  into  

the  simulation  environment.  

Alternatively,  one  can  permanently  add  or  delete  files  to the  sysroot  disk  

image  by  performing  a loop  device  mount  the  sysroot  disk  image  and  copying  

or  removing  files  from  the  mounted  image,  prior  to booting  the  simulation  

environment.  For  example,  the  following  sequence:  

  

Figure  16.  Console  window  on completion  of Linux  boot
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mount  -o loop  /opt/ibm/systemsim-cell/image/cell/sysroot_disk  /mnt  

  cp /tmp/simple  /mnt/simple  

  umount  /mnt  

copies  the  simple  executable  from  the  host  system’s  /tmp  directory  to the  

sysroot’s  / directory.  

 

Even  though  the  file  had  execute  permissions  in  the  base  simulator  hosting  

environment,  the  newly  imported  file  in  the  emulator  environment  does  not.  

6.   Add  execute  permissions  to  the  program  file  simple  by  issuing  the  following  

command:  

  chmod  +x simple  

7.   Execute  the  program  by  issuing  the  following  command:  

  ./simple  

The  output  of  the  program  will  appear  in  the  console  window.  Figure  18  on  page  

48  shows  the  output  of  running  the  sample  program.  

 

  

Figure  17. Loading  the  program  into  the  simulation  environment
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Debugging programs 

Debugging  a program  is often  the  most  challenging  part  of  programming,  

especially  with  multithreaded  programs.  The  SDK  contains  several  tools  for  

debugging,  the  most  important  of  which  are  the  gdb  debugger  and  the  IBM  Full  

System  Simulator  for  the  Cell  Broadband  Engine. 

The  gdb  debugger  is a command-line  debugger  available  as  part  of the  GNU  

development  environment.  Because  of the  Cell  Broadband  Engine’s  unique  

characteristics,  gdb  has  been  modified  so  that  there  are  actually  two  versions  of  the  

debugger  – ppu-gdb  for  debugging  PPE  and  combined  PPE  and  SPE  programs,  and  

spu-gdb  for  debugging  SPE  programs.  For  additional  information  on  using  ppu-gdb  

and  spu-gdb,  consult  the  Software  Development  Kit,  Programmer’s  Guide. 

The  other  tool  for  debugging  a Cell  Broadband  Engine  program  is the  IBM  Full  

System  Simulator  for  the  Cell  Broadband  Engine. This  simulator  lets  you  view  many  

aspects  of  the  simulated  running  program  in GUI  mode.  You can  also  control  many  

aspects  of  the  simulator  using  Tcl  commands.  The  simulator  is described  more  

fully  in  Chapter  5, “The  simulator,”  on  page  123.  

  

Figure  18.  Running  the  sample  program
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Chapter  3.  Programming  the  SPEs  

The  eight  identical  Synergistic  Processor  Elements  (SPEs)  are  optimized  for  

compute-intensive  applications  in which  a program’s  data  and  instruction  needs  

can  be  anticipated  and  transferred  into  the  local  store  (LS)  by  DMA  while  the  SPE  

computes  using  previously  transferred  data  and  instructions.  

The  streaming  data  sets  in  3D  graphics,  media,  and  broadband  communications  are  

examples  of  applications  that  run well  on  SPEs.  However,  the  SPEs  are  not  

optimized  for  running  programs  that  have  significant  branching,  such  as  an  

operating  system.  Each  SPE  supports  only  a single  program  context  at any  one  

time.  Typically,  the  operating  system  runs on  the  PPE,  and  user-mode  threads  are  

execute  on  the  SPEs.  

The  SPEs  achieve  high  performance,  in  part,  by  eliminating  the  overhead  of load  

and  store  address  translation,  hardware-managed  caches,  out-of-order  instruction  

issue,  and  branch  prediction.  Instead,  the  SPEs  capitalize  on  the  high  

computational  efficiencies  that  can  be  obtained  for  streaming-data  applications  by  

providing  a large  (128-entry  by  128-bit)  unified  register  file,  dual-instruction  issue,  

and  high  DMA  bandwidth  between  the  LS  and  main  storage.  

Each  SPE  supports  the  single-instruction,  multiple-data  (SIMD)  instruction  

architecture,  described  in  the  SPU  Instruction  Set  Architecture  . Although  details  of  

this  instruction  set  are  given  in  the  sections  that  follow,  an  SPE  is normally  

programmed  in  a high-level  language  like  C  or  C++.  The  SPU  instruction  set  is  

supported  by  a rich  set  of  language  extensions  for  C/C++,  described  in  the  C/C++  

Language  Extensions  for  Cell  Broadband  Engine  Architecture  specification. These  

extensions  define  SIMD  data  types  and  intrinsics  (commands,  in  the  form  of 

function  calls)  that  map  to  one  or  more  assembly-language  instructions,  giving  

programmers  very  convenient  and  productive  control  over  code  performance  

without  the  need  for  assembly-language  programming.  

SPE configuration 

This  section  describes  the  main  components  of  a Synergistic  Processor  Element  

(SPE).  

The  main  components  are  shown  in Figure  19  on  page  50.  Their  functions  include:  

v   Synergistic  Processor  Unit  (SPU)  —  The  SPU  executes  SPU  instructions  fetched  

from  its  256-KB  LS.  The  SPU  fills  its  LS  with  instructions  and  data  using  DMA  

transfers  initiated  from  SPU  or  PPE  software.  

v   Memory  Flow  Controller  (MFC)  —  The  MFC  provides  the  interface,  by  means  of 

the  Element  Interconnect  bus  (EIB),  between  the  SPU  and  main  storage.  The  

MFC  performs  DMA  transfers  between  the  SPU’s  LS  and  main  storage,  and  it  

supports  mailbox  and  signal-notification  messaging  between  the  SPE  and  the  

PPE  and  other  devices.  The  SPU  communicates  with  its  MFC  through  SPU  

channels.  The  PPE  and  other  devices  (including  other  SPEs)  communicate  with  

an  MFC  through  memory-mapped  I/O  (MMIO)  registers  associated  with  the  

SPU’s  channels.
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Synergistic Processor Unit 

Each  of  the  eight  SPEs  is an  independent  processor  with  its  own  program  counter,  

register  file,  and  256-KB  LS.  

An  SPE  operates  directly  on  instructions  and  data  in  its  LS.  It fills  its  LS  by  

requesting  DMA  transfers  from  its  MFC,  which  manages  the  DMA  transfers.  The  

SPU  has  specialized  units  for  executing  load  and  store,  fixed-point,  floating-point  

unit  (single-precision  and  double-precision),  and  channel-interface  instructions.  

The  large  128-entry,  128-bit  wide  register  file,  and  its  flat  architecture  (all  operand  

types  stored  in  a single  register  file),  allows  for  instruction-latency  hiding  without  

speculation.  The  register  file  is unified—meaning  that  all  data  types  (integer,  

single-precision  and  double-precision  floating-point,  scalars,  vectors,  logicals,  bytes,  

and  others)  use  the  same  register  file.  The  register  file  also  stores  return  addresses,  

results  of  comparisons,  and  so  forth.  As  a consequence  of the  large,  unified  register  

file,  expensive  hardware  techniques  such  as  out-of-order  processing  or  deep  

speculation  are  not  needed  to achieve  high  performance.  

LS  addresses  can  be  aliased  by  PPE  privileged  software  onto  the  main-storage  

(effective-address)  space.  DMA  transfers  between  the  LS  and  main  storage  are  

coherent  in  the  system.  A pointer  to  a data  structure  created  on  the  PPE  can  be  

passed  to  an  SPU,  and  the  SPU  can  use  this  pointer  to issue  a DMA  command  to  

  

Figure  19.  SPE  architectural  block  diagram
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bring  the  data  structure  into  its  LS.  PPE  software  can  use  locking  instructions  and  

mailboxes  for  synchronization  and  mutual  exclusion.  

The  SPU  architecture  has  the  following  restrictions:  

v   No  direct  (SPU-program  addressable)  access  to  main  storage.  The  SPU  accesses  

main  storage  only  by  using  the  MFC’s  DMA  transfers.  

v   No  direct  access  to  system  control,  such  as  page-table  entries.  PPE  privileged  

software  provides  the  SPU  with  the  address-translation  information  that  its  MFC  

needs.  

v   With  respect  to  accesses  by  its  SPU,  the  LS  is unprotected  and  un-translated  

storage.

SPE registers 

This  section  describes  the  Synergistic  Processor  Element  (SPE)  user  registers.  

The  complete  set  of SPE  user  registers  is shown  in  Figure  20.  All  computational  

instructions  operate  only  on  registers—there  are  no  computational  instructions  that  

modify  storage.  The  SPE  registers  include:  

v   General-Purpose  Registers  (GPRs)  —  All  data  types  can  be  stored  in  the  128-bit  

GPRs,  of  which  there  are  128.  

v   Floating-Point  Status  and  Control  Register  (FPSCR)  —  The  processor  updates  the  

128-bit  FPSCR  after  every  floating-point  operation  to record  information  about  

the  result  and  any  associated  exceptions.

   

Floating-point operations 

The  SPU  executes  both  single-precision  and  double-precision  floating-point  

operations.  Single-precision  instructions  are  performed  in  4-way  SIMD  fashion,  

fully  pipelined,  whereas  double-precision  instructions  are  partially  pipelined.  

The  data  formats  for  single-precision  and  double-precision  instructions  are  those  

defined  by  IEEE  Standard  754,  but  the  results  calculated  by  single-precision  

instructions  are  not  fully  compliant  with  IEEE  Standard  754.  

  

Figure  20. SPE  user-register  set
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For  single-precision  operations,  the  range  of normalized  numbers  is extended  

beyond  the  IEEE  standard.  The  representable,  nonzero  numbers  range  from  

Xmin  = 2¹²⁶  to  Xmax  = (2  -²³)2¹²⁸. If the  exact  result  overflows  (that  is,  if it is 

larger  in magnitude  than  Xmax), the  rounded  result  is set  to  Xmax  with  the  

appropriate  sign.  If  the  exact  result  underflows  (that  is,  if it is smaller  in  

magnitude  than  Xmin), the  rounded  result  is forced  to  zero.  A  zero  result  is  always  

a positive  zero.  

Single-precision  floating-point  operations  implement  IEEE  754  arithmetic  with  the  

following  changes:  

v   Only  one  rounding  mode  is supported:  round  towards  zero,  also  known  as 

truncation.  

v   Denormal  operands  are  treated  as  zero,  and  denormal  results  are  forced  to zero.  

v   Numbers  with  an  exponent  of all  ones  are  interpreted  as  normalized  numbers  

and  not  as infinity  or  not-a-number  (NaN).  

Double-precision  operations  do  not  support  the  IEEE  precise  trap  (exception)  

mode.  If  a double-precision  denormal  or  not-a-number  (NaN)  result  does  not  

conform  to  IEEE  Standard  754,  then  the  deviation  is recorded  in a sticky  bit  in  the  

FPSCR  register,  which  can  be  accessed  using  the  fscrrd  and  fscrwr  instructions  or  

the  spu_mffpscr  and  spu_mtfpscr  intrinsics.  

Double-precision  instructions  are  performed  as  two  double-precision  operations  in  

2-way  SIMD  fashion.  However,  the  SPU  is  capable  of  performing  only  one  

double-precision  operation  per  cycle.  Thus,  the  SPU  executes  double-precision  

instructions  by  breaking  up  the  SIMD  operands  and  executing  the  two  operations  

in  consecutive  instruction  slots  in the  pipeline.  Although  double-precision  

instructions  have  13-clock-cycle  latencies,  only  the  final  seven  cycles  are  pipelined.  

No  other  instructions  are  dual-issued  with  double-precision  instructions,  and  no  

instructions  of any  kind  are  issued  for  six  cycles  after  a double-precision  

instruction  is  issued.  

Local Store 

The  local  store  (LS)  can  be  regarded  as  a software-controlled  cache  that  is filled  and  

emptied  by  DMA  transfers.  

Key  features  of  the  LS  include:  

v   Holds  instructions  and  data  

v   16-bytes-per-cycle  load  and  store  bandwidth,  quadword  aligned  only  

v   128-bytes-per-cycle  DMA-transfer  bandwidth  

v   128-byte  instruction  prefetch  per  cycle

Competition  might  occur  for  access  to  the  LS  by:  

v   loads,  

v   stores,  

v    DMA  reads,  

v   DMA  writes,  

v   instruction  fetches.

The  SPU  arbitrates  access  to  the  LS  according  the  following  priorities  (with  the  

highest  priority  first):  

1.   DMA  reads  and  writes  by  the  PPE  or  an  I/O  device.  

2.   SPU  loads  and  stores.  

3.   Instruction  prefetch.
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Table 10  summarizes  the  LS-arbitration  priorities  and  transfer  sizes.  DMA  reads  

and  writes  always  have  highest  priority.  Because  hardware  supports  128-bit  DMA  

reads  and  writes,  these  operations  occupy,  at most,  one  of  every  eight  cycles  (one  

of  sixteen  for  DMA  reads,  and  one  of  sixteen  for  DMA  writes)  to  the  LS.  Thus,  

except  for  highly  optimized  code,  the  impact  of DMA  reads  and  writes  on  LS  

availability  for  loads,  stores,  and  instruction  fetches  can  be  ignored.  

 Table 10.  LS-Access  Arbitration  Priority  and  Transfer Size  

Transaction  

Transfer  

Size  

(Bytes)  Priority  

Maximum  Local  

Store  Occupancy  

(SPU  Cycle)  Access  Path  

MMIO  ≤ 16 1-Highest  1/8  Line  Interface  

DMA  ≤ 128  1 

DMA-List  

Transfer-Element  Fetch  

128  1 1/4  Quadword  

Interface  

ECC  Scrub  16 2 1/10  

SPU  Load/Store  16 3 1 

Hint  Fetch  128  3 1 Line  Interface  

Inline  Fetch  128  4-Lowest  1/16  for  inline  

code
  

After  DMA  reads  and  writes,  the  next-highest  user-initiated  priority  is  given  to 

load  and  store  instructions.  The  rationale  for  doing  so  is  that  load  and  store  

instructions  usually  help  a program’s  progress,  whereas  instruction  fetches  are  

often  speculative.  The  SPE  supports  only  16-byte  load  and  store  operations  that  are  

16-byte-aligned.  It uses  a second  instruction  (byte  shuffle)  to  place  bytes  in  a 

different  order  if,  for  example,  the  program  requires  only  a 4-byte  quantity  or  a 

quantity  with  a different  data  alignment.  To store  something  that  is not  aligned,  

use  a read-modify-write  operation.  

The  lowest  priority  for  LS  access  is given  to  instruction  fetches,  of  which  there  are  

three  types:  flush-initiated  fetches,  inline  prefetches,  and  hint  fetches.  Instruction  

fetches  load  32  instructions  per  SPU  request  by  accessing  all  banks  of  the  LS  

simultaneously.  Because  the  LS  is single-ported,  it is important  that  DMA  and  

instruction-fetch  activity  transfer  as  much  useful  data  as  possible  in  each  LS  

request.  

Pipelines and dual-issue rules 

The  SPU  has  two  pipelines,  named  even  (pipeline  0) and  odd  (pipeline  1).  Into  

these  pipelines,  the  SPU  can  issue  can  issue  and  complete  up  to  two  instructions  

per  cycle,  one  in each  of  the  pipelines.  

Whether  an  instruction  goes  to  the  even  or  odd  pipeline  depends  on  its  instruction  

type,  which  is  related  to  the  execution  unit  that  performs  the  function.  Each  

execution  unit  is  assigned  to  one  of the  two  pipelines.  Table 11 summarizes  the  

instruction  types,  latencies,  and  pipeline  assignments.  

 Table 11. SPU  Instruction  Latency  and  Pipeline,  by  Instruction  Class  

Instruction  

Class  Description  

Latency  (clock  

cycles)  Pipeline  

LS Load  and  store  6 Odd  

HB  Branch  hints  15 Odd  

 

Chapter  3. Programming the SPEs 53



Table 11.  SPU  Instruction  Latency  and  Pipeline,  by Instruction  Class  (continued)  

Instruction  

Class  Description  

Latency  (clock  

cycles)  Pipeline  

BR Branch  resolution  4 Odd  

CH  Channel  interface,  special-purpose  

registers  

6 Odd  

SP  Single-precision  floating-point  6 Even  

DP  Double-precision  floating-point  13²  Even  

FI Floating-point  integer  7 Even  

SH  Shuffle  4 Odd  

FX Simple  fixed-point  2 Even  

WS  Word rotate  and  shift  4 Even  

BO  Byte  operations  4 Even  

NOP  No  operation  (execute)  - Even  

LNOP  No  operation  (load)  - Odd
  

Note:   

1.   Inline  or  correctly  hinted  branches  have  zero-cycle  delay.  The  mispredicted  

branch  penalty  is  18-19  clock  cycles.  

2.   Six  cycles  of  a double-precision  floating-point  operation  are  instruction-issue  

stalls.  No  instructions  of any  kind  are  issued  for  six  cycles  after  a 

double-precision  floating  point  instruction  is issued.

The  SPU  issues  all  instructions  in program  order  according  to  the  pipeline  

assignment.  Each  instruction  is part  of  a doubleword-aligned  instruction  pair  called  

a fetch  group. 

A  fetch  group  can  have  one  or  two  valid  instructions,  but  it  must  be  aligned  to 

doubleword  boundaries.  This  means  that  the  first  instruction  in  the  fetch  group  is 

from  an  even  word  address,  and  the  second  instruction  from  an  odd  word  address.  

The  SPU  processes  fetch  groups  one  at a time,  continuing  to the  next  fetch  group  

when  the  current  instruction  group  becomes  empty.  An  instruction  becomes  

issueable  when  register  dependencies  are  satisfied  and  there  is no  structural  hazard  

(resource  conflict)  with  prior  instructions  or  DMA  or  error-correcting  code  (ECC)  

activity.  

Dual-issue  occurs  when  a fetch  group  has  two  issueable  instructions  in  which  the  

first  instruction  can  be  executed  on  the  even  pipeline  and  the  second  instruction  

can  be  executed  on  the  odd  pipeline.  If  a fetch  group  cannot  be  dual-issued,  but  

the  first  instruction  can  be  issued,  the  first  instruction  is issued  to  the  proper  

execution  pipeline  and  the  second  instruction  is held  until  it can  be  issued.  A new  

fetch  group  is  loaded  after  both  instructions  of  the  current  fetch  group  are  issued.  

Memory flow controller 

The  primary  functions  of  the  Memory  Flow  Controller  (MFC)  are  to connect  the  

SPU  to  the  EIB  and  support  DMA  transfers  between  main  storage  and  the  LS.  

Figure  19  on  page  50  shows  the  functions  of the  MFC.  
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The  MFC  maintains  and  processes  queues  of DMA  commands  from  its  SPU  or  

from  the  PPE  or  other  devices.  The  MFC’s  DMA  controller  (DMAC)  executes  the  

DMA  commands.  This  allows  the  SPU  to  continue  execution  in  parallel  with  the  

MFC’s  DMA  transfers.  

The  DMA  and  other  MFC  commands,  and  the  command  queues,  are  described  in 

“MFC  commands”  on  page  76.  

To make  DMA  transfers  between  main  storage  and  the  LS  possible,  privileged  

software  on  the  PPE  provides  the  LS  and  MFC  resources,  such  as  memory-mapped  

I/O  (MMIO)  registers,  with  effective-address  aliases  in  main  storage.  This  enables  

software  on  the  PPE  or  other  SPUs  and  devices  to access  the  MFC  resources  and  

control  the  SPU.  Privileged  software  on  the  PPE  also  provides  address-translation  

information  to  the  MFC  for  use  in DMA  transfers.  DMA  transfers  are  coherent  with  

respect  to  system  storage.  Attributes  of  system  storage  (address  translation  and  

protection)  are  governed  by  the  page  and  segment  tables  of the  PowerPC  

Architecture.  

The  MFC  supports  channels  and  associated  MMIO  registers  for  the  purposes  of  

enqueueing  and  monitoring  DMA  commands,  monitoring  SPU  events,  performing  

interprocessor-communication  via  mailboxes  and  signal-notification,  accessing  

auxiliary  resources  such  as  the  decrementer  (timer),  and  other  functions.  

In  addition  to  supporting  DMA  transfers,  channels,  and  MMIO  registers,  the  MFC  

also  supports  bus-bandwidth  reservation  features  and  synchronizes  operations  

between  the  SPU  and  other  processing  units  in  the  system.  

Channels 

Channels  are  unidirectional  message-passing  interfaces  that  support  32-bit  messages  

and  commands.  Many  of  the  channels  provide  communications  between  the  SPE  

and  its  MFC,  which  in  turn,  mediates  communication  with  the  PPE  and  other  

devices.  

Table 12  lists  the  channels  and  their  attributes.  Reserved  and  privileged  channels  

are  omitted.  

Software  on  the  SPU  uses  special  channel  instructions  (shown  in  Table 13  on  page  

57)  to  read  and  write  channel  registers  and  queues.  

Software  on  the  PPE  and  other  devices  use  load  and  store  instructions  to  read  and  

write  to  MFC’s  MMIO  registers  that  are  associated  with  the  SPU’s  channels.  

 Table 12. SPE  Channels  

Channel  Name  Mnemonic  

Size  

(bits)  R/W  Blocking  

SPU  Events  

0 SPU  Read  Event  Status  SPU_RdEventStat  32 R Yes 

1 SPU  Write Event  Mask  SPU_WrEventMask  32 W No 

2 SPU  Write Event  Acknowledgment  SPU_WrEventAck  32 W No 

SPU  Signal  Notification  

3 SPU  Signal  Notification  1 SPU_RdSigNotify1  32 R Yes 

4 SPU  Signal  Notification  2 SPU_RdSigNotify2  32 R Yes 

SPU  Decrementer  
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Table 12. SPE  Channels  (continued)  

Channel  Name  Mnemonic  

Size  

(bits)  R/W  Blocking  

7 SPU  Write Decrementer  SPU_WrDec  32 W No 

8 SPU  Read  Decrementer  SPU_RdDec  32 R No 

MFC  Multisource  Synchronization  

9 MFC  Write Multisource  Synchronization  

Request  

MFC_WrMSSyncReq  32 W Yes 

SPU  and  MFC  Read  Mask  

11 SPU  Read  Event  Mask  SPU_RdEventMask  32 R No 

12 MFC  Read  Tag-Group  Query  Mask  MFC_RdTagMask  32 R No 

SPU  State  Management  

13 SPU  Read  Machine  Status  SPU_RdMachStat  32 R No 

14 SPU  Write State  Save-and-Restore  SPU_WrSRR0  32 W No 

15 SPU  Read  State  Save-and-Restore  SPU_RdSRR0  32 R No 

MFC  Command  Parameters  

16 MFC  Local  Store  Address  MFC_LSA  32 W No 

17 MFC  Effective  Address  High  MFC_EAH  32 W No 

18 MFC  Effective  Address  Low  or  List  

Address  

MFC_EAL  32 W No 

19 MFC  Transfer  Size  or  List  Size  MFC_Size  16 W No 

20 MFC  Command  Tag Identification  MFC_TagID  16 W No 

21 MFC  Command  Opcode  or ClassID  MFC_Cmd  32 W Yes 

MFC  Tag  Status  

22 MFC  Write Tag-Group  Query  Mask  MFC_WrTagMask  32 W No 

23 MFC  Write Tag Status  Update  Request  MFC_WrTagUpdate  32 W Yes 

24 MFC  Read  Tag-Group  Status  MFC_RdTagStat  32 R Yes 

25 MFC  Read  List  Stall-and-Notify  Tag Status  MFC_RdListStallStat  32 R Yes 

26 MFC  Write List  Stall-and-Notify  Tag 

Acknowledgement  

MFC_WrListStallAck  32 W No 

27 MFC  Read  Atomic  Command  Status  MFC_RdAtomicStat  32 R Yes 

SPU  Mailboxes  

28 SPU  Write Outbound  Mailbox  SPU_WrOutMbox  32 W Yes 

29 SPU  Read  Inbound  Mailbox  SPU_RdInMbox  32 R Yes 

30 SPU  Write Outbound  Interrupt  Mailbox  SPU_WrOutIntrMbox  32 W Yes
  

Each  channel  has  a corresponding  count  that  indicates  the  remaining  capacity  (the  

maximum  number  of  outstanding  transfers)  in  that  channel.  This  count  is  

decremented  when  a channel  instruction  is issued  to  the  channel,  and  the  count  

increments  when  an  action  associated  with  that  channel  completes.  Each  channel  is  

implemented  with  either  blocking  or  non-blocking  semantics.  

Blocking  channels  cause  the  SPE  to  stall  (suspend  execution  in a low-power  state)  

when  the  SPE  reads  or  writes  a channel  with  a count  of zero.  
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Key  features  of the  SPE  channel  operations  include:  

v   All  transactions  on  the  channel  interface  are  unidirectional.  

v   Each  channel  transaction  is independent  of any  other  transaction.  

v   Sequential  read  and  write  transactions  are  supported.  

v   External  access  to  control  MMIO  registers  has  higher  priority  than  channel  

operations.  

v   Channel  operations  are  done  in  program  order.  

v   Channel  read  operations  to  reserved  channels  return  zeros.  

v   Channel  write  operations  to  reserved  channels  have  no  effect.  

v   Reading  of  channel  counts  on  reserved  channels  returns  zero.

Channel instructions 

The  SPU  Instruction  Set  Architecture  defines  three  channel  instructions:  rdch, wrch, 

and  rchcnt. 

A summary  of  the  SPU  Instruction  Set  Architecture  is shown  in  “SPU  instruction  

set”  on  page  60.  The  rdch, wrch, and  rchcnt  channel  instructions  are  shown  in  

Table 13.  

Software  running  on  an  SPE  uses  the  channel  instructions  to write  parameters  and  

enqueue  the  MFC  commands,  as described  in  “MFC  commands”  on  page  76.  

Table 13  includes  both  the  SPU  assembly-language  instructions  and  their  

corresponding  C-language  intrinsics.  

The  intrinsics  are  described  in  “SPU  C/C++  language  extensions  (intrinsics)”  on  

page  64.  

 Table 13.  SPE  Channel  Instructions  

Instruction  

Assembler  

Instruction  

C-Language  

Intrinsic  Description  

Read  Channel  rdch  spu_readch  

spu_readchqw  

Causes  data  to be read  from  the 

addressed  channel  and  stored  into  

the  selected  General-Purpose  

Register  (GPR).  

Write Channel  wrch  spu_writech  

spu_writechqw  

Causes  data  to be read  from  the 

selected  GPR  and  stored  in the  

addressed  channel  

Read  Channel  

Count  

rchcnt  spu_readchcnt  Causes  the count  associated  with  

the  addressed  channel  to  be stored  

in the  selected  GPR.
  

If  the  write  channel  is nonblocking, a wrch  instruction  can  be  issued  regardless  of  

the  value  of  the  channel  count  for  that  channel.  If the  write  channel  is blocking  , 

then  a wrch  instruction  that  is  issued  when  the  count  for  that  channel  is equal  to  

zero  will  stall  the  SPE.  Stalling  on  a wrch  instruction  can  be  useful  because  it  saves  

power,  but  to  avoid  stalling,  software  should  first  read  the  channel  count  to ensure  

that  it  is  not  zero  before  issuing  a wrch  instruction.  

The  method  used  to  determine  the  channel  count  is dependent  on  the  program.  

The  program  can  poll  the  channel  count  for  that  register,  using  the  rchcnt  

 

Chapter  3. Programming the SPEs 57



instruction,  or  the  program  can  issue  a wrch  instruction.  If the  program  issues  a 

wrch  instruction,  the  SPE  stalls,  waiting  until  an  acknowledgment  is received  from  

the  write  channel.  

When  an  SPE  program  needs  to receive  information,  it uses  a rdch  instruction.  

Usually,  this  information  is held  in  an  SPE  register.  The  information  can  be  loaded  

into  this  register  through  the  channel  interface  using  a read-data-load  transaction.  

v   If  the  read  channel  is nonblocking,  then  a rdch  instruction  can  be  issued  

regardless  of  the  value  of  the  channel  count  for  that  channel.  

v   In  the  SPE,  if the  channel  is a blocking  channel,  the  SPE  does  not  read  from  this  

register  until  the  channel  count  for  that  register  indicates  that  the  data  is valid  

(that  is, when  the  count  is greater  than  zero).  

v   If  the  count  is  zero,  then  there  is no  data  in  the  channel  and  the  SPE  stalls  until  

actions  associated  with  that  channel  occur.

These  actions  can  include  the  updating  of the  MFC_RdTagStat  channel  (see  Table 12 

on  page  55),  the  PPE  writing  data  to  the  corresponding  MMIO  register  (such  as  a 

mailbox  channel),  or  other  actions.  The  method  used  to  determine  the  count  

depends  on  the  program.  The  program  can:  

v   poll  the  channel  count  for  that  register  using  the  rchcnt  instruction,  or  

v   issue  the  rdch  instruction.

If  the  program  issues  a rdch  instruction,  the  SPE  stalls,  waiting  until  valid  data  is 

loaded.  

The  channel  instructions  are  architected  as  128  bits  wide,  but  in  the  Cell  Broadband  

Engine,  channel  instructions  set  use  only  the  32  bits  from  the  preferred  slot  (the  

left-most  word,  word  element  0) in  the  register.  

Mailboxes 

Mailboxes  are  queues  that  support  exchanges  of  32-bit  messages  between  an  SPE  

and  other  devices.  Each  mailbox  queue  has  an  SPE  channel  assignment  as  well  as  a 

corresponding  MMIO  register  assignment.  

Two  1-entry  mailbox  queues  are  provided  for  sending  messages  from  the  SPE:  

v   SPU  Write Outbound  Mailbox  

v   SPU  Write Outbound  Interrupt  Mailbox

One  4-entry  mailbox  queue  is provided  for  sending  messages  to  the  SPE:  

v   SPU  Read  Inbound  Mailbox  

Each  mailbox  has  an  SPE  channel  assignment  (see  Table 12  on  page  55)  as well  as  a 

corresponding  MMIO  register. To access  the  mailbox,  an  SPE  program  uses  rdch  

and  wrch  instructions  (see  Table 13  on  page  57).  The  PPE  and  other  processors  use  

load  and  store  instructions  to  access  the  corresponding  MMIO  addresses.  

Data  written  by  an  SPE  program  to  one  of these  mailboxes  using  a wrch  instruction  

is available  to  any  processor  or  device  that  reads  the  corresponding  MMIO  register.  

Data  written  by  a device  to the  SPU  Read  Inbound  Mailbox  using  an  MMIO  write  

is available  to  an  SPE  program  by  reading  that  mailbox  using  a rdch  or  rchcnt  

instruction.  An  MMIO  read  from  either  of  the  SPU  Write  Outbound  Mailboxes,  or  

a write  to  the  SPU  Read  Inbound  Mailbox,  can  be  programmed  to  set  an  SPE  

event.  The  event  can  in turn  cause  an  SPE  interrupt.  A  wrch  instruction  to  the  SPU  

Write Outbound  Interrupt  Mailbox  can  also  be  programmed  to cause  an  interrupt  

to  a processor  or  other  device.  

 

58 SDK for Multicore Acceleration,  Programming Tutorial - DRAFT



Each  time  a PPE  program  writes  to the  4-entry  SPU  Read  Inbound  Mailbox  queue,  

the  channel  count  for  that  channel  increments.  Each  time  a SPU  program  reads  the  

mailbox  queue,  the  channel  count  decrements.  The  mailbox  is a FIFO  queue;  the  

SPE  program  reads  the  oldest  data  first.  If the  PPE  program  writes  more  than  four  

times  before  the  SPE  program  reads  the  data,  then  the  channel  count  stays  at  four, 

and  the  fourth  location  contains  the  last  data  written  by  the  PPE.  For  example,  if 

the  PPE  program  writes  five  times  before  the  SPE  program  reads  the  data,  then  the  

data  read  is  the  first,  second,  third,  and  fifth  data  elements.  The  fourth  data  

element  has  been  overwritten.  

Mailbox  operations  are  blocking  operations:  a write  to  a outbound  mailbox  register  

that  is  already  full  stalls  the  SPE  until  a slot  is created  in the  mailbox  by  a PPE  

read.  Similarly,  a SPE  read  from  an  empty  inbound  mailbox  is stalled  until  the  PPE  

(or  an  SPE)  writes  to  the  mailbox.  If  the  channel  capacity  count  is zero  for  a 

channel  that  is configured  as  a blocking  channel,  then  a channel  instruction  issued  

to  that  channel  causes  the  SPE  to  stall  and  to  stop  issuing  instructions  until  the  

channel  is  read.  To prevent  stalling  in  this  case,  the  SPE  program  needs  to  read  the  

count  register  associated  with  the  particular  mailbox  and  decide  whether  or  not  to  

read  from  or  write  to  the  mailbox.  

There  are  at  least  three  ways  to deal  with  anticipated  mailbox  messages:  

v   The  SPE  software  reads  the  channel  (rdch), which  will  block  until  something  

arrives.  

v   The  SPE  software  reads  from  the  channel’s  count  (rchcnt),  which  will  return  the  

count  (zero  or  one);  the  software  can  then  decide  what  to  do.  

v   The  SPE  software  sets  up  its  interrupt  facility  to respond  to  mailbox  events.  

Although  the  mailboxes  are  primarily  intended  for  communication  between  the  

PPE  and  the  SPEs,  they  can  also  be  used  for  communication  between  an  SPE  and  

other  SPEs,  processors,  or  devices.  For  this  to  happen,  however,  privileged  

software  needs  to  allow  one  SPE  to  access  the  mailbox  register  in  another  SPE.  If 

software  does  not  allow  this,  then  only  system  memory  communications  are  

available  for  SPE-to-SPE  communications.  

Signal notification 

Signal-notification  channels,  or  signals  , are  inbound  (to  an  SPE)  registers.  They  can  

be  used  by  other  SPEs,  the  PPE,  or  other  devices  to send  information,  such  as  a 

buffer-completion  synchronization  flag,  to  an  SPE.  

Each  SPE  has  two  32-bit  signal-notification  registers,  each  of  which  has  a 

corresponding  memory-mapped  I/O  (MMIO)  register  into  which  the  

signal-notification  data  is written  by  the  sending  processor.  Unlike  mailbox  

messaging,  signal  senders  use  one  of  three  special  MFC  send-signal  commands  to  

send  a signal:  

v   sndsig  

v   sndsigf  

v   sndsigb

These  are  described  in “MFC  commands”  on  page  76.  

An  SPE  can  only  read  its  local  signal-notification  channels.  The  PPE  or  other  

processors  can  write  or  read  the  corresponding  MMIO  register.  This  allows  the  

target  SPE  to  do  polling,  blocking,  or  set  up  an  interrupt  as  ways  of responding  to  

signals.  An  SPE  read  of one  of  its  two  signal-notification  channels  clears  the  

channel  atomically.  An  MMIO  read  does  not  clear  a channel.  An  SPE  read  from  the  

signaling  channel  will  be  stalled  when  no  signal  is pending  at the  time  of the  read.  
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A  signal-notification  channel  can  be  configured  by  software  to be  in  overwrite  mode  

or  OR  mode  . In  overwrite  mode  (also  called  one-to-one  signaling),  sending  a signal  

(writing  to  the  MMIO  address)  overwrites  previous  contents.  In  OR  mode  (also  

called  many-to-one  signaling),  sending  a signal  ORs  the  new  1 bits  into  the  current  

contents.  In  the  case  of  one-to-one  signaling,  there  is usually  no  substantial  

difference  in  performance  between  signaling  and  using  a mailbox.  

The  differences  between  mailboxes  and  signal-notification  channels  include:  

v   Capacity  —  Signal-notification  channels  are  registers.  Mailboxes  are  queues.  

v   Direction  —  Each  SPE  supports  signal-notification  channels  that  are  only  inbound  

(to  the  SPE).  Their  mailboxes  support  both  outbound  and  inbound  

communication.  However,  an  SPE  can  send  signals  to another  SPE  using  MFC  

send-signal  commands.  

v   Interrupts  —  One  of the  mailboxes  interrupts  the  PPE.  Signal-notification  

channels  have  no  such  automatic  feature.  

v   Many-to-One  —  Signal-notification  channels  (but  not  mailboxes)  can  be  

configured  as  many-to-one  (OR  mode)  or  as  one-to-one  (overwrite  mode).  

v   Unique  Commands  —  Signal-notification  channels  have  specific  MFC  send-signal  

commands  (sndsig, sndsigf,  and  sndsigb)  for  writing  to them  (see  “MFC  

commands”  on  page  76).  

v   Reset  —  Reading  a signal-notification  register  automatically  resets  (clears)  its  bits.  

v   Count  —  The  channel  counts  have  different  meaning.  Mailbox  channel  counts  

indicate  the  number  of  available  (unoccupied)  entries  in  the  mailbox  queue.  The  

signal-notification  channel  count  indicates  whether  there  are  any  pending  

(unserviced)  signals.  

v   Number  —  Each  SPE  has  two  signal-notification  channels  versus  three  mailboxes.

SPU instruction set 

The  SPU  Instruction  Set  Architecture  (ISA)  fully  documents  the  instructions  

supported  by  the  SPEs.  This  section  summarizes  the  ISA.  

Programmers  writing  in  a high-level  language  like  C or  C++  can  use  the  intrinsics  

described  in  “SPU  C/C++  language  extensions  (intrinsics)”  on  page  64  to  improve  

their  control  over  the  SPE  hardware.  Because  the  functions  performed  by  these  

intrinsics  are  closely  related  to  the  assembly-language  instructions  of the  SPU  

Instruction  Set  Architecture  , this  overview  may  be  helpful  in  understanding  the  

utility  of  the  intrinsics.  

The  SPU  ISA  operates  primarily  on  SIMD  vector  operands,  both  fixed-point  and  

floating-point,  with  support  for  some  scalar  operands.  The  PPE  and  the  SPE  both  

execute  SIMD  instructions,  but  the  two  processors  execute  different  instruction  sets,  

and  programs  for  the  PPE  and  SPEs  must  be  compiled  by  different  compilers.  

Data layout in registers 

The  SPE  supports  big-endian  data  ordering,  an  ordering  in  which  the  

lowest-address  byte  and  lowest-numbered  bit  are  the  most-significant  (high)  byte  

and  bit,  respectively.  

Bits  in  registers  are  numbered  in  ascending  order  from  left  to  right,  with  bit  0 

representing  the  most-significant  bit  (MSb)  and  bit  127  the  least-significant  bit  

(LSb)  as  shown  in  the  figure  below.  The  SPE  architecture  does  not  define  or  use  
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little  endian  data  ordering.  

 

The  SPU  hardware  defines  the  following  data  types:  

v   byte  —  8 bits  

v   halfword  —  16  bits  

v   word  —  32  bits  

v   doubleword  —  64  bits  

v   quadword  —  128  bits  

These  data  types  are  indicated  by  shading  in  Figure  22.  The  left-most  word  (bytes  

0,  1, 2,  and  3)  of  a register  is called  the  preferred  scalar  slot  (also  shown  in 

Figure  22).  

When  instructions  use  or  produce  scalar  operands  or  addresses,  the  values  are  in  

the  preferred  slot.  A  set  of  store  assist  instructions  is available  to  help  store  bytes,  

halfwords,  words,  and  doublewords.  

 

The  SPE  programming  model  defines  the  vector  data  types  shown  in  Table 14  for  

the  C  programming  language.  These  data  types  are  all  128  bits  long  and  contain  

from  1 to  16  elements  per  vector.  

 Table 14.  Vector  Data  Types 

Vector  Data  Type Content  

vector  unsigned  char  Sixteen  8-bit  unsigned  chars  

vector  signed  char  Sixteen  8-bit  signed  chars  

vector  unsigned  short  Eight  16-bit  unsigned  halfwords  

vector  signed  short  Eight  16-bit  signed  halfwords  

vector  unsigned  int  Four  32-bit  unsigned  words  

  

Figure  21. Big-endian  ordering  supported  by the SPE

  

Figure  22. Register  layout  of data  types  and  preferred  (scalar)  slot
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Table 14.  Vector  Data  Types (continued)  

Vector  Data  Type Content  

vector  signed  int  Four  32-bit  signed  words  

vector  unsigned  long  long  Two 64-bit  unsigned  doublewords  

vector  signed  long  long  Two 64-bit  signed  doublewords  

vector  float  Four  32-bit  single-precision  floats  

vector  double  Two 64-bit  double  precision  floats  

qword  quadword  (16-byte)
  

Instruction types 

There  are  204  instructions  in  the  SPU  Instruction  Set  Architecture  , and  they  are  

grouped  into  11 classes  according  to  their  functionality.  

These  instruction  classes  are  shown  in  Table 15.  

 Table 15.  SPU  Instruction  Types 

Type Number  

Memory  Load  and  Store  16 

Constant  Formation  6 

Integer  and  Logical  Operations  59 

Shift  and  Rotate  31 

Compare,  Branch,  and  Halt  40 

Hint-for-Branch  3 

Floating-Point  28 

Control  8 

SPU  Channel  3 

SPU  Interrupt  Facility  7 

Synchronization  and  Ordering  3
  

Figure  23  on  page  63  shows  one  example  of  an  SPU  SIMD  instruction  —  the  

floating-point  add  instruction,  fa.  This  instruction  simultaneously  adds  four  pairs  

of  floating-point  vector  elements,  stored  in  registers  ra  and  rb,  and  produces  four  

floating-point  results,  written  to  register  rt.  
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Depending  on  the  programmer’s  performance  requirements  and  code  size  

restraints,  advantages  can  be  gained  by  properly  grouping  data  in  an  SIMD  vector.  

Figure  24  shows  a natural  way  of  using  SIMD  vectors  to  store  the  homogenous  

data  values  (x,  y,  z, w)  for  the  three  vertices  (a,  b,  c)  of  a triangle  in a 3D-graphics  

application.  This  arrangement  is called  an  array  of  structures  (AOS),  because  the  

data  values  for  each  vertex  are  organized  in  a single  structure,  and  the  set  of  all  

such  structures  (vertices)  is an  array.  

 

The  data-packing  approach  that  is shown  in  Figure  24  often  produces  small  code  

sizes,  but  it typically  executes  poorly  and  generally  requires  significant  

loop-unrolling  to  improve  its  efficiency.  If the  vertices  contain  fewer  components  

than  the  SIMD  vector  can  hold  (for  example,  three  components  instead  of four),  

SIMD  efficiencies  are  compromised.  

Another  method  of organizing  data  in  SIMD  vectors  is a structure  of  arrays  (SOA).  

Here,  each  corresponding  data  value  for  each  vertex  is stored  in  a corresponding  

location  in  a set  of  vectors.  Think  of the  data  as  if it were  scalar, and  the  vectors  

are  populated  with  independent  data  across  the  vector.  This  is  different  from  the  

previous  example,  where  the  four  values  of  each  vertex  are  stored  in one  vector.  

Figure  25  on  page  64  shows  the  use  of  SIMD  vectors  to represent  the  x, y,  z vertices  

for  four  triangles.  Not  only  are  the  data  types  the  same  across  the  vector,  but  now  

their  data  interpretation  is the  same.  Depending  on  the  algorithm,  software  might  

  

Figure  23. SIMD  floating-point  Add  instruction  function

  

Figure  24. Array-of-structures  data  organization  for one  triangle
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execute  more  efficiently  with  this  SIMD  data  organization  than  with  the  

organization  shown  in Figure  24  on  page  63.  

 

For  further  details  about  the  SPU  instructions,  refer  to these  documents:  

v   The  SPU  Instruction  Set  Architecture, 

v   The  SPU  Assembly  Language  Specification.

SPU C/C++ language extensions (intrinsics) 

A  large  set  of SPU  C/C++  language  extensions  (intrinsics)  make  the  underlying  SPU  

Instruction  Set  Architecture  and  hardware  features  conveniently  available  to C  

programmers.  These  intrinsics  can  be  used  in  place  of  assembly-language  code  

when  writing  in  the  C or  C++  languages.  

The  intrinsics  are  essentially  in-line  assembly-language  instructions  in  the  form  of  

C-language  function  calls.  They  provide  the  programmer  with  explicit  control  of  

the  SPE  SIMD  instructions  without  directly  managing  registers.  A  well-written  

compiler  that  supports  these  intrinsics  will  emit  efficient  code  for  the  SPE  

architecture.  The  techniques  used  by  compilers  to  generate  efficient  code  include:  

v   Register  coloring  

v   Instruction  scheduling  (dual-issue  optimization)  

v   Data  loads  and  stores  

v   Loop  blocking,  fusion,  unrolling  

v   Correct  up-stream  placement  of branch  hints  

v   Literal  vector  construction  

For  example,  an  SPU  compiler  provides  the  intrinsic  t = spu_add(a,  b)  as  a 

substitute  for  the  assembly-language  instruction  fa  rt,ra,rb  . The  compiler  will  

generate  a floating-point  add  instruction  (fa  rt,  ra,  rb)  for  the  SPU  intrinsic  

  

Figure  25.  Structure-of-arrays  data  organization  for four  triangles
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t = spu_add(a,  b),  assuming  t , a , and  b are  vector  float  variables.  The  system  

header  file  (spu_intrinsics.h) defines  the  SPU  language  extension  intrinsics.  

The  intrinsics  are  defined  fully  in  the  C/C++  Language  Extensions  for  Cell  Broadband  

Engine  Architecture  specification.  The  PPU  and  the  SPU  instruction  sets  have  

similar,  but  distinct,  SIMD  intrinsics.  It is important  to  understand  the  mapping  

between  the  PPU  and  SPU  SIMD  intrinsics  when  developing  applications  on  the  

PPE  that  will  eventually  be  ported  to  the  SPEs.  

Assembly language versus intrinsics comparison: an example 

The  ease  of implementing  a DMA  transfer  using  intrinsics  versus  

assembly-language  instructions  is illustrated  in  the  example-implementation  of the  

dma_transfer  subroutine  that  is provided  in this  section.  

The  dma_transfer  subroutine  issues  a DMA  command  with  transfer  size  bytes  

from  the  LS  address  lsa, to  or  from  the  64-bit  effective  address  specified  by  eah  | 

eal. The  DMA  command  specified  by  the  dma  parameter  is  tagged  using  the  

specified  tag_id  parameter.  

extern  void  dma_transfer(volatile  void  *lsa,   // local  store  address  

             unsigned  int  eah,          // high  32-bit  effective  address  

             unsigned  int  eal,          // low  32-bit  effective  address  

             unsigned  int  size,         // transfer  size  in bytes  

             unsigned  int  tag_id,        // tag  identifier  (0-31)  

             unsigned  int  cmd);         // DMA  command  

The  Application  Binary  Interface  (ABI)-compliant  assembly-language  implementation  

of  the  subroutine  would  be:  

      .text  

      .global   dma_transfer  

   dma_transfer:  

      wrch     $MFC_LSA,  $3 

      wrch    $MFC_EAH,  $4 

      wrch    $MFC_EAL,  $5 

      wrch     $MFC_Size,  $6 

      wrch     $MFC_TagID,  $7 

      wrch     $MFC_Cmd,  $8 

      bi    $0 

A comparable  C implementation  using  the  SPU  intrinsic,  spu_writech,  for  the  

write-channel  (wrch) instruction  would  be:  

#include  <spu_intrinsics.h>  

  

void  dma_transfer(volatile  void  *lsa,  unsigned  int  eah,  unsigned  int  eal,  

             unsigned  int  size,  unsigned  int  tag_id,  unsigned  int  cmd)  

{ 

     spu_writech(MFC_LSA,  (unsigned  int)lsa);  

     spu_writech(MFC_EAH,  eah);  

     spu_writech(MFC_EAL,  eal);  

     spu_writech(MFC_Size,  size);  

     spu_writech(MFC_TagID,  tag_id);  

     spu_writech(MFC_Cmd,  cmd);  

} 

This  particular  function  could  be  more  simply  written  using  the  spu_mfcdma64  

composite  intrinsic,  as:  

#include  <spu_intrinsics.h>  

  

void  dma_transfer(volatile  void  *lsa,  unsigned  int  eah,  unsigned  int  eal,
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unsigned  int  size,  unsigned  int tag_id,  unsigned  int  cmd)  

{ 

     spu_mfcdma64(lsa,  eah,  eal,  size,  tag_id,  cmd);  

} 

Intrinsic classes 

SPU  intrinsics  are  grouped  into  the  three  classes  that  are  described  in  this  section.  

v   Specific  Intrinsics  —  Intrinsics  that  have  a one-to-one  mapping  with  a single  

assembly-language  instruction.  Programmers  rarely  need  these  intrinsics  for  

implementing  inline  assembly  code  because  the  Joint  Software  Reference  

Environment  (JSRE)  has  adopted  gcc-style  inline  assembly.  

v   Generic  Intrinsics  —  Intrinsics  that  map  to  one  or  more  assembly-language  

instructions  as a function  of  the  type  of input  parameters.  

v   Composite  Intrinsics  —  Convenience  intrinsics  constructed  from  a sequence  of 

specific  or  generic  intrinsics.  

Intrinsics  are  not  provided  for  all  assembly-language  instructions.  Some  

assembly-language  instructions  (for  example,  branches,  branch  hints,  and  interrupt  

return)  are  naturally  accessible  through  the  C/C++  language  semantics.  Many  SPU  

intrinsics  are  different  than  PPE  intrinsics  (see  “Differences  between  PPE  and  SPE  

SIMD  support”  on  page  72).  

Specific intrinsics 

Specific  intrinsics  have  a one-to-one  mapping  with  a single  assembly-language  

instruction.  

All  specific  intrinsics  are  named  using  the  SPU  assembly  instruction  prefixed  by  

the  string,  si_. For  example,  the  specific  intrinsic  that  implements  the  stop  

assembly  instruction  is named  si_stop.  

Specific  intrinsics  are  provided  for  all  instructions  except  branch,  branch-hint,  and  

interrupt-return  instructions.  All  specific  intrinsics  are  also  available  in the  form  of 

generic  intrinsics,  except  for  the  specific  intrinsics  shown  in  Table 16.  The  specific  

intrinsics  shown  in  this  table  fall  into  three  categories:  

v    Instructions  generated  using  basic  variable-referencing  (that  is,  using  vector  and  

scalar  loads  and  stores),  

v    Instructions  used  for  immediate  vector  construction,  

v    Instructions  that  have  limited  usefulness  and  are  not  expected  to be  used  except  

in  rare  conditions.

 Table 16.  Specific  intrinsics  not  available  as generic  intrinsics  

Intrinsic  Description  

Generate  Controls  for  Sub-Quadword  Insertion  Intrinsics  

d = si_cbd(a,  imm)  Generate  controls  for byte  insertion  (d form)  

d = si_cbx(a,  b) Generate  controls  for byte  insertion  (x form)  

d = si_cdd(a,  imm)  Generate  controls  for doubleword  insertion  (d form)  

d = si_cdx(a,  b)  Generate  controls  for doubleword  insertion  (x form)  

d = si_chd(a,  imm)  Generate  controls  for halfword  insertion  (d form)  

d = si_chx(a,  b) Generate  controls  for halfword  insertion  (x form)  

d = si_cwd(a,  imm)  Generate  controls  for word  insertion  (d form)  

d = si_cwx(a,  b) Generate  controls  for word  insertion  (x form)  
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Table 16.  Specific  intrinsics  not  available  as generic  intrinsics  (continued)  

Intrinsic  Description  

Constant  Formation  Intrinsics  

d = si_il(imm)  Immediate  load  word  

d = si_ila(imm)  Immediate  load  address  

d = si_ilh(imm)  Immediate  load  halfword  

d = si_ilhu(imm)  Immediate  load  halfword  upper  

d = si_iohl(a,  imm)  Immediate  or halfword  lower  

No  Operation  Intrinsics  

si_lnop(  No  operation  (load)  

si_nop()  No  operation  (execute)  

Memory  Load  and  Store  Intrinsics  

d = si_lqa(imm)  Load  quadword  (a form)  

d = si_lqd(a,  imm)  Load  quadword  (d  form)  

d = si_lqr(imm)  Load  quadword  instruction  relative  

d = si_lqx(a,  b) Load  quadword  (x form)  

si_stqa(a,  imm)  Store  quadword  (a form)  

si_stqd(a,  b, imm)  Store  quadword  (d form)  

si_stqr(a,  imm)  Store  quadword  instruction  relative  

si_stqx(a,  b, c) Store  quadword  (x form)  

Control  Intrinsics  

si_stopd(a,  b, c) Stop  and  signal  with  dependencies
  

Specific  intrinsics  accept  only  the  following  types  of  arguments:  

v   Immediate  literals,  as  an  explicit  constant  expression  or  as  a symbolic  address.  

v   Enumerations.  

v   Quadword  arguments  (variables  of type  qword).

Arguments  of  other  types  must  be  cast  to  the  qword  data  type.  When  using  specific  

intrinsics,  it  might  be  necessary  to  cast  from  scalar  types  to the  qword  data  type,  or  

from  the  qword  data  type  to  scalar  types.  Similar  to  casting  between  vector  data  

types,  specific  cast  intrinsics  have  no  effect  on  an  argument  that  is  stored  in  a 

register.  All  specific  casting  intrinsics  are  of  the  following  form:  

d = casting_intrinsic(a)  

For  example,  to  add  3 to the  integer  i:  

int  i; 

i = si_to_int  (si_ai  (si_from_int(i),  3));  

Table 17  lists  the  specific  casting  intrinsics.  

 Table 17.  Specific  Casting  Intrinsics  

Intrinsic  Description  

si_to_char  Cast  byte  element  3 of qword  to char.  

si_to_uchar  Cast  byte  element  3 of qword  to unsigned  char.  

si_to_short  Cast  halfword  element  1 of qword  to short.  
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Table 17.  Specific  Casting  Intrinsics  (continued)  

Intrinsic  Description  

si_to_ushort  Cast  halfword  element  1 of qword  to unsigned  short.  

si_to_int  Cast  word  element  0 of qword  to int. 

si_to_uint  Cast  word  element  0 of qword  to unsigned  int. 

si_to_ptr  Cast  word  element  0 of qword  to a void  pointer. 

si_to_llong  Cast  doubleword  element  0 of qword  to long  long.  

si_to_ullong  Cast  doubleword  element  0 of qword  to unsigned  long  

long.  

si_to_float  Cast  word  element  0 of qword  to float.  

si_to_double  Cast  doubleword  element  0 of qword  to double.  

si_from_char  Cast  char  to byte  element  3 of qword.  

si_from_uchar  Cast  unsigned  char  to byte  element  3 of qword.  

si_from_short  Cast  short  to halfword  element  1 of qword.  

si_from_ushort  Cast  unsigned  short  to halfword  element  1 of qword.  

si_from_int  Cast  int to word  element  0 of qword.  

si_from_uint  Cast  unsigned  int to word  element  0 of qword.  

si_from_ptr  Cast  void  pointer  to word  element  0 of qword.  

si_from_llong  Cast  long  long  to doubleword  element  0 of qword.  

si_from_ullong  Cast  unsigned  long  long  to doubleword  element  0 of 

qword.  

si_from_float  Cast  float  to word  element  0 of qword.  

si_from_double  Cast  double  to doubleword  element  0 of qword.
  

Generic intrinsics 

Generic  intrinsics  map  to  one  or  more  assembly-language  instructions,  as  a 

function  of  the  type  of  its  input  parameters.  Generic  intrinsics  are  often  

implemented  as  compiler  built-ins.  

All  of  the  generic  intrinsics  are  prefixed  by  the  string  spu_. For  example,  the  

intrinsic  that  implements  the  stop  assembly  instruction  is named  spu_stop. 

Generic  intrinsics  are  provided  for  all  SPU  instructions,  except  for  the  following:  

v   branch  

v   branch  hint  

v   interrupt  return  

v   generate  control  for  insertion  (used  for  scalar  stores)  

v   constant  formation  

v   no-op  

v   memory  load  and  store  

v   stop  and  signal  with  dependencies  (stopd) 

Many  generic  intrinsics  accept  scalars  as one  of  their  operands.  These  correspond  

to  intrinsics  that  map  to  instructions  with  immediate  values.  
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Table 18  lists  the  generic  intrinsics.  

 Table 18.  Generic  SPU  Intrinsics  

Intrinsic  Description  

Constant  Formation  Intrinsics  

d = spu_splats(a)  Replicate  scalar  a into  all elements  of vector  d 

Conversion  Intrinsics  

d = spu_convtf(a,  scale)  Convert  integer  vector  to float  vector  

d = spu_convts(a,  scale)  Convert  float  vector  to  signed  int  vector  

d = spu_convtu(a,  scale)  Convert  float  vector  to  unsigned  float  vector  

d = spu_extend(a)  Sign  extend  vector  

d = spu_rountf(a)  Round  double  vector  to float  vector  

Arithmetic  Intrinsics  

d = spu_add(a,  b) Vector  add 

d = spu_addx(a,  b, c) Vector  add extended  

d = spu_genb(a,  b)  Vector  generate  borrow  

d = spu_genbx(a,  b, c) Vector  generate  borrow  extended  

d = spu_genc(a,  b) Vector  generate  carry  

d = spu_gencx(a,  b, c) Vector  generate  carry  extended  

d = spu_madd(a,  b, c) Vector  multiply  and  add  

d = spu_mhhadd(a,  b, c) Vector  multiply  high  high  and  add  

d = spu_msub(a,  b, c) Vector  multiply  and  subtract  

d = spu_mul(a,  b)  Vector  multiply  

d = spu_mulh(a,  b)  Vector  multiply  high  

d = spu_mulhh(a,  b) Vector  multiply  high  high  

d = spu_mulo(a,  b)  Vector  multiply  odd  

d = spu_mulsr(a,  b) Vector  multiply  and  shift  right  

d = spu_nmadd(a,  b, c) Negative  vector  multiply  and  add  

d = spu_nmsub(a,  b, c) Negative  vector  multiply  and  subtract  

d = spu_re(a)  Vector  floating-point  reciprocal  estimate  

d = spu_rsqrte(a)  Vector  floating-point  reciprocal  square  root  estimate  

d = spu_sub(a,  b) Vector  subtract  

d = spu_subx(a,  b, c) Vector  subtract  extended  

Byte  Operation  Intrinsics  

d = spu_absd(a,  b)  Vector  absolute  difference  

d = spu_avg(a,  b) Vector  average  

d = spu_sumb(a,  b) Vector  sum  bytes  into  shorts  

Compare,  Branch,  and  Halt  Intrinsics  

d = spu_bisled(func)  Branch  indirect  and  set link  if external  data  

d = spu_cmpabseq(a,  b) Vector  compare  absolute  equal  

d = spu_cmpabsgt(a,  b) Vector  compare  absolute  greater  than  

d = spu_cmpeq(a,  b) Vector  compare  equal  

d = spu_cmpgt(a,  b) Vector  compare  greater  than  
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Table 18.  Generic  SPU  Intrinsics  (continued)  

Intrinsic  Description  

(void)  spu_hcmpeq(a,  b) Halt  if compare  equal  

(void)  spu_hcmpgt(a,  b) Halt  if compare  greater  than  

d = spu_testsv(a,  values)  Element-wise  test for special  value  

Bit  and  Mask  Intrinsics  

d = spu_cntb(a)  Vector  count  ones  for  bytes  

d = spu_cntlz(a)  Vector  count  leading  zeros  

d = spu_gather(a)  Gather  bits  from  elements  

d = spu_maskb(a)  Form  select  byte  mask  

d = spu_maskh(a)  Form  select  halfword  mask  

d = spu_maskw(a)  Form  select  word  mask  

d = spu_sel(a,  b, pattern)  Select  bits 

d = spu_shuffle(a,  b, pattern)  Shuffle  bytes  of a vector  

Logical  Intrinsics  

d = spu_and(a,  b)  Vector  bit-wise  AND  

d = spu_andc(a,  b)  Vector  bit-wise  AND  with  complement  

d = spu_eqv(a,  b) Vector  bit-wise  equivalent  

d = spu_nand(a,  b)  Vector  bit-wise  complement  of AND  

d = spu_nor(a,  b) Vector  bit-wise  complement  of OR  

d = spu_or(a,  b) Vector  bit-wise  OR  

d = spu_orc(a,  b) Vector  bit-wise  OR  with  complement  

d = spu_orx(a)  Bit-wise  OR  word  elements  

d = spu_xor(a,  b) Vector  bit-wise  exclusive  OR  

Rotate  Intrinsics  

d = spu_rl(a,  count)  Element-wise  bit rotate  left  

d = spu_rlmask(a,  count)  Element-wise  bit rotate  left  and  mask  

d = spu_rlmaska(a,  count)  Element-wise  bit algebraic  rotate  and  mask  

d = spu_rlmaskqw(a,  count)  Bit rotate  and  mask  quadword  

d = spu_rlmaskqwbyte(a,  count)  Byte  rotate  and  mask  quadword  

d = spu_rlmaskqwbytebc(a,  count)  Byte  rotate  and  mask  quadword  using  bit rotate  

count  

d = spu_rlqw(a,  count)  Bit rotate  quadword  left  

d = spu_rlqwbyte(a,  count)  Byte  rotate  quadword  left  

d = spu_rlqwbytebc(a,  count)  Byte  rotate  quadword  left  using  bit rotate  count  

Shift  Intrinsics  

d = spu_sl(a,  count)  Element-wise  bit shift  left  

d = spu_slqw(a,  count)  Bit shift  quadword  left  

d = spu_slqwbyte(a,  count)  Byte  shift  quadword  left  

d = spu_slqwbytebc(a,  count)  Byte  shift  quadword  left  using  bit shift  count  

Control  Intrinsics  

(void)  spu_idisable()  Disable  interrupts  
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Table 18.  Generic  SPU  Intrinsics  (continued)  

Intrinsic  Description  

(void)  spu_ienable()  Enable  interrupts  

(void)  spu_mffpscr()  Move  from  floating-point  status  and  control  register  

(void)  spu_mfspr(register)  Move  from  special-purpose  register  

(void)  spu_mtfpscr(a)  Move  to floating-point  status  and  control  register  

(void)  spu_mtspr(register,  a) Move  to special-purpose  register  

(void)  spu_dsync()  Synchronize  data  

(void)  spu_stop(type)  Stop  and  signal  

(void)  spu_sync()  Synchronize  

Scalar  Intrinsics  

d = spu_extract(a,  element)  Extract  vector  element  from  vector  

d = spu_insert(a,  b, element)  Insert  scalar  into  specified  vector  element  

d = spu_promote(a,  element)  Promote  scalar  to vector  

Channel  Control  Intrinsics  

d = spu_readch(channel)  Read  word  channel  

d = spu_readchqw(channel)  Read  quadword  channel  

d = spu_readchcnt(channel)  Read  channel  count  

(void)  spu_writech(channel,  a) Write word  channel  

(void)  spu_writechqw(channel,  a) Write quadword  channel
  

Composite SPU intrinsics 

Composite  intrinsics  are  constructed  from  a sequence  of  specific  or  generic  

intrinsics.  

All  of  the  composite  intrinsics  are  prefixed  by  the  string  spu_. Table 19  lists  the  

composite  intrinsics.  

 Table 19.  Composite  SPU  intrinsics  

Intrinsic  Description  

spu_mfcdma32(ls,  ea, size,  tagid,  

cmd)  

Initiate  DMA  to or from  32-bit  effective  address  

spu_mfcdma64(ls,  eahi,  ealow, size,  

tagid,  cmd)  

Initiate  DMA  to or from  64-bit  effective  address  

spu_mfcstat(type)  Read  MFC  tag status
  

For  further  information  about  the  SPU  intrinsics,  refer  to  the  C/C++  Language  

Extensions  for  Cell  Broadband  Engine  Architecture  document.  

Promoting scalar data types to vector data types 

The  SPU  loads  and  stores  one  quadword  at-a-time.  When  instructions  use  or  

produce  scalar  operands  (including  addresses),  the  value  is kept  in  the  preferred  

scalar  slot  of  a SIMD  register.  

Scalar  (sub  quadword)  loads  and  stores  require  several  instructions  to format  the  

data  for  use  on  the  SIMD  architecture  of  the  SPE.  
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Scalar  loads  must  be  rotated  into  the  preferred  slot.  Scalar  stores  require  a read,  

scalar  insert,  and  write  operation.  These  extra  formatting  instructions  reduce  

performance.  

Vector  operations  on  scalar  data  are  not  efficient.  The  following  strategies  can  be  

used  to  make  operations  on  scalar  data  more  efficient:  

v   Change  the  scalars  to  quadword  vectors.  By  eliminating  the  three  extra  

instructions  associated  with  loading  and  storing  scalars,  code  size  and  execution  

time  can  be  reduced.  

v   Cluster  scalars  into  groups,  and  load  multiple  scalars  at a time  using  a 

quadword  memory  access.  Manually  extract  or  insert  the  scalars  as  needed.  This  

will  eliminate  redundant  loads  and  stores.

SPU  intrinsics  are  provided  in  the  C/C++  Language  Extensions  to efficiently  

promote  scalars  to  vectors,  or  vectors  to  scalars.  These  intrinsics  are  listed  in  

Table  20.  

 Table 20.  Intrinsics  for  Changing  Scalar  and  Vector  Data  Types 

Instruction  Description  

d = spu_insert  Insert  a scalar  into  a specified  vector  element.  

d = spu_promote  Promote  a scalar  to a vector.  

d = spu_extract  Extract  a vector  element  from  its vector.
  

Differences between PPE and SPE SIMD support 

This  section  describes  the  architectural  and  language-extension  differences  between  

PPE  and  SPE  SIMD  support.  

Architectural differences between PPE and SPE SIMD support 

The  PPE  processes  SIMD  operations  in  the  VXU  within  its  PPU.  The  operations  are  

those  of  the  Vector/SIMD  Multimedia  Extension  instruction  set.  

The  SPEs  process  SIMD  operations  in  their  SPU.  The  operations  are  those  of  the  

SPU  instruction  set.  

The  major  differences  between  the  PPE  and  SPE  architectures  are  summarized  in 

Table  21.  

 Table 21.  PPE  and  SPE  Architectural  Comparison  

Feature  PPE  SPE  

Number  of SIMD  registers  32 (128-bit)  128 (128-bit)  

Organization  of register  files  separate  fixed-point,  

floating-point,  and  vector  

registers  

unified  

Load  latency  variable  (cache)  fixed  

Addressability  2⁶⁴  bytes  

 256-KB  local  store  

2⁶⁴ bytes  via DMA  

Instruction  set  more  orthogonal  optimized  for  

single-precision  float  

Single-precision  IEEE  754-1985  extended  range  
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Table 21.  PPE  and  SPE  Architectural  Comparison  (continued)  

Feature  PPE  SPE  

Doubleword  no doubleword  SIMD  double-precision  

floating-point  SIMD
  

Language-extension differences between PPE and SPE SIMD 

support 

The  SPE’s  SPU  instruction  set  is similar  to that  of the  PPE’s  Vector/SIMD  Multimedia  

Extension  instruction  set,  in  that  both  operate  on  128-bit  SIMD  vectors. 

However,  from  a programmer’s  perspective,  these  instruction  sets  are  quite  

different,  and  their  respective  language  extensions  have  different  intrinsics  and  

data  types.  

Table 22  specifies  the  supported  vector  data  types  for  each  of the  SIMD  engines  

(PPE  and  SPE)  in  the  Cell  Broadband  Engine,  where:  

v   an  “x”  signifies  support  

v   a “—”  signifies  no  support

 Table 22.  PPE  versus  SPU  Vector  Data  Types 

Vector  Data  Type PPE  SPU  

vector  unsigned  char  x x 

vector  signed  char  x x 

vector  bool  char  x — 

vector  unsigned  short  x x 

vector  signed  short  x x 

vector  bool  short  x — 

vector  pixel  x — 

vector  unsigned  int  x x 

vector  signed  int  x x 

vector  bool  int  x — 

vector  float  x x 

vector  unsigned  long  long  — x 

vector  signed  long  long  — x 

vector  double  — x
  

The  key  differences  are:  

v   Only  the  Vector/SIMD  Multimedia  Extension  instruction  set  supports  pixel  

vectors.  

v   Only  the  SPU  instruction  set  supports  doubleword  vectors.  

The  SPUs  quadword  data  type  is excluded  from  the  list  because  it is a 

type-agnostic  register  reference  instead  of a specific  vector  data  type.  The  

quadword  data  type  is used  exclusively  as  an  operand  in  specific  intrinsics  —  those  

which  have  a one-to-one  mapping  with  a single  assembly-language  instruction.  For  

details,  see  “Intrinsic  classes”  on  page  66.  
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Also,  the  Vector/SIMD  Multimedia  Extension  instruction  set  provides  these  

operations  that  are  not  directly  supported  by  a single  instruction  in  the  SPU  

instruction  set:  

v   Saturating  math  

v   Sum-across  

v   Log2 

and  2x 

v   Ceiling  and  floor  

v   Complete  byte  instructions  

Likewise,  the  SPU  instruction  set  provides  these  operations  that  are  not  directly  

supported  by  a single  instruction  in  the  Vector/SIMD  Multimedia  Extension  

instruction  set:  

v   Immediate  operands  

v   Double-precision  floating-point  

v   Sum  of  absolute  difference  

v   Count  ones  in  bytes  

v   Count  leading  zeros  

v   Equivalence  

v   Nand  

v   Or  complement  

v   Extend  sign  

v   Gather  bits  

v   Form  select  mask  

v   Integer  multiply  and  accumulate  

v   Multiply  subtract  

v   Multiply  float  

v   Shuffle  byte  special  conditions  

v   Carry  and  borrow  generate  

v   Sum  bytes  across  

v   Extended  shift  range  

These  differences  between  the  Vector/SIMD  Multimedia  Extension  and  SPU  

instruction  sets  must  be  kept  in  mind  when  porting  code  from  the  PPE  to  the  SPE.  

Ported  programs  need  to  consider  not  only  equivalent  instructions  but  also  code  

performance.  See  “Porting  SIMD  code  from  the  PPE  to the  SPEs”  on  page  92  for  

more  on  porting  code.  

To improve  code  portability  between  PPE  and  SPU  programs,  spu_intrinsics.h  

provides  single-token  typedefs  for  vector  keyword  data  types.  These  typedefs  are  

shown  in  Table 23.  

These  single-token  types  serve  as  class  names  for  extending  generic  intrinsics  for  

mapping  to-and-from  Vector/SIMD  Multimedia  Extension  intrinsics  and  SPU  

intrinsics.  

 Table 23.  Single-Token  Vector  Keyword  Data  Types 

Vector  Keyword  Data  Type Single-Token  Typedef 

vector  unsigned  char  vec_uchar16  

vector  signed  char  vec_char16  
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Table 23.  Single-Token  Vector  Keyword  Data  Types  (continued)  

Vector  Keyword  Data  Type Single-Token  Typedef  

vector  unsigned  short  vec_ushort8  

vector  signed  short  vec_short8  

vector  unsigned  int  vec_unit4  

vector  signed  int  vec_int4  

vector  unsigned  long  long  vec_ullong2  

vector  signed  long  long  vec_llong2  

vector  float  vec_float4  

vector  double  vec_double2
  

Compiler directives 

Like  compiler  intrinsics,  compiler  directives  are  crucial  programming  elements.  

The  restrict  qualifier  is well-known  in  many  C/C++  implementations,  and  it is 

part  of  the  SPU  language  extension.  When  the  restrict  keyword  is  used  to  qualify  

a pointer,  it specifies  that  all  accesses  to  the  object  pointed  to  are  done  through  the  

pointer.  For  example:  

 void  *memcpy(void  * restrict  s1,  void  * restrict  s2,  size_t  n);  

By  specifying  s1  and  s2 as  pointers  that  are  restricted,  the  programmer  is 

specifying  that  the  source  and  destination  objects  (for  the  memory  copy)  do  not  

overlap.  

Another  directive  is __builtin_expect  . Since  branch  mispredicts  are  relatively  

expensive,  __builtin_expect  provides  a way  for  the  programmer  to direct  branch  

prediction.  This  example:  

 int  __builtin_expect(int  exp,  int  value)  

returns  the  result  of  evaluating  exp  , and  means  that  the  programmer  expects  exp  

to  equal  value  . The  value  can  be  a constant  for  compile-time  prediction,  or a 

variable  used  for  run-time  prediction.  

Two more  directives  are  the  aligned  attribute,  and  the  _align_hint  directive.  The  

aligned  attribute  is used  to  ensure  proper  DMA  alignment,  for  efficient  data  

transfer.  The  syntax  is the  same  as  in  many  implementations  of  gcc:  

 float  factor  __attribute__((aligned  (16));   //aligns  “factor”  to a quadword  

The  _align_hint  directive  helps  compilers  “auto-vectorize”.  Although  it looks  like  

an  intrinsic,  it is more  properly  described  as  a compiler  directive,  since  no  code  is  

generated  as  a result  of  using  the  directive.  The  example:  

 _align_hint(ptr,  base,  offset)  

informs  the  compiler  that  the  pointer,  ptr  , points  to  data  with  a base  alignment  of  

base  , with  a byte  offset  from  the  base  alignment  of offset  . The  base  alignment  

must  be  a power  of  two.  Giving  0 as  the  base  alignment  implies  that  the  pointer  

has  no  known  alignment.  The  offset  must  be  less  than  the  base,  or, zero.  The  

_align_hint  directive  should  not  be  used  with  pointers  that  are  not  naturally  

aligned.  
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MFC commands 

The  MFC  supports  a set  of  MFC  commands. These  commands  provide  the  main  

mechanism  that  enables  code  executing  in  an  SPU  to  access  main  storage  and  

maintain  synchronization  with  other  processors  and  devices  in  the  system.  

The  MFC  is  described  in  “Memory  flow  controller”  on  page  54.  MFC  commands  

can  be  issued  either  by  code  running  on  the  MFC’s  associated  SPU  or  by  code  

running  on  the  PPE  or  other  device,  as  follows:  

v   Code  running  on  the  SPU  issues  an  MFC  command  by  executing  a series  of  

writes  using  channel  instructions, which  are  described  in Table 13  on  page  57.  

v   Code  running  on  the  PPE  or  other  devices  issues  an  MFC  command  by  

performing  a series  of stores  and  loads  to  memory-mapped  I/O  (MMIO)  registers  in  

the  MFC.

The  commands  are  queued  in  one  of two  independent  MFC  command  queues:  

v   MFC  SPU  Command  Queue  —  For  channel-initiated  commands  by  the  associated  

SPU  

v   MFC  Proxy  Command  Queue  —  For  MMIO-initiated  commands  by  the  PPE  or  

other  device  

MFC  commands  that  transfer  data  are  referred  to  as  DMA  commands.  The  

data-transfer  direction  for  MFC  DMA  commands  is always  referenced  from  the  

perspective  of  an  SPE.  Therefore,  commands  that  transfer  data  into  an  SPE  (from  

main  storage  to  local  store),  are  considered  get  commands,  and  transfers  of data  

out  of an  SPE  (from  local  store  to  main  storage)  are  considered  put  commands.  

The  MFC  DMA  commands  are  shown  in  Table  24.  This  table  also  indicates  whether  

the  commands  are  supported  for  SPEs  (by  means  of a corresponding  channel)  and  

for  the  PPE  (by  means  of a corresponding  MMIO  register),  or  both.  

The  suffixes  associated  with  the  MFC  DMA  commands  are  shown  in  Table  25  on  

page  78.  

The  MFC  synchronization  commands  are  shown  in  Table 26  on  page  79.  

The  MFC  atomic  commands  are  shown  in  Table 27  on  page  79.  

 Table 24.  MFC  DMA  Command  

Mnemonic  

Supported  

By Description  

Put  Commands  

put  PPE,  SPE  Moves  data  from  local  store  to the  effective  address.  

puts  PPE  Moves  data  from  local  store  to the  effective  address  and  

starts  the SPU  after  the  DMA  operation  completes.  

putf  PPE,  SPE  Moves  data  from  local  store  to the  effective  address  with  

fence  (this  command  is locally  ordered  with  respect  to all 

previously  issued  commands  within  the  same  tag  group  

and  command  queue).  

putb  PPE,  SPE  Moves  data  from  local  store  to the  effective  address  with  

barrier  (this  command  and  all subsequent  commands  with  

the  same  tag ID  as this  command  are  locally  ordered  with  

respect  to all previously  issued  commands  within  the same  

tag  group  and  command  queue).  
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Table 24.  MFC  DMA  Command  (continued)  

Mnemonic  

Supported  

By Description  

putfs  PPE  Moves  data  from  local  store  to the  effective  address  with  

fence  (this  command  is locally  ordered  with  respect  to all 

previously  issued  commands  within  the  same  tag group  

and  command  queue)  and  starts  the SPU  after  the  DMA  

operation  completes.  

putbs  PPE  Moves  data  from  local  store  to the  effective  address  with  

barrier  (this  command  and  all subsequent  commands  with  

the  same  tag ID  as this  command  are  locally  ordered  with  

respect  to all previously  issued  commands  within  the  same  

tag  group  and  command  queue)  and  starts  the  SPU  after  

the  DMA  operation  completes.  

putl  SPE  Moves  data  from  local  store  to the  effective  address  using  

an MFC  list.  

putlf  SPE  Moves  data  from  local  store  to the  effective  address  using  

an MFC  list with  fence  (this  command  is locally  ordered  

with  respect  to all previously  issued  commands  within  the 

same  tag  group  and  command  queue).  

putlb  SPE  Moves  data  from  local  store  to the  effective  address  using  

an MFC  list with  barrier  (this  command  and  all subsequent  

commands  with  the  same  tag ID as this  command  are  

locally  ordered  with  respect  to all previously  issued  

commands  within  the  same  tag group  and  command  

queue).  

Get  Commands  

get  PPE,  SPE  Moves  data  from  the  effective  address  to local  store.  

gets  PPE  Moves  data  from  the  effective  address  to local  store,  and  

starts  the SPU  after  the  DMA  operation  completes.  

getf  PPE,  SPE  Moves  data  from  the  effective  address  to local  store  with  

fence  (this  command  is locally  ordered  with  respect  to all 

previously  issued  commands  within  the  same  tag group  

and  command  queue).  

getb  PPE,  SPE  Moves  data  from  the  effective  address  to local  store  with  

barrier  (this  command  and  all subsequent  commands  with  

the  same  tag ID  as this  command  are  locally  ordered  with  

respect  to all previously  issued  commands  within  the  same  

tag  group  and  command  queue).  

getfs  PPE  Moves  data  from  the  effective  address  to local  store  with  

fence  (this  command  is locally  ordered  with  respect  to all 

previously  issued  commands  within  the  same  tag group),  

and  starts  the  SPU  after  the  DMA  operation  completes.  

getbs  PPE  Moves  data  from  the  effective  address  to local  store  with  

barrier  (this  command  and  all subsequent  commands  with  

the  same  tag ID  as this  command  are  locally  ordered  with  

respect  to all previously  issued  commands  within  the  same  

tag  group  and  command  queue),  and  starts  the  SPU  after  

the  DMA  operation  completes.  

getl  SPE  Moves  data  from  the  effective  address  to local  store  using  

an MFC  list.  
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Table 24.  MFC  DMA  Command  (continued)  

Mnemonic  

Supported  

By Description  

getlf  SPE  Moves  data  from  the  effective  address  to local  store  using  

an MFC  list with  fence  (this  command  is locally  ordered  

with  respect  to all previously  issued  commands  within  the 

same  tag group  and  command  queue).  

getlb  SPE  Moves  data  from  the  effective  address  to local  store  using  

an MFC  list with  barrier  (this  command  and  all subsequent  

commands  with  the  same  tag  ID as this  command  are  

locally  ordered  with  respect  to all previously  issued  

commands  within  the  same  tag  group  and  command  

queue).
  

The  suffixes  in  Table 25  are  associated  with  the  MFC  DMA  commands,  and  extend  

or  refine  the  function  of a command.  For  example,  a put  command  moves  data  

from  local  store  to  the  effective  address.  A  puts  command  moves  data  from  local  

store  to  the  effective  address  and  starts  the  SPU  after  the  DMA  operation  

completes.  

v   Commands  with  an  s suffix  can  only  be  issued  to the  MFC  Proxy  command  

queue.  

v   Commands  with  a 1 suffix  and  all  the  MFC  atomic  commands  can  only  be  

issued  by  the  SPE  (to  the  MFC  SPU  command  queue).  

v   All  other  commands  described  in  this  section  can  be  issued  by  either  the  SPE  or  

the  PPE.

Commands  issued  by  the  PPE  are  issued  on  behalf  of  the  SPE  and  are  sent  to  the  

MFC  Proxy  command  queue.  

 Table 25.  MFC  Command  Suffixes  

Suffix  Description  

s Starts  the  execution  of the  SPU  at the  current  location  indicated  by the  SPU  Next  

Program  Counter  Register  after  the  data  has  been  transferred  into  or out  of the 

local  store.  

f Tag-specific  fence.  Commands  with  a tag-specific  fence  are  locally  ordered  with  

respect  to all previously-issued  commands  within  the  same  tag group  and  

command  queue.  

b Tag-specific  barrier.  Commands  with  a tag-specific  barrier  are  locally  ordered  with  

respect  to all previously-issued  commands  within  the  same  tag group  and  

command  queue  and  all subsequently-issued  commands  to the  same  command  

queue  with  the  same  tag.  

l List  command.  Executes  a list of DMA  transfer  elements  located  in local  store.  The  

maximum  number  of elements  is 2,048,  and  each  element  describes  a transfer  of 

up  to 16 KB.
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Table 26.  MFC  Synchronization  Commands  

Command  

Supported  

By Description  

barrier  PPE,  SPE  Barrier  type  ordering.  Ensures  ordering  of all preceding,  

nonimmediate  DMA  commands  with  respect  to all 

commands  following  the  barrier  command  within  the same  

command  queue.  The  barrier  command  has  no effect  on the  

immediate  DMA  commands:  getllar, putllc  , and  putlluc. 

mfceieio  PPE,  SPE  Controls  the  ordering  of get commands  with  respect  to put  

commands,  and  of get  commands  with  respect  to get 

commands  accessing  storage  that  is caching  inhibited  and  

guarded.  Also  controls  the  ordering  of put  commands  with  

respect  to put commands  accessing  storage  that  is memory  

coherence  required  and  not  caching  inhibited.  

mfcsync  PPE,  SPE  Controls  the  ordering  of DMA  put and  get operations  

within  the  specified  tag group  with  respect  to other  

processing  units  and  mechanisms  in the  system.  

sndsig  PPE,  SPE  Update  SPU  Signal  Notification  Registers  in an I/O  device  

or another  SPE.  

sndsigb  PPE,  SPE  Update  SPU  Signal  Notification  Registers  in an I/O  device  

or another  SPE  with  barrier. 

sndsigf  PPE,  SPE  Update  SPU  Signal  Notification  Registers  in an I/O  device  

or another  SPE  with  fence.
  

 Table 27.  MFC  Atomic  Commands  

Command  

Supported  

By Description  

getllar  SPE  Get  lock  line  and  create  a reservation  (executed  

immediately).  

putllc  SPE  Put  lock  line  conditional  on a reservation  (executed  

immediately).  

putlluc  SPE  Put  lock  line  unconditional  (executed  immediately).  

putqlluc  SPE  Put  lock  line  unconditional  (queued  form).
  

DMA-command tag groups 

All  DMA  commands  except  getllar,  putllc, and  putlluc  can  be  tagged  with  a 

5-bit  Tag Group  ID.  

By  assigning  a DMA  command  or  group  of commands  to  different  tag  groups,  the  

status  of  the  entire  tag  group  can  be  determined  within  a single  command  queue  

(the  MFC  SPU  Command  Queue  or  the  MFC  Proxy  Command  Queue).  

Software  can  use  this  identifier  to check  or  wait  on  the  completion  of  all  queued  

commands  in  one  or  more  tag  groups.  Tagging  is  optional  but  can  be  useful  when  

using  barriers  to  control  the  ordering  of  MFC  commands  within  a single  command  

queue.  

DMA  commands  within  a tag  group  can  be  synchronized  with  a fence  or  barrier  

option  by  appending  an  f or  b,  respectively,  to the  command  mnemonic.  Execution  

of  a fenced  command  option  is  delayed  until  all  previously  issued  commands  

within  the  same  tag  group  have  been  performed.  Execution  of  a barrier  command  
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option  and  all  subsequent  commands  is delayed  until  all  previously  issued  

commands  in  the  same  tag  group  have  been  performed.  

Synchronizing DMA transfers 

MFC  commands  can  be  used  to control  the  order  in  which  DMA  storage  accesses  

are  performed.  

The  MFC  synchronization  commands  are  shown  in  Table 26  on  page  79.  There  are:  

v   four  atomic  commands  (getllar,  putllc, putlluc,  and  putqlluc), 

v   three  send-signal  commands  (sndsig, sndsigf,  and  sndsigb),  

v   three  barrier  commands  (barrier  , mfcsync  , and  mfceieio  ).

MFC input and output macros 

The  C/C++  Language  Extensions  for  Cell  Broadband  Engine  architecture  

specification  also  defines  a set  of  optional  convenience  macros  to assist  in  accessing  

the  SPU  and  MFC  facilities  available  through  the  channel  interface.  

These  macros,  specified  in  spu_mfcio.h  , can  either  be  implemented  as  macros  or  

as  built-in  functions  within  the  compiler.  

 Table 28.  MFC  Input  and  Output  Macros  

Macro  Description  

Effective  Address  Utilities  

mfc_ea2h(ea)  Extract  higher  32-bits  from  effective  address  

mfc_ea2l(ea)  Extract  lower  32-bits  from  effective  address  

mfc_hl2ea(high,  low)  Concatenate  higher  and  lower  32-bits  of an 

effective  address  

mfc_ceil128(value)  Round  up value  to the  next  multiple  of 128 

DMA  Commands  

mfc_put(ls,  ea,  size,  tag,  tid, rid)  Move  data  from  local  storage  to effective  

address  

mfc_putb(ls,  ea, size,  tag,  tid, rid)  Move  data  from  local  storage  to effective  

address  with  barrier  

mfc_putf(ls,  ea, size,  tag,  tid, rid)  Move  data  from  local  storage  to effective  

address  with  fence  

mfc_get(ls,  ea,  size,  tag,  tid, rid) Move  data  from  effective  address  to  local  

storage  

mfc_getb(ls,  ea, size,  tag,  tid, rid)  Move  data  from  effective  address  to  local  

storage  with  barrier  

mfc_getf(ls,  ea, size,  tag,  tid, rid)  Move  data  from  effective  address  to  local  

storage  with  fence  

List  DMA  Commands  

mfc_putl(ls,  ea,  list,  list_size,  tag,  tid,  rid)  Move  data  from  local  storage  to effective  

address  using  MFC  list 

mfc_putlb(ls,  ea,  list,  list_size,  tag,  tid, rid)  Move  data  from  local  storage  to effective  

address  using  MFC  list with  barrier  

mfc_putlf(ls,  ea, list,  list_size,  tag,  tid, rid)  Move  data  from  local  storage  to effective  

address  listing  MFC  list with  fence  
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Table 28.  MFC  Input  and  Output  Macros  (continued)  

Macro  Description  

mfc_getl(ls,  ea,  list,  list_size,  tag,  tid, rid) Move  data  from  effective  address  to local  

storage  using  MFC  list 

mfc_getlb(ls,  ea,  list,  list_size,  tag,  tid, rid)  Move  data  from  effective  address  to local  

storage  using  MFC  list with  barrier  

mfc_getlf(ls,  ea,  list,  list_size,  tag,  tid, rid)  Move  data  from  effective  address  to local  

storage  using  MFC  list with  fence  

Atomic  Update  Commands  

mfc_getllar(ls,  ea, tid, rid)  Get  lock  line  and  create  reservation  

mfc_putllc(ls,  ea,  tid, rid) Put  lock  line  if reservation  for  effective  

address  exists  

mfc_putlluc(ls,  ea,  tid, rid)  Put  lock  line  unconditional  

mfc_putqlluc(ls,  ea,  tag,  tid, rid)  Put  queued  lock  line  unconditional  

Synchronization  Commands  

mfc_sndsig(ls,  ea, tag,  tid,  rid) Send  signal  

mfc_sndsigb(ls,  ea,  tag,  tid, rid)  Send  signal  with  barrier  

mfc_sndsigf(ls,  ea, tag,  tid, rid)  Send  signal  with  fence  

mfc_barrier(tag)  Enqueue  mfc_barrier  command  into  DMA  

queue  

mfc_eieio(tag,  tid,  rid)  Enqueue  mfc_eieio  command  into  DMA  

queue  

mfc_sync(tag)  Enqueue  mfc_sync  command  into  DMA  

queue  

DMA  Status  

mfc_stat_  cmd_queue()  Check  number  of available  entries  in MFC  

DMA  queue  

mfc_write_tag_mask(mask)  Set tag  mask  to select  tag groups  to be 

included  in query  operation  

mfc_read_tag_mask()  Read  tag  mask  indicating  groups  to be 

included  in query  operation  

mfc_write_tag_update(ts)  Request  the  tag status  to be updated  

mfc_write_tag_update_immediate()  Request  that  tag  status  be updated  

immediately  

mfc_write_tag_update_any()  Request  that  tag  status  be updated  when  any  

tag  groups  complete  

mfc_write_tag_update_all()  Request  that  tag  status  be updated  when  all  

tag  groups  complete  

mfc_stat_tag_update()  Check  availability  of tag  Update  Request  

Status  channel  

mfc_read_tag_status()  Wait for  an updated  tag status  

mfc_read_tag_status_immediate()  Wait for  the updated  tag status  of any  

enabled  group  

mfc_read_tag_status_any()  Wait for  no outstanding  operations  for any  

enabled  groups  

mfc_read_tag_status_all()  Wait for  no outstanding  operations  for all 

enabled  groups  
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Table 28.  MFC  Input  and  Output  Macros  (continued)  

Macro  Description  

mfc_stat_tag_status()  Check  availability  of MFC_RdTagStat  channel  

mfc_read_list_stall_status()  Read  list DMA  stall-and-notify  status  

mfc_stat_list_stall_status()  Check  availability  of List  DMA  

stall-and-notify  status  

mfc_write_list_stall_ack(tag)  Acknowledge  tag  group  containing  stalled  

DMA  list commands  

mfc_read_atomic_status()  Check  availability  of atomic  command  status  

Multisource  Synchronization  Request  

mfc_write_multi_src_sync_request()  Request  multisource  synchronization  

mfc_stat_multi_src_sync_request()  Check  status  of multisource  synchronization  

request  

SPU  Signal  Notification  

spu_read_signal1()  Atomically  read  and  clear  Signal  Notification  

1 channel  

spu_stat_signal1()  Check  if pending  signals  exist  on Signal  

Notification  1 channel  

spu_read_signal2()  Atomically  read  and  clear  Signal  Notification  

2 channel  

spu_stat_signal2()  Check  if pending  signals  exist  on Signal  

Notification  2 channel  

SPU  Mailboxes  

spu_read_in_mbox()  Read  next  data  entry  in the  SPU  Inbound  

Mailbox  

spu_stat_in_mbox()  Get  the  number  of data  entries  in the  SPU  

Inbound  Mailbox  

spu_write_out_mbox(data)  Send  data  to the  SPU  Outbound  Mailbox  

spu_stat_out_mbox()  Get  the  available  capacity  of the  SPU  

Outbound  Mailbox  

spu_write_out_intr_mbox(data)  Send  data  to the  SPU  Outbound  Interrupt  

Mailbox  

spu_stat_out_intr_mbox()  Get  the  available  capacity  of the  SPU  

Outbound  Interrupt  Mailbox  

SPU  Decrementer  

spu_read_decrementer()  Read  the  current  value  of the decrementer  

spu_write_decrementer(count)  Load  a value  into  the decrementer  

SPU  Events  

spu_read_event_status()  Read  the  event  status  or stall  until  status  is 

available  

spu_stat_event_status()  Check  availability  of event  status  

spu_write_event_mask(mask)  Select  events  to be monitored  by event  status  

spu_write_event_ack(ack)  Acknowledge  events  

spu_read_event_mask()  Read  Event  Status  Mask  

SPU  State  Mangement  

spu_read_machine_status()  Read  current  SPU  machine  status  
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Table 28.  MFC  Input  and  Output  Macros  (continued)  

Macro  Description  

spu_write_srr0(srr0)  Write to the  SPU  Save  Restore  Register  0 

spu_read_srr0()  Read  the  SPU  Save  Restore  Register  0
  

To facilitate  cooperative  use  of  MFC  tag  ID’s  amongst  multiple  autonomous  

software  components,  a tag  manager  is provided.  The  functions  provided  by  the  tag  

manager  are  specified  in  Table 29.  

 Table 29.  MFC  Tag Manager  Functions  

Function  Description  

mfc_tag_reserve()  Reserve  a single  tag  for exclusive  use  

mfc_tag_release()  Release  a single  tag  from  exclusive  use  

mfc_multi_tag_reserve()  Reserve  a sequential  group  of tags  for 

exclusive  use  

mfc_multi_tag_release()  Release  a sequential  group  of tags  from  

exclusive  use
  

Coding methods and examples 

The  sections  included  here  describe  some  coding  methods,  with  examples  in  SPU  

assembly  language,  C  language,  SPU  C-language  intrinsics,  and  MFC  commands,  

or  in  a combination  thereof.  

These  instruction  and  command  sets  are  summarized  in:  

v   SPU  assembly  language  —  (see  “SPU  instruction  set”  on  page  60)  

v   SPU  C-language  intrinsics  —  (see  “SPU  C/C++  language  extensions  (intrinsics)”  

on  page  64)  

v   MFC  commands  —  (see  “MFC  commands”  on  page  76)

DMA transfers 

DMA  commands  transfer  data  between  the  LS  and  main  storage.  

Main  storage  is  addressed  by  an  effective  address  (EA)  operand  in a DMA  

command.  The  LS  is addressed  by  the  local  store  address  (LSA)  operand  in  a DMA  

command.  The  size  of  a single  DMA  transfer  is limited  to  16  KB:  

v   put  commands  move  data  from  LS  to  main  storage.  

v   get  commands  move  data  from  main  storage  to  LS.

The  LS  data  is  accessed  sequentially  with  a minimum  step  of  one  quadword.  

Software  on  an  SPE  accesses  its  MFC’s  DMA-transfer  facilities  through  the  

channels  listed  in  “Channels”  on  page  55.  To enqueue  a DMA  command,  SPE  

software  writes  the  MFC  Command  Parameter  Channel  Registers  with  the  wrch  

instruction  (described  in  “Channel  instructions”  on  page  57)  in  the  following  

sequence:  

1.   Write the  EA-high  (EAH) to  the  MFC_EAH  channel.  

2.   Write the  EA-low  (EAL) to the  MFC_EAL  channel.  

3.   Write the  transfer  size  to  the  MFC_Size  channel.  
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4.   Write the  tag  ID  to  the  MFC_TagID  channel.  

5.   Write the  class  ID  and  command  opcode  to the  MFC_Cmd  channel.

The  following  examples  shows  how  to  initiate  a DMA  transfer  from  an  SPE.  

extern  void  dma_transfer(volatile  void  *lsa,      // local  store  address  

              unsigned  int  eah,         // high  32-bit  effective  address  

              unsigned  int  eal,         // low  32-bit  effective  address  

              unsigned  int  size,        // transfer  size  in bytes  

              unsigned  int  tag_id,      // tag  identifier  (0-31)  

An  ABI-compliant  assembly-language  implementation  of  the  subroutine  is:  

   .text  

   .global    dma_transfer  

dma_transfer:  

   wrch         $MFC_LSA,  $3 

   wrch         $MFC_EAH,  $4 

   wrch         $MFC_EAL,  $5 

   wrch         $MFC_Size,  $6 

   wrch         $MFC_TagID,  $7 

   wrch         $MFC_Cmd,  $8 

   bi          $0  

A  comparable  C implementation  using  the  SPU  composite  intrinsic  spu_mfcdma64  

is:  

#include  <spu_intrinsics.h>  

void  dma_transfer(volatile  void  *lsa,  unsigned  int  eah,  unsigned  int  eal,  

             unsigned  int  size,  unsigned  int tag_id,  unsigned  int  cmd)  

{ 

     spu_mfcdma64(lsa,  eah,  eal,  size,  tag_id,  cmd);  

} 

The  performance  of  a DMA  data  transfer  is best  when  the  source  and  destination  

addresses  are  aligned  on  a cache  line  boundary  are  are  at least  a cache  line  sized.  

Quadword-offset-aligned  data  transfers  generate  full  cache-line  bus  requests  for  

every  unrolling,  except  possibly  the  first  and  last  unrolling.  

Transfers  that  start  or  end  in  the  middle  of a cache  line  transfer  a partial  cache  line  

(less  than  8 quadwords)  in  the  first  or  last  bus  request,  respectively.  

DMA-list transfers 

A  DMA  list  is a sequence  of transfer  elements  (or  list  elements)  that,  together  with  

an  initiating  DMA-list  command,  specifies  a sequence  of DMA  transfers  between  a 

single  area  of  LS  and  possibly  discontinuous  areas  in  main  storage.  

Such  DMA  lists  are  stored  in  an  SPE’s  LS,  and  the  sequence  of transfers  is initiated  

with  a DMA-list  command,  such  as  getl  or  putl. 

DMA-list  commands  can  only  be  issued  by  programs  running  on  an  SPE,  but  the  

PPE  or  other  devices  can  create  and  store  the  lists  in  an  SPE’s  LS.  DMA  lists  can  be  

used  to  implement  scatter-gather  functions  between  main  storage  and  the  LS.  

Creating the DMA list 

Each  transfer  element  in  the  DMA  list  contains  a transfer  size,  the  low  half  of an  

effective  address,  and  a stall-and-notify  bit  that  can  be  used  to  suspend  list  

execution  after  transferring  a list  element  whose  stall-and-notify  bit  is  set.  
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Each  DMA  transfer  specified  in a list  can  transfer  up  to  16  KB  of data,  and  the  list  

can  have  up  to  2,048  (2 K)  transfer  elements.  

Software  creates  the  list  and  stores  it in  the  LS.  Lists  must  be  stored  in  the  LS  on  

an  8-byte  boundary.  The  form  of  a transfer  element  is {LTS,  EAL}. 

v   The  first  word  (LTS) is the  list  transfer  size,  the  most-significant  bit  of which  

serves  as  an  optional  stall-and-notify  flag.  

v   The  second  word  (EAL)  is the  low-order  32-bits  of  an  EA.

Transfer  elements  are  processed  sequentially,  in  the  order  they  are  stored.  If the  

stall-and-notify  flag  is set  for  a transfer  element,  the  MFC  will  stop  processing  

the  DMA  list  after  performing  the  transfer  for  that  element  until  the  SPE  program  

clears  the  DMA  List  Command  Stall-And-Notify  Event  from  the  SPU  Read  Event  

Status  Channel.  This  gives  programs  an  opportunity  to modify  subsequent  transfer  

elements  before  they  are  processed  by  the  MFC.  

Initiating the transfers specified in the DMA list 

After  the  list  is stored  in  the  LS,  the  execution  of the  list  is initiated  by  a DMA-list  

command,  such  as  getl  or  putl, from  the  SPE  whose  LS  contains  the  list.  

DMA-list  commands,  such  as single-transfer  DMA  commands,  require  that  

parameters  are  written  to  the  MFC  Command  Parameter  channels  in  the  way  

described  in  “DMA  transfers”  on  page  83.  However,  a DMA-list  command  requires  

two  different  types  of  parameters  than  those  required  by  a single-transfer  DMA  

command:  

v   MFC_EAL  : This  parameter  must  be  written  with  the  starting  local  store  address  

(LSA)  of the  list  , rather  then  with  the  EAL.  (The  EAL  is  specified  in  each  transfer  

element.)  

v   MFC_Size  : This  parameter  must  be  written  with  the  size  of the  list  , rather  then  

the  transfer  size.  (The  transfer  size  is specified  in each  transfer  element.)  The  list  

size  is  equal  to  the  number  of transfer  elements,  multiplied  by  the  size  of  the  

transfer-element  structure  (8 bytes).

The  starting  LSA  and  the  EA-high  (EAH)  are  specified  only  once,  in  the  DMA-list  

command  that  initiates  the  transfers.  The  LSA  is internally  incremented  based  on  

the  amount  of  data  transferred  by  each  transfer  element.  However,  if the  starting  

LSA  for  each  transfer  element  in  a list  does  not  begin  on  a 16-byte  boundary,  then  

hardware  automatically  increments  the  LSA  to  the  next  16-byte  boundary.  

The  EAL  for  each  transfer  element  is in  the  4-GB  area  defined  by  EAH.  

DMA-list transfers: programming example 

The  C-language  sample  program  included  here  creates  a DMA  list  and,  in  the  last  

line,  uses  an  spu_mfcdma32  intrinsic  to  issue  a single  DMA-list  command  (getl) to  

transfer  a main-storage  region  into  LS.  

/* dma_list_sample.c  - SPU  MFC-DMA  list  sample  code.  

 * 

 * This  sample  defines  a transfer-element  data  structure,  which  

 * contains  the  element’s  transfer  size  and  low-order  32 bytes  of the effective  

 * address.  Also  defined  in the  structure,  but not used  by this  sample,  

 * is the  DMA-list  stall-and-notify  bit,  which  can  be used  to indicate  

 * that  the  MFC  should  suspend  list  execution  after  transferring  a list  

 * element  whose  stall-and-notify  bit is set.  

 */ 

  

#include  <spu_mfcio.h>  

 

 

Chapter  3. Programming the SPEs 85



struct  dma_list_elem  { 

    union  { 

  unsigned  int  all32;  

  struct  { 

       unsigned  nbytes:  31;  

       unsigned  stall:   1; 

         } bits;  

    } size;  

    unsigned  int  ea_low;  

}; 

  

struct  dma_list_elem  list[16]  __attribute__  ((aligned  (8)));  

  

void  get_large_region(void  *dst,  unsigned  int  ea_low,  unsigned  int nbytes)  

{ 

    unsigned  int  i = 0; 

    unsigned  int  tagid  = 0; 

    unsigned  int  listsize;  

  

    /*  get_large_region  

     *    Use  a single  DMA  list  command  request  to transfer  

     *    a "large"  memory  region  into  LS.  The  total  size  to 

     *    be copied  may  be larger  than  the MFC’s  single  element  

     *    transfer  limit  of  16kb.  

     */ 

  

    if  (!nbytes)  

 return;  

  

    while  (nbytes  > 0)  { 

  unsigned  int  sz;  

  

  sz = (nbytes  < 16384)  ? nbytes  : 16384;  

  list[i].size.all32  = sz;  

  list[i].ea_low  = ea_low;  

  

  nbytes  -= sz;  

  ea_low  += sz;  

  i++;  

    } 

  

  

/* Specify  the  list  size  and initiate  the list  transfer  

 */ 

  

    listsize  = i * sizeof(struct  dma_list_elem);  

    spu_mfcdma32(dst,  (unsigned  int)  &list[0],  listsize,  tagid,  MFC_GETL_CMD);  

} 

Moving double-buffered data 

SPE  programs  use  DMA  transfers  to  move  data  and  instructions  between  main  

storage  and  the  local  store  (LS)  in  the  SPE.  

Consider  an  SPE  program  that  requires  large  amounts  of data  from  main  storage.  

The  following  is a simple  scheme  to achieve  that  data  transfer:  

1.   Start  a DMA  data  transfer  from  main  storage  to  buffer  B in the  LS.  

2.   Wait for  the  transfer  to  complete.  

3.   Use  the  data  in  buffer  B. 

4.   Repeat.

This  method  wastes  a great  deal  of time  waiting  for  DMA  transfers  to  complete.  

We can  speed  up  the  process  significantly  by  allocating  two  buffers,  B0 

and  B1 

, and  
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overlapping  computation  on  one  buffer  with  data  transfer  in the  other. This  

technique  is  called  double  buffering.  Figure  26  shows  a flow  diagram  for  this  double  

buffering  scheme.  

Double  buffering  is a form  of multibuffering, which  is the  method  of using  multiple  

buffers  in  a circular  queue  to  overlap  processing  and  data  transfer.  

 

The  following  C-language  example  illustrates  double  buffering:  

/* Example  C code  demonstrating  double  buffering  using  

 * buffers  B[0]  and  B[1].  In this  example,  an array  of data  

 * starting  at the  effective  address  eahi|ealow  is DMAed  

 * into  the  SPU’s  local  store  in 4-KB  chunks  and  processed  

 * by the  use_data  subroutine.  

 */ 

#include  <spu_intrinsics.h>  

#include  "spu_mfcio.h"  

  

#define  BUFFER_SIZE   4096  

  

volatile  unsigned  char  B[2][BUFFER_SIZE]  __attribute__  ((aligned(128)));  

  

void  double_buffer_example(unsigned  int  eahi,  unsigned  int  ealow,  int  buffers)  

{ 

  int  next_idx,  buf_idx  = 0; 

  

  //  Initiate  DMA  transfer  

  spu_mfcdma64(B[buf_idx],  eahi,  ealow,  BUFFER_SIZE,  buf_idx,  MFC_GET_CMD);  

  ealow  +=  BUFFER_SIZE;  

  

  while  (--buffers)  { 

    next_idx  = buf_idx  ^ 1; 

  

    // Initiate  next  DMA transfer  

    spu_mfcdma64(B[next_idx],  eahi,  ealow,  BUFFER_SIZE,  next_idx,  MFC_GET_CMD);  

    ealow  += BUFFER_SIZE;  

  

    // Wait  for  previous  transfer  to complete  

    spu_writech(MFC_WrTagMask,  1 << buf_idx);  

    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  

    // Use  the  data  from  the  previous  transfer  

    use_data(B[buf_idx]);  

 

  

Figure  26. DMA  transfers  using  a double-buffering  method
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buf_idx  = next_idx;  

  } 

  

  // Wait  for  last  transfer  to complete  

  spu_writech(MFC_WrTagMask,  1 << buf_idx);  

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  

  // Use  the  data  from  the  last  transfer  

  use_data(B[buf_idx]);  

} 

Note:  The  above  example  is hardcoded  to  use  tag  ids  0 and  1.  Applications  are  

encouraged  to  use  the  tag  manager  functions  to  reserve  tag  ids  for  cooperative  

allocations  of  tags  between  independent  software  components.  

To use  double  buffering  effectively,  follow  these  rules for  DMA  transfers  on  the  

SPE:  

v   Use  multiple  LS  buffers.  

v   Use  unique  DMA  tag  IDs,  one  for  each  LS  buffer  or  logical  group  of  LS  buffers.  

v   Use  fenced  command  options  to  order  the  DMA  transfers  within  a tag  group.  

v   Use  barrier  command  options  to order  DMA  transfers  within  the  MFC’s  DMA  

controller.  

The  purpose  of  double  buffering  is to  maximize  the  time  spent  in the  compute  

phase  of  a program  and  minimize  the  time  spent  waiting  for  DMA  transfers  to  

complete.  Let  τt 

represent  the  time  required  to  transfer  a buffer  B, and  let  τc 

represent  the  time  required  to  compute  on  data  contained  in that  buffer.  In  general,  

the  higher  the  ratio  τt/τc, the  more  performance  benefit  an  application  will  realize  

from  a double-buffering  scheme.  

Vectorizing  a loop 

A  compiler  that  automatically  merges  scalar  data  into  a parallel-packed  SIMD  data  

structure  is  called  an  auto-vectorizing  compiler.  Such  compilers  must  handle  all the  

high-level  language  constructs,  and  therefore  do  not  always  produce  optimal  code.  

A  simple  example  of  vectorizing  a loop  is shown  below.  The  original  loop  

multiplies  two  arrays,  term  by  term.  The  arrays  are  assumed  to  remain  scalar  

outside  of  the  subroutine  vmult. 

/* Scalar  version  */ 

int  mult(float  *array1,  float  *array2,  float  *out,  int  arraySize)  { 

 int  i; 

 for  (i = 0; i < arraySize;  i++)  { 

  out[i]  = array1[i]  * array2[i];  

 } 

 return  0; 

} 

  

/* Vectorized  version  */ 

int  vmult(float  *array1,  float  *array2,  float  *out,  int  arraySize)  { 

 /* This  code  assumes  that  the  arrays  are  quadword-aligned.  */ 

 /* This  code  assumes  that  the  arraySize  is divisible  by 4. */ 

  

 int  i, arraySizebyfour;  

 arraySizebyfour  = arraySize  >>  2;     /* arraySize/4  vectors  */  

 vector  float  *varray1  = (vector  float  *) (array1);  

 vector  float  *varray2  = (vector  float  *) (array2);  

 vector  float  *vout  = (vector  float  *) (out);  

  

 for  (i = 0; i < arraySizebyfour;  i++)  {
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/*spu_mul  is an intrinsic  that  multiplies  vectors  */ 

  vout[i]  = spu_mul(varray1[i],  varray2[i]);  

 } 

  

 return  0; 

} 

Reducing the impact of branches 

The  SPU  hardware  assumes  linear  instruction  flow, and  produces  no  stall  penalties  

from  sequential  instruction  execution.  A branch  instruction  has  the  potential  of 

disrupting  the  assumed  sequential  flow. 

Correctly  predicted  branches  execute  in  one  cycle,  but  a mispredicted  branch  

(conditional  or  unconditional)  incurs  a penalty  of  approximately  18-19  cycles.  

Considering  the  typical  SPU  instruction  latency  of two-to-seven  cycles,  

mispredicted  branches  can  seriously  degrade  program  performance.  Branches  also  

create  scheduling  barriers,  reducing  the  opportunity  of  for  dual  issue  and  covering  

up  dependency  stalls.  

The  most  effective  means  of  reducing  the  impact  of branches  is to  eliminate  them  

using  three  primary  methods  —  inlining,  unrolling,  and  predication.  The  next  

effective  means  of  reducing  the  impact  of branches  is to  use  the  branch-hint  

instructions.  

If  a branch  hint  is  provided,  software  speculates  that  the  instruction  branches  to  

the  target  path.  If  a hint  is not  provided,  software  speculates  that  the  branch  is  not  

taken  (that  is,  instruction  execution  continues  sequentially).  If either  speculation  is 

incorrect,  there  is  a large  penalty  (flush  and  refetch).  

Function-inlining and loop-unrolling 

Function-inlining  and  loop-unrolling  are  two  techniques  often  used  to increase  the  

size  of  basic  blocks  (sequences  of  consecutive  instructions  without  branches),  which  

increases  scheduling  opportunities.  

Function-inlining  eliminates  the  two  branches  associated  with  function-call  linkage.  

These  include  the  branch  and  set  link  for  function-call  entry,  and  the  branch  

indirect  for  function-call  return.  

Loop-unrolling  eliminates  branches  by  decreasing  the  number  of loop  iterations.  

Loop  unrolling  can  be  manual,  compiler  directed,  or  compiler  automated.  Typically,  

branches  associated  with  looping  are  inexpensive  because  they  are  highly  

predictable.  However,  if a loop  can  be  fully  unrolled,  then  all  branches  can  be  

eliminated—including  the  final  nonpredicted  branch.  

Care  should  be  taken  when  exploiting  function  inlining  and  loop  unrolling.  

Over-aggressive  use  of  these  techniques  can  result  in  code  that  is too  large  to  fit in  

the  LS.  

Predication using select-bits instruction 

The  select-bits  (selb) instruction  is the  key  to eliminating  branches  for  simple  

control-flow  statements  (for  example,  if  and  if-then-else  constructs).  An  

if-then-else  statement  can  be  made  branchless  by  computing  the  results  of both  

the  then  and  else  clauses  and  using  select  bits  (selb) to choose  the  result  as  a 

function  of  the  conditional.  

If  computing  both  the  results  costs  less  than  a mispredicted  branch,  then  there  are  

additional  savings.  
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For  example,  consider  the  following  simple  if-then-else  statement:  

unsigned  int  a, b, c; 

 ...  

if (a > b)   d += a; 

else          d += 1; 

This  code  sequence,  when  directly  converted  to  an  SPU  instruction  sequence  

without  branch  optimizations,  would  look  like:  

 clgt   cc,  a, b 

 brz   cc,  else  

then:  

 a  d, d, a 

 br  done  

else:  

 ai  d,  d,  1 

done:  

Using  the  select  bits  instruction,  this  simple  conditional  becomes:  

 clgt    cc,  a, b                   /* compute  the greater-than  condition  */ 

 a      d_plus_a,  d, a             /* add  d + a */ 

 ai     d_plus_1,  d, 1             /* add  d + 1 */ 

 selb    d,  d_plus_1,  d_plus_a,  cc  /* select  proper  result  */ 

This  example  shows:  

v   Both  branches  were  eliminated,  and  the  correct  result  was  placed  in  d . 

v   New  registers  were  needed  to  maintain  potential  values  of d (d_plus_a  and  

d_plus_1  ). This  does  not  put  significant  pressure  on  the  register  file  because  the  

register  file  is so  large  and  the  life  of  these  variables  is very  short.  

v   The  rewritten  code  sequence  is smaller.  

v   The  latency  of  the  operations  permits  the  scheduler  to  cover  most  of the  cost  of 

computing  both  conditions.  Further  scheduling  these  instructions  with  those  

before  and  after  this  code  sequence  will  likely  improve  performance  even  

further.

Here  is  another  example  of  using  the  select  bit  —  this  time  with  C  intrinsics.  This  

code  fragment  shows  how  to  use  SPU  intrinsics,  including  spu_cmpgt  , spu_add  , 

and  spu_sel  , to  eliminate  conditional  branches.  

The  following  sequence  generates  four  instructions,  assuming  a, b,  c are  already  in 

registers  (because  we  are  promoting  and  extracting  to  and  from  the  preferred  

integer  element,  the  spu_promote  and  spu_extract  intrinsics  produce  no  additional  

instructions):  

        unsigned  int  a,b,c;  

        vector  unsigned  int  vc1,  vab,  va, vb, vc;  

  

        va = spu_promote(a,  0);  

        vb = spu_promote(b,  0);  

        vc = spu_promote(c,  0);  

        vc1  = spu_add(vc,  1); 

        vab  = spu_add(va,  vb);  

        vc  = spu_sel(vab,  vc1,  spu_cmpgt(va,  vb));  

        c = spu_extract(vc,  0);  

Reducing branch mispredicts with branch hint 

General-purpose  processors  have  typically  addressed  branch  prediction  by  

supporting  hardware  look-asides  with  branch  history  tables  (BHT),  branch  target  

address  caches  (BTAC),  or  branch  target  instruction  caches  (BTIC).  
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The  SPU  addresses  branch  prediction  through  a set  of hint  for  branch  (HBR)  

instructions  that  facilitate  efficient  branch  processing  by  allowing  programs  to  

avoid  the  penalty  of  taken  branches.  

v   If a branch  hint  is provided,  software  speculates  that  the  instruction  branches  to 

the  target  path.  

v   If a hint  is  not  provided,  software  speculates  that  the  instruction  does  not  branch  

to  a new  location  (that  is,  it stays  inline).  

v   If speculation  is  incorrect,  the  speculated  branch  is flushed  and  refetched.

It  is  possible  to  sequence  multiple  hints  in  advance  of multiple  branches.  As  with  

all  programmer-provided  hints,  care  must  be  exercised  when  using  branch  hints  

because,  if the  information  provided  is incorrect,  performance  might  degrade.  

Branch-hint  instructions  can  provide  three  kinds  of  advance  knowledge  about  

future  branches:  

v   Address  of  the  branch  target  (that  is,  where  will  the  branch  take  the  flow  of 

control)  

v   Address  of  the  actual  branch  instruction  (known  as  the  hint-trigger  address  ) 

v   Prefetch  schedule  (when  to  initiate  prefetching  instructions  at the  branch  target)

Branch-hint  instructions  load  a branch-target  buffer  (BTB)  in  the  SPU.  When  the  

BTB  is  loaded  with  a branch  target,  the  hint-trigger  address  and  branch  address  are  

also  loaded  into  the  BTB.  After  loading,  the  BTB  monitors  the  instruction  stream  as  

it goes  into  the  issue  stage  of  the  pipeline.  When  the  address  of  the  instruction  

going  into  issue  matches  the  hint  trigger  address,  the  hint  is triggered,  and  the  

SPU  speculates  to  the  target  address  in  the  hint  buffer.  

Branch-hint  instructions  have  no  program-visible  effects.  They  provide  a hint  to  the  

SPE  architecture  about  a future  branch  instruction,  with  the  intention  that  the  

information  be  used  to  improve  performance  by  prefetching  the  branch  target.  The  

SPE  branch-hint  instructions  are  shown  in  Table 30.  There  are  immediate  and  

indirect  forms  for  this  instruction  class.  The  location  of  the  branch  is always  

specified  by  an  immediate  operand  in the  instruction.  

 Table 30.  Branch-Hint  Instructions  

Instruction  Description  

hbr  s11, ra Hint  for branch  (r-form).  Hint  that  the  instruction  addressed  by 

the  sum  of the  address  of the  current  instruction  and  the  signed  

extended,  11-bit  value  s11 will  branch  to the address  contained  in 

word  element  0 of register  ra. This  form  is used  to hint  function  

returns,  pointer  function  calls,  and  other  situations  that  give  rise  

to indirect  branches.  

hbra  s11, s18  Hint  for branch  (a-form).  Hint  that  the  instruction  addressed  by 

the  sum  of the  address  of the  current  instruction  and  the  signed  

extended,  11-bit  value  s11 will  branch  to the address  specified  by 

the  sign  extended,  18-bit  value  s18.  

hbrr  s11, s18  Hint  for branch  relative.  Hint  that  the  instruction  addressed  by the  

sum  of the  address  of the  current  instruction  and  the  signed  

extended,  11-bit  value  s11 will  branch  to the address  specified  by 

the  sum  of the  address  of the  current  instruction  and  sign  

extended,  18-bit  value  s18.
  

The  following  rules apply  to the  hint  for  branch  (HBR)  instructions:  
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v   An  HBR  instruction  should  be  placed  at least  11 cycles  followed  by  four  

instruction  pairs  before  the  branch  instructions  being  hinted  by  the  HBR  

instruction.  In  other  words,  an  HBR  instruction  must  be  followed  by  at least  11 

cycles  of  instructions,  followed  by  eight  instructions  aligned  on  an  even  address  

boundary.  More  separation  between  the  hint  and  branch  improves  the  

performance  of  applications  on  future  SPU  implementations.  

v   If  an  HBR  instruction  is placed  too  close  to  the  branch,  then  a hint  stall  will  

result.  This  results  in  the  branch  instruction  stalling  until  the  timing  requirement  

of  the  HBR  instruction  is satisfied.  

v   If  an  HBR  instruction  is placed  closer  to  the  hint-trigger  address  than  four  

instruction  pairs  plus  one  cycle,  then  the  hint  stall  does  not  occur  and  the  HBR  

is not  used.  

v   Only  one  HBR  instruction  can  be  active  at a time.  Issuing  another  HBR  cancels  

the  current  one.  

v   An  HBR  instruction  can  be  moved  outside  of a loop  and  will  be  effective  on  

each  loop  iteration  as  long  as  another  HBR  instruction  is not  executed.  

v   The  HBR  instruction  must  be  placed  within  255  instructions  of  the  branch  

instruction.  

v   The  HBR  instruction  only  affects  performance.  

The  HBR  instructions  can  be  used  to support  multiple  strategies  of branch  

prediction.  These  include:  

v   Static  Branch  Prediction  —  Prediction  based  upon  branch  type  or  displacement,  

and  prediction  based  upon  profiling  or  linguistic  hints.  

v   Dynamic  Branch  Prediction  —  Software  caching  of  branch-target  addresses,  and  

using  control  flow  to  record  branching  history.  

A  common  approach  to  generating  static  branch  prediction  is  to use  expert  

knowledge  that  is  obtained  either  by  feedback-directed  optimization  techniques  or  

using  linguistic  hints  supplied  by  the  programmer.  

The  document  C/C++  Language  Extensions  for  Cell  Broadband  Engine  Architecture  

defines  a mechanism  for  directing  branch  prediction.  The  __builtin_expect  

directive  allows  programmers  to  predict  conditional  program  statements.  The  

following  example  demonstrates  how  a programmer  can  predict  that  a conditional  

statement  is false  (a  is not  larger  than  b).  

 if(__builtin_expect((a>b),0))  

   c += a; 

 else  

   d += 1; 

Not  only  can  the  __builtin_expect  directive  be  used  for  static  branch  prediction,  it 

can  be  used  for  dynamic  branch  prediction.  

Porting SIMD code from the PPE to the SPEs 

For  some,  it is  easier  to  write  SIMD  programs  by  writing  them  first  for  the  PPE,  

and  then  porting  them  to  the  SPEs.  This  approach  postpones  some  SPE-related  

considerations  of dealing  with  the  local  store  (LS)  size,  data  movements,  and  

debug  until  after  the  port.  The  approach  can  also  allow  partitioning  of  the  work  

into  simpler  (perhaps  more  digestible)  steps  on  the  SPEs.  

After  the  Vector/SIMD  Multimedia  Extension  code  is working  properly  on  the  

PPE,  a strategy  for  parallelizing  the  algorithm  across  multiple  SPEs  can  be  
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developed.  This  is  often,  but  not  always,  a data-partitioning  method.  The  effort  

might  involve  converting  from  Vector/SIMD  Multimedia  Extension  intrinsics  to  

SPU  intrinsics,  adding  data-transfer  and  synchronization  constructs,  and  tuning  for  

performance.  It might  be  useful  to test  the  impact  of various  techniques,  such  as 

DMA  double  buffering,  loop  unrolling,  branch  elimination,  alternative  intrinsics,  

number  of  SPEs,  and  so forth.  Debugging  tools  such  as the  static  timing-analysis  

tool  and  the  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine  are  available  

to  assist  this  effort,  as  described  in “Performance  analysis”  on  page  106.  

Alternatively,  experienced  Cell  Broadband  Engine  programmers  may  prefer  to skip  

the  Vector/SIMD  Multimedia  Extension  coding  phase  and  go  directly  to  SPU  

programming.  In  some  cases,  SIMD  programming  can  be  easier  on  an  SPE  than  the  

PPE  because  of the  SPE’s  unified  register  file.  

The  earlier  chapters  in  this  tutorial  describe  the  Vector/SIMD  Multimedia  

Extension  and  SPU  programming  environments  and  some  of their  differences.  

Armed  with  knowledge  of  these  differences,  one  can  devise  a strategy  for  

developing  code  that  is portable  between  the  PPE  and  the  SPEs.  The  strategy  one  

should  employ  depends  upon  the  type  of  instructions  to  be  executed,  the  variety  of 

vector  data  types,  and  the  performance  objectives.  Solutions  span  the  range  of  

simple  macro  translation  to  full  functional  mapping.  

Code-mapping considerations 

There  are  several  challenges  associated  with  mapping  code  designed  for  one  

instruction  set  and  compiled  for  another  instruction  set.  These  including  

performance,  unmappable  constructs,  limited  size  of LS,  and  equivalent  precision,  

as  described  in  this  section.  

Code-mapping performance considerations 

Simple  remapping  of  low-level  intrinsics  can  result  in  less-than-optimal  

performance,  depending  upon  the  intrinsics  used.  

Understanding  the  dynamic  range  of  the  remapping’s  operands  can  reduce  the  

performance  impact  of simple  remapping.  

Unmappable constructs considerations 

Differences  in  the  processing  of intrinsics  make  simple  translation  of certain  

intrinsics  unmappable.  

The  unmappable  SPU  intrinsics  include:  

v   stop  and  stopd  

v   conditional  halt  

v   interrupt  enable  and  disable  

v   move  to  and  from  status  control  and  special-purpose  registers  

v   channel  instructions  

v   branch  on  external  data

Limited size of LS considerations 

Vector/SIMD  Multimedia  Extension  programs  mapped  to  SPU  programs  might  not  

fit  within  the  LS  of  the  SPE,  either  because  the  program  is initially  too  big  or  

because  mapping  expands  the  code.  
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Equivalent precision considerations 

The  SPU  instruction  set  does  not  fully  implement  the  IEEE  754  single-precision  

floating-point  standard  (default  rounding  mode  is round  to zero  , denormals  are  

treated  as  zero,  and  there  are  no  infinities  or NaNs).  

Therefore,  floating-point  results  on  an  SPE  may  differ  slightly  from  floating-point  

results  using  the  PPE’s  PowerPC  instruction  set.  In  addition,  all  estimation  

intrinsics  (for  example,  ceiling,  floor, reciprocal  estimate,  reciprocal  square  root  

estimate,  exponent  estimate,  and  log  estimate)  do  not  have  equivalent  accuracy  on  

the  SPU  and  PPE  PowerPC  instruction  sets.  

However,  the  instructions  in  the  PPE’s  Vector/SIMD  Multimedia  Extension  have  a 

graphics  rounding  mode  that  allows  programs  written  with  Vector/SIMD  Multimedia  

Extension  instructions  to produce  floating-point  results  that  are  equivalent  in  

precision  to  those  written  in  the  SPU  instruction  set.  In  this  Vector/SIMD  

Multimedia  Extension  mode,  as  in  the  SPU  environment,  the  default  rounding  

mode  is  round  to  zero, denormals  are  treated  as  zero,  and  there  are  no  infinities  or  

NaNs.  

Details  on  the  graphics  rounding  mode  can  be  found  in Cell  Broadband  Engine,  

Programming  Handbook. 

Simple macro translation 

For  many  programs,  it is possible  to  use  a simple  macro  translation  strategy  for  

developing  code  that  is portable  between  the  Vector/SIMD  Multimedia  Extension  

and  SPU  instruction  sets.  

The  keys  to  simple  macro  translation  are:  

v   Use  a Compatible  Vector-Literal  Construction  Format  —  The  PPE  Vector/SIMD  

Multimedia  Extension  and  the  SPE’s  SPU  instruction  set  specifies  two  styles  of 

constructing  literal  vectors:  curly  brace  and  parenthesis.  Some  compilers  support  

both  styles.  A set  of  construction  macros  can  be  used  to  insulate  programs  from  

any  differences  in  the  tools.  

v   Use  Single-Token  Vector  Data  Types —  The  C/C++  Language  Extensions  for  Cell  

Broadband  Engine  Architecture  document  specifies  a set  of  single-token  vector  data  

types.  Because  these  are  single-token,  the  data  types  can  be  easily  redefined  by a 

preprocessor  to  the  desired  target  processor.  Additional  single-token  data  types  

must  be  standardized  for  the  unique  Vector/SIMD  Multimedia  Extension  data  

types.  Table  31  lists  the  data  types.  See  also:  

–   Table 22  on  page  73.  

–   Table 23  on  page  74.

 Table 31.  Vector/SIMD  Multimedia  Extension  Single-Token  Data  Types 

Vector  Data  Type Single-Token  Data  Type 

vector  bool  char  vec_bchar16  

vector  bool  short  vec_bshort8  

vector  bool  int vec_bint4  

vector  pixel  vec_pixel8
  

v   Use  Intrinsics  that  Map  One-to-One  —  Regardless  of  the  technique  used  to provide  

portability,  performance  will  be  optimized  if the  operations  map  one-to-one  

between  Vector/SIMD  Multimedia  Extension  intrinsics  and  SPU  intrinsics.  
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The  SPU  intrinsics  that  map  one-to-one  with  Vector/SIMD  Multimedia  Extension  

(except  for  the  specific  intrinsics  described  in “Specific  intrinsics”  on  page  66)  

are  shown  in  Table 32.  

The  Vector/SIMD  Multimedia  Extension  intrinsics  that  map  one-to-one  with  SPU  

are  shown  in  Table 33.  

 Table 32.  SPU  Intrinsics  with  One-to-One  Vector/SIMD  Multimedia  Extension  Mapping  

SPU  Intrinsic  

Vector/SIMD  

Multimedia  

Extension  Intrinsic  For  Data  Types 

spu_add  vec_add  vector  operands  only,  no scalar  operands  

spu_and  vec_and  vector  operands  only,  no scalar  operands  

spu_andc  vec_andc  all 

spu_avg  vec_avg  all 

spu_cmpeq  vec_cmpeq  vector  operands  only,  no scalar  operands  

spu_cmpgt  vec_cmpgt  vector  operands  only,  no scalar  operands  

spu_convtf  vec_ctf  limited  scale  range  (5 bits)  

spu_convts  vec_cts  limited  scale  range  (5 bits)  

spu_convtu  vec_ctu  limited  scale  range  (5 bits)  

spu_extract  vec_extract  all 

spu_genc  vec_addc  all 

spu_insert  vec_insert  all 

spu_madd  vec_madd  float  only  

spu_mulhh  vec_mule  all 

spu_mulo  vec_mulo  halfword  vector  operands  only,  no scalar  

operands  

spu_nmsub  vec_nmsub  float  only  

spu_nor  vec_nor  all 

spu_or  vec_or  vector  operands  only,  no scalar  operands  

spu_promote  vec_promote  all 

spu_re  vec_re  all 

spu_rl  vec_rl  vector  operands  only,  no scalar  operands  

spu_rsqrte  vec_rsqrte  all 

spu_sel  vec_sel  all 

spu_splats  vec_splats  all 

spu_sub  vec_sub  vector  operands  only,  no scalar  operands  

spu_genb  vec_subc  vector  operands  only,  no scalar  operands  

spu_xor  vec_xor  vector  operands  only,  no scalar  operands
  

 Table 33.  Vector/SIMD  Multimedia  Extension  Intrinsics  with  One-to-One  SPU  Mapping  

Vector/SIMD  

Multimedia  Extension  

Intrinsic  SPU  Intrinsic  For  Data  Types 

vec_add  spu_add  halfwords,  words,  and  floats  only  (not  

bytes)  
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Table 33.  Vector/SIMD  Multimedia  Extension  Intrinsics  with  One-to-One  SPU  

Mapping  (continued)  

Vector/SIMD  

Multimedia  Extension  

Intrinsic  SPU  Intrinsic  For  Data  Types 

vec_addc  spu_genc  all 

vec_and  spu_and  all 

vec_andc  spu_andc  all 

vec_avg  spu_avg  unsigned  chars  only  

vec_cmpeq  spu_cmpeq  all 

vec_cmpgt  spu_cmpgt  all 

vec_ctf  spu_convtf  all 

vec_cts  spu_convts  all 

vec_ctu  spu_convtu  all 

vec_extract  spu_extract  all 

vec_insert  spu_insert  all 

vec_madd  spu_madd  all 

vec_mulo  spu_mulo  halfwords  only  (not  bytes)  

vec_nmsub  spu_nmsub  all 

vec_nor  spu_nor  all 

vec_or  spu_or  all 

vec_promote  spu_promote  all 

vec_re  spu_re  all 

vec_rl  spu_rl  halfwords  and  words  only  (not  bytes)  

vec_rsqrte  spu_rsqrte  all 

vec_sel  spu_sel  all 

vec_splats  spu_splats  all 

vec_sub  spu_sub  halfwords,  words,  and  floats  only  

vec_subc  spu_genb  all 

vec_xor  spu_xor  all
  

Note:  The  toolchain  contains  headers  files  of  overloaded  C++  functions  that  can  

used  to  assist  in  mapping  or  porting  of Vector/SIMD  Multimedia  Extension  

intrinsics  to  SPU  intrinsics,  and  vice-versa.

Example 1: Euler particle-system simulation 

This  programming  example  illustrates  many  of  the  concepts  discussed  earlier  in 

this  chapter.  

It  can  be  found  in  the  SDK  under:  

 /opt/cell/sdk/src/tutorial/euler  

This  example  —  a simple  Euler-based  particle-system  simulation  —  illustrates  the  

following  steps  involved  in  coding  for  the  Cell  Broadband  Engine:  

1.   Transform  scaler  code  to  vector  code  (SIMDize)  for  execution  on  the  PPE’s  VXU.  
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2.   Port  the  code  for  execution  on  the  SPE’s  SPU  unit.  

3.   Parallelize  the  code  for  execution  across  multiple  SPEs.

A  subsequent  step  —  tuning  the  code  for  performance  on  the  SPE  —  is covered  in 

“Performance  analysis”  on  page  106.  The  above  steps  are  only  one  example  of 

coding  for  the  Cell  Broadband  Engine.  The  steps  can  be  reordered  or  combined,  

depending  upon  the  skill  and  comfort  level  of  the  programmer.  

This  example  shows  a particle-system  simulation  using  numerical  integration  

techniques  to  animate  a large  set  of particles.  Numerical  integration  is 

implemented  using  Euler’s  method  of  integration.  It computes  the  next  value  of  a 

function  of  time,  F(t), by  incrementing  the  current  value  of  the  function  by  the  

product  of  the  time  step  and  the  derivative  of the  function:  

 F(t  + dt)  = F(t)  + dt*F’(t);  

Our  simple  particle  system  consists  of:  

v   An  array  of 3-D  positions  for  each  particle  (pos[]) 

v   An  array  of 3-D  velocities  for  each  particle  (vel[]) 

v   An  array  of masses  for  each  particle  (mass[]) 

v   A force  vector  that  varies  over  time  (force)

This  programming  example  is intended  to  illustrate  programming  concepts  for  the  

Cell  Broadband  Engine,  and  is  not  meant  to  be  a physically  realistic  simulation.  

For  example,  it  does  not  consider:  

v   how  the  time-variant  force  function  and  the  time  step,  dt,  is computed  (instead,  

the  example  treats  them  as  constants).  

v   particle  collisions.

In  addition,  we  assume  that  all  3-D  vectors  (x,y,z) are  expressed  as  4-D  

homogeneous  coordinates  (x,y,z,1).  

Initial scalar code 

The  following  code  shows  a C  implementation  of  the  Euler  algorithm,  

implemented  for  a uniprocessor  using  scalar  data.  There  are  no  intrinsics  calls  in 

this  listing.  

#define  END_OF_TIME      10 

#define  PARTICLES        100000  

  

typedef  struct  { 

  float  x,  y,  z, w;  

} vec4D;  

  

vec4D  pos[PARTICLES];          // particle  positions  

vec4D  vel[PARTICLES];          // particle  velocities  

vec4D  force;                   // current  force  being  applied  to the  particles  

float  inv_mass[PARTICLES];     // inverse  mass  of the particles  

float  dt = 1.0f;               // step  in time  

  

int  main()  

{ 

  int  i; 

  float  time;  

  float  dt_inv_mass;  

  

  //  For  each  step  in time  

  for  (time=0;  time<END_OF_TIME;  time  += dt)  { 

    // For  each  particle  

    for  (i=0;  i<PARTICLES;  i++)  {
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// Compute  the  new position  and velocity  as acted  upon  by the  force  f. 

      pos[i].x  = vel[i].x  * dt + pos[i].x;  

      pos[i].y  = vel[i].y  * dt + pos[i].y;  

      pos[i].z  = vel[i].z  * dt + pos[i].z;  

  

      dt_inv_mass  = dt * inv_mass[i];  

  

      vel[i].x  = dt_inv_mass  * force.x  + vel[i].x;  

      vel[i].y  = dt_inv_mass  * force.y  + vel[i].y;  

      vel[i].z  = dt_inv_mass  * force.z  + vel[i].z;  

    } 

  } 

  return  (0);  

} 

Step 1: SIMDize the code for execution on the PPE 

There  are  multiple  strategies  for  SIMDizing  code  for  execution  either  on  the  PPE’s  

VXU  or  on  an  SPE’s  SPU  unit.  The  technique  chosen  depends  upon  the  type  of 

data  being  operated  on  and  the  interdependencies  of  the  data  computations.  

There  are  several  strategies  to  consider:  

v   Let  the  Compiler  Do  It  —  This  will  work  effectively  for  some  code  samples  (like  

this  simple  example),  but  it tends  to be  unsuccessful  for  more  complicated  code.  

Results  will  vary  depending  upon  the  algorithm,  the  language  the  code  is 

expressed  in,  coding  style,  and  capabilities  of  the  compiler.  

v   Array-of-Structures  (AOS)  Form  —  This  is the  most  common  technique  when  the  

input  data  is  naturally  expressed  as  a vector  (also  call  vector-across  form).  3-D  

graphic  applications  express  geometry  as  3-component  or  4-component  vectors.  

These  components  naturally  fit  within  a 4-component,  single-precision  

floating-point  vector.  See  also  Figure  24  on  page  63.  

v   Structure-of-Arrays  (SOA)  Form  —  In  this  form,  you  collect  the  individual  

elements  of  the  natural  vectors  into  separate  arrays  (also  called  parallel-array  

form).  The  code  is  then  written  as  if it  were  to execute  scalar  instructions,  but  it 

will  be  executing  SIMD  instructions.  This  results  in  code  that  computes  four  

single-precision  floats  results  simultaneously.  See  also  Figure  25  on  page  64.  

v   Hybrid  Forms  —  Often  it is important  that  the  input  vector  format  remain  

unchanged.  But  SOA  solutions  are  easier  to code  and  more  efficient  than  the  

AOS  solutions.  In  this  case,  one  can:  

v   Input  the  data  in  its  natural,  AOS  form.  

v   Transform  each  data  element  on  the  fly  into  SOA  form,  using  either  the  vec_perm  

(Vector/SIMD  Multimedia  Extension)  or  the  spu_shuffle  (SPU)  intrinsic.  

v   Perform  computation  using  the  SOA  technique.  

v   Translate  each  output  back  into  its  natural,  AOS  form.  

Assuming  the  compiler  auto-SIMDization  is either  unavailable  or  ineffective,  you  

must  adjust  the  data  structures  for  efficient  SIMD  access.  This  decision  cannot  be  

made  without  also  considering  the  SPE  data-accessing  method  and  the  

data-parallelization  method.  In  addition,  data  should  be  aligned  or  padded  for  

efficient  quadword  accesses,  using  the  aligned  attribute.  

Step  1a:  SIMDize  in  Array-of-Structures  Form  for  Vector/SIMD  Multimedia  

Extension  

The  following  example  shows  how  to SIMDize  in  the  AOS  form.  Vector/SIMD  

Multimedia  Extension  intrinsics  are  used,  and  they  can  be  identified  by  their  prefix  
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vec_. The  algorithm  assumes  that  the  number  of  particles  is a multiple  of  four. 

Special  code  must  be  included  to  handle  the  last  number  of  particles  that  is not  a 

multiple  of  four. 

#define  END_OF_TIME      10 

#define  PARTICLES        100000  

  

typedef  struct  { 

  float  x,  y,  z, w;  

} vec4D;  

vec4D  pos[PARTICLES]  __attribute__  ((aligned  (16)));  

vec4D  vel[PARTICLES]  __attribute__  ((aligned  (16)));  

vec4D  force  __attribute__  ((aligned  (16)));  

float  inv_mass[PARTICLES]  __attribute__  ((aligned  (16)));  

float  dt __attribute__  ((aligned  (16)))  = 1.0f;  

  

int  main()  

{ 

  int  i; 

  float  time;  

  float  dt_inv_mass  __attribute__  ((aligned  (16)));  

  vector  float  dt_v,  dt_inv_mass_v;  

  vector  float  *pos_v,  *vel_v,  force_v;  

  vector  float  zero  = (vector  float){0.0f,  0.0f,  0.0f,  0.0f};  

  

  pos_v  = (vector  float  *)pos;  

  vel_v  = (vector  float  *)vel;  

  force_v  = *((vector  float  *)&force);  

  

  //  Replicate  the  variable  time  step  across  elements  0-2 of 

  //  a floating  point  vector.  Force  the  last  element  (3)  to zero.  

  dt_v  = vec_sld(vec_splat(vec_lde(0,  &dt),  0),  zero,  4);  

  

  //  For  each  step  in time  

  for  (time=0;  time<END_OF_TIME;  time  += dt)  { 

    // For  each  particle  

    for  (i=0;  i<PARTICLES;  i++)  { 

      // Compute  the  new  position  and velocity  as acted  upon  by  the force  f. 

      pos_v[i]  = vec_madd(vel_v[i],  dt_v,  pos_v[i]);  

  

      dt_inv_mass  = dt * inv_mass[i];  

      dt_inv_mass_v  = vec_splat(vec_lde(0,  &dt_inv_mass),  0);  

  

      vel_v[i]  = vec_madd(dt_inv_mass_v,  force_v,  vel_v[i]);  

    } 

  } 

  return  (0);  

} 

Step  1b:  : SIMDize  in  Structure-of-Arrays  Form  for  Vector/SIMD  Multimedia  

Extension  

The  following  example  shows  how  to  SIMDize  in  the  SOA  form.  As  in  Step  1a,  the  

algorithm  assumes  that  the  number  of  particles  is a multiple  of  4. 

#define  END_OF_TIME      10 

#define  PARTICLES        100000  

  

typedef  struct  { 

  float  x,  y,  z, w;  

} vec4D;  

  

// Separate  arrays  for  each  component  of the  vector.  

vector  float  pos_x[PARTICLES/4],  pos_y[PARTICLES/4],  pos_z[PARTICLES/4];  

vector  float  vel_x[PARTICLES/4],  vel_y[PARTICLES/4],  vel_z[PARTICLES/4];  

vec4D  force  __attribute__  ((aligned  (16)));  

float  inv_mass[PARTICLES]  __attribute__  ((aligned  (16)));
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float  dt = 1.0f;  

  

int  main()  

{ 

  int  i; 

  float  time;  

  float  dt_inv_mass  __attribute__  ((aligned  (16)));  

  vector  float  force_v,  force_x,  force_y,  force_z;  

  vector  float  dt_v,  dt_inv_mass_v;  

  

  // Create  a replicated  vector  for  each  component  of the  force  vector.  

  force_v  = *(vector  float  *)(&force);  

  force_x  = vec_splat(force_v,  0);  

  force_y  = vec_splat(force_v,  1);  

  force_z  = vec_splat(force_v,  2);  

  

  // Replicate  the  variable  time  step  across  all  elements.  

  dt_v  = vec_splat(vec_lde(0,  &dt),  0);  

  

  // For  each  step  in time  

  for  (time=0;  time<END_OF_TIME;  time  += dt)  { 

    //  For  each  particle  

    for  (i=0;  i<PARTICLES/4;  i++)  { 

      // Compute  the  new position  and velocity  as acted  upon  by the  force  f. 

      pos_x[i]  = vec_madd(vel_x[i],  dt_v,  pos_x[i]);  

      pos_y[i]  = vec_madd(vel_y[i],  dt_v,  pos_y[i]);  

      pos_z[i]  = vec_madd(vel_z[i],  dt_v,  pos_z[i]);  

  

      dt_inv_mass  = dt * inv_mass[i];  

      dt_inv_mass_v  = vec_splat(vec_lde(0,  &dt_inv_mass),  0);  

  

      vel_x[i]  = vec_madd(dt_inv_mass_v,  force_x,  vel_x[i]);  

      vel_y[i]  = vec_madd(dt_inv_mass_v,  force_y,  vel_y[i]);  

      vel_z[i]  = vec_madd(dt_inv_mass_v,  force_z,  vel_z[i]);  

    } 

  } 

  return  (0);  

} 

Step 2: Port the PPE code for execution on the SPE 

This  step  entails:  (1)  creating  an  SPE  thread  of execution  on  the  PPE,  (2)  migrating  

the  computation  loops  from  Vector/SIMD  Multimedia  Extension  intrinsics  to  SPU  

intrinsic,  and  finally  (3)  adding  DMA  transfers  to  move  data  in  and  out  of the  

SPE’s  local  store  (LS).  

We assume  that  the  particle  data  structures  cannot  be  restructured  into  SOA  form.  

Therefore,  we  use  Step  1a  from  the  previous  section  (the  AOS  form).  SPU  intrinsics  

are  used,  and  they  can  be  identified  by  their  prefix  spu_. 

Moving  the  code  from  the  PPE  to  the  SPE  requires:  

v   Creating  a control-structure,  called  parameter  context,  that  defines  the  

parameters  to  be  computed  on  the  SPE.  This  includes  pointers  to  the  particle  

array  data,  current  force  information,  and  so  forth.  The  pointer  to the  context  

control-structure  defined  in  the  PPE  is passed  to  the  SPE  thread  by  using  the  

parameter  passing  mechanism  in  spe_create_thread. Alternatively,  this  

information  could  have  been  passed  via  the  mailbox.  

v   Porting  the  computation  for  execution  on  the  SPE.  The  complexity  of  this  

operation  depends  upon  the  types  of  data  and  types  of  intrinsics  used.  For  this  

case,  some  of the  intrinsics  only  require  a simple  name  translation  (for  example,  

vec_madd  to  spu_madd). The  translation  of  the  scalar  values  is a little  more  

extensive.  
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v   Adding  an  additional  looping  construct  to partition  the  data  arrays  into  smaller  

blocks.  This  is  required  because  all  the  data  does  not  fit  within  the  SPE’s  local  

store.  

v   Adding  DMA  transfers  to move  data  in  and  out  of  the  SPE’s  local  store.

particle.h:  

#define  END_OF_TIME      10 

#define  PARTICLES        100000  

  

typedef  struct  { 

  float  x,  y,  z, w;  

} vec4D;  

  

typedef  struct  { 

  int  particles;         // number  of particles  to process  

  vector  float  *pos_v;   // pointer  to array  of position  vectors  

  vector  float  *vel_v;   // pointer  to array  of velocity  vectors  

  float  *inv_mass;       // pointer  to array  of mass  vectors  

  vector  float  force_v;  // force  vector  

  float  dt;              // current  step  in time  

} context;  

PPE  Makefile:  

########################################################################  

#                       Subdirectories  

########################################################################  

  

DIRS   := spu  

  

########################################################################  

#                       Target  

########################################################################  

  

PROGRAM_ppu   := euler_spe  

  

########################################################################  

#                       Local  Defines  

########################################################################  

  

IMPORTS          := spu/lib_particle_spu.a  -lspe2  -lpthread  

  

########################################################################  

#                       make.footer  

########################################################################  

  

ifdef  CELL_TOP  

 include  $(CELL_TOP)/buildutils/make.footer  

else  

 include  ../../../../../buildutils/make.footer  

endif  

PPE  Code:  

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libspe2.h>  

#include  <pthread.h>  

#include  "particle.h"  

  

vec4D  pos[PARTICLES]  __attribute__  ((aligned  (16)));  

vec4D  vel[PARTICLES]  __attribute__  ((aligned  (16)));  

vec4D  force  __attribute__  ((aligned  (16)));  

float  inv_mass[PARTICLES]  __attribute__  ((aligned  (16)));  

float  dt = 1.0f;  
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extern  spe_program_handle_t  particle;  

  

typedef  struct  ppu_pthread_data  { 

  spe_context_ptr_t  spe_ctx;  

  pthread_t  pthread;  

  unsigned  int  entry;  

  void  *argp;  

} ppu_pthread_data_t;  

  

  

void  *ppu_pthread_function(void  *arg)  { 

  ppu_pthread_data_t  *datap  = (ppu_pthread_data_t  *)arg;  

  

  if (spe_context_run(datap->spe_ctx,  &datap->entry,  0, 

    datap->argp,  NULL,  NULL)  < 0) { 

    perror  ("Failed  running  context\n");  

    exit  (1);  

  } 

  pthread_exit(NULL);  

} 

  

int  main()  

{ 

  ppu_pthread_data_t  data;  

  parm_context  ctx  __attribute__  ((aligned  (16)));  

  

  ctx.particles  = PARTICLES;  

  ctx.pos_v  = (vector  float  *)pos;  

  ctx.vel_v  = (vector  float  *)vel;  

  ctx.force_v  = *((vector  float  *)&force);  

  ctx.inv_mass  = inv_mass;  

  ctx.dt  = dt;  

  

  /* Create  a SPE  context  */ 

  if ((data.spe_ctx  = spe_context_create  (0,  NULL))  ==  NULL)  { 

    perror  ("Failed  creating  context");  

    exit  (1);  

  } 

  /* Load  SPE  program  into  the  SPE  context*/  

  if (spe_program_load  (data.spe_ctx,  &particle))   { 

    perror  ("Failed  loading  program");  

    exit  (1);  

  } 

  /* Initialize  context  run data  */ 

  data.entry  = SPE_DEFAULT_ENTRY;  

  data.argp  = &ctx;  

  /* Create  pthread  for  each  of the  SPE  contexts  */ 

  if (pthread_create  (&data.pthread,  NULL,  &ppu_pthread_function,  &data))  { 

    perror  ("Failed  creating  thread");  

    exit  (1);  

  } 

  /* Wait  for  the  threads  to complete  */ 

  if (pthread_join  (data.pthread,  NULL))  { 

    perror  ("Failed  joining  thread\n");  

    exit  (1);  

  } 

  return  (0);  

} 

SPE  Makefile:  

########################################################################  

#   Target  

########################################################################  

  

PROGRAM_spu       := particle  

LIBRARY_embed     := lib_particle_spu.a
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########################################################################  

#   Local  Defines  

########################################################################  

  

INCLUDE    := -I .. 

  

########################################################################  

#   make.footer  

########################################################################  

  

ifdef  CELL_TOP  

 include  $(CELL_TOP)/buildutils/make.footer  

else  

 include  ../../../../../../buildutils/make.footer  

endif  

SPE  Code:  

#include  <spu_intrinsics.h>  

#include  <spu_mfcio.h>  

#include  "particle.h"  

  

#define  PARTICLES_PER_BLOCK              1024  

  

// Local  store  structures  and buffers.  

volatile  context  ctx;  

volatile  vector  float  pos[PARTICLES_PER_BLOCK];  

volatile  vector  float  vel[PARTICLES_PER_BLOCK];  

volatile  float  inv_mass[PARTICLES_PER_BLOCK];  

  

int  main(unsigned  long  long  spe_id,  unsigned  long  long  parm)  

{ 

  int  i, j; 

  int  left,  cnt;  

  float  time;  

  unsigned  int  tag_id;  

  vector  float  dt_v,  dt_inv_mass_v;  

  

 /* Reserve  a tag  ID */ 

  tag_id  = mfc_tag_reserve();  

  

  spu_writech(MFC_WrTagMask,  -1);  

  

  //  Input  parameter  parm  is a pointer  to the particle  context.  

  //  Fetch  the  context,  waiting  for  it to  complete.  

  spu_mfcdma32((void  *)(&ctx),  (unsigned  int)parm,  sizeof(context),  

    tag_id,  MFC_GET_CMD);  

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  

  dt_v  = spu_splats(ctx.dt);  

  

  //  For  each  step  in time  

  for  (time=0;  time<END_OF_TIME;  time  += ctx.dt)  { 

    // For  each  block  of particles  

    for  (i=0;  i<ctx.particles;  i+=PARTICLES_PER_BLOCK)  { 

      // Determine  the  number  of particles  in this  block.  

      left  = ctx.particles  - i; 

      cnt  = (left  < PARTICLES_PER_BLOCK)  ? left  : PARTICLES_PER_BLOCK;  

  

      // Fetch  the  data  - position,  velocity,  inverse_mass.  Wait  for DMA to 

      // complete  before  performing  computation.  

      spu_mfcdma32((void  *)(pos),  (unsigned  int)(ctx.pos_v+i),  cnt  * 

        sizeof(vector  float),  tag_id,  MFC_GET_CMD);  

      spu_mfcdma32((void  *)(vel),  (unsigned  int)(ctx.vel_v+i),  cnt  * 

        sizeof(vector  float),  tag_id,  MFC_GET_CMD);  

      spu_mfcdma32((void  *)(inv_mass),  (unsigned  int)(ctx.inv_mass+i),  cnt  *
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sizeof(float),  tag_id,  MFC_GET_CMD);  

      (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  

      // Compute  the  step  in time  for  the block  of  particles  

      for  (j=0;  j<cnt;  j++)  { 

        pos[j]  = spu_madd(vel[j],  dt_v,  pos[j]);  

        dt_inv_mass_v  = spu_mul(dt_v,  spu_splats(inv_mass[j]));  

        vel[j]  = spu_madd(dt_inv_mass_v,  ctx.force_v,  vel[j]);  

      } 

  

      // Put  the  position  and  velocity  data  back  into  main  storage  

      spu_mfcdma32((void  *)(pos),  (unsigned  int)(ctx.pos_v+i),  cnt * 

        sizeof(vector  float),  tag_id,  MFC_PUT_CMD);  

      spu_mfcdma32((void  *)(vel),  (unsigned  int)(ctx.vel_v+i),  cnt * 

        sizeof(vector  float),  tag_id,  MFC_PUT_CMD);  

    } 

  } 

  // Wait  for  final  DMAs  to complete  before  terminating  SPE  thread.  

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  return  (0);  

} 

Step 3: Parallelize code for execution across multiple SPEs 

The  most  common  and  practical  method  of  parallelizing  computation  across  

multiple  SPEs  is to  partition  the  data.  This  works  well  for  applications  with  little  

or  no  data  dependency.  

In  our  example,  we  can  partition  the  Euler  integration  of the  particle  equally  

among  the  available  SPEs.  If there  are  four  available  SPEs,  then  the  first  quarter  of  

the  particles  is  processed  by  the  first  SPE,  the  second  quarter  of the  particles  is 

processed  by  the  second  SPE,  and  so  forth.  

The  SPE  code  for  this  step  is the  same  as  that  in  Step  2,  so  only  the  PPE  code  is 

shown  below.  

PPE  Code:  

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libspe2.h>  

#include  <pthread.h>  

#include  "particle.h"  

  

#define  MAX_SPE_THREADS   16 

  

vec4D  pos[PARTICLES]  __attribute__  ((aligned  (16)));  

vec4D  vel[PARTICLES]  __attribute__  ((aligned  (16)));  

vec4D  force  __attribute__  ((aligned  (16)));  

float  inv_mass[PARTICLES]  __attribute__  ((aligned  (16)));  

float  dt = 1.0f;  

  

extern  spe_program_handle_t  particle;  

  

typedef  struct  ppu_pthread_data  { 

  spe_context_ptr_t  spe_ctx;  

  pthread_t  pthread;  

  unsigned  int  entry;  

  void  *argp;  

} ppu_pthread_data_t;  

  

void  *ppu_pthread_function(void  *arg)  { 

  ppu_pthread_data_t  *datap  = (ppu_pthread_data_t  *)arg;  

  

  if (spe_context_run(datap->spe_ctx,  &datap->entry,  0, datap->argp,  NULL,  

    NULL)  < 0)                        {
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perror  ("Failed  running  context\n");  

    exit  (1);  

  } 

  pthread_exit(NULL);  

} 

  

  

int  main()  

{ 

  int  i, offset,  count,  spe_threads;  

  ppu_pthread_data_t  datas[MAX_SPE_THREADS];  

  parm_context  ctxs[MAX_SPE_THREADS]  __attribute__  ((aligned  (16)));  

  

/* Determine  the  number  of SPE  threads  to create  */ 

  spe_threads  = spe_cpu_info_get(SPE_COUNT_USABLE_SPES,  -1);  

  if  (spe_threads  > MAX_SPE_THREADS)  spe_threads  = MAX_SPE_THREADS;  

  

/* Create  multiple  SPE  threads  */ 

  for  (i=0,  offset=0;  i<spe_threads;  i++,  offset+=count)  { 

    /* Construct  a parameter  context  for each  SPE.  Make  sure  

     * that  each  SPEs  (excluding  the  last)  particle  count  is a multiple  

     * of 4 so  that  inv_mass  context  pointer  is always  quadword  aligned.  

     */ 

    count  = (PARTICLES  / spe_threads  + 3) & ~3;  

    ctxs[i].particles  = (i==(SPE_THREADS-1))  ? PARTICLES  - offset  : count;  

    ctxs[i].pos_v  = (vector  float  *)&pos[offset];  

    ctxs[i].vel_v  = (vector  float  *)&vel[offset];  

    ctxs[i].force_v  = *((vector  float  *)&force);  

    ctxs[i].inv_mass  = &inv_mass[offset];  

    ctxs[i].dt  = dt;  

  

    /* Create  SPE  context  */ 

    if ((datas[i].spe_ctx  = spe_context_create  (0,  NULL))  == NULL)  { 

        perror  ("Failed  creating  context");  

        exit  (1);  

    } 

    /* Load  SPE  program  into  the SPE  context  */ 

    if (spe_program_load  (datas[i].spe_ctx,  &particle))  { 

      perror  ("Failed  loading  program");  

      exit  (1);  

    } 

    /* Initialize  context  run  data  */ 

    datas[i].entry  = SPE_DEFAULT_ENTRY;  

    datas[i].argp  = &ctxs[i];  

  

    /* Create  pthread  for  each  of the SPE  conexts  */ 

    if (pthread_create  (&datas[i].pthread,  NULL,  &ppu_pthread_function,  

      &datas[i])){  

      perror  ("Failed  creating  thread");  

    } 

  } 

  

  /*  Wait  for  all  the  SPE  threads  to complete.*/  

  for  (i=0;  i<spe_threads;  i++)  { 

    if (pthread_join  (datas[i].pthread,  NULL))  { 

      perror  ("Failed  joining  thread");  

      exit  (1);  

    } 

  } 

  

  return  (0);  

} 

Now  that  the  program  has  been  migrated  to  the  SPEs,  you  can  analyze  and  tune  

its  performance.  This  is discussed  in  “Performance  analysis”  on  page  106.  
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Performance analysis 

After  a Cell  Broadband  Engine  program  executes  without  errors  on  the  PPE  and  

the  SPEs,  optimization  through  parameter-tuning  can  begin.  

Programmers  typically  tune  for  performance  using  algorithmic  methods.  This  is 

important  for  SPE  programming  also.  But  equally  important  for  SPE  programming  

is performance  tuning  through  the  elimination  of  stalls.  There  are  two  forms  of  

stalls  to consider:  

v   instruction  dependency  stalls,  and  

v   data  stalls.

Instruction  stalls  can  be  analyzed  statically  or  dynamically.  

Performance issues 

Two  software  tools  are  available  in  the  SDK  to assist  in measuring  the  performance  

of  programs:  the  spu-timing  static  timing  analyzer,  and  the  IBM  Full  System  

Simulator  for  the  Cell  Broadband  Engine. 

The  spu-timing  analyzer  performs  a static  timing  analysis  of  a program  by  

annotating  its  assembly  instructions  with  the  instruction-pipeline  state.  This  

analysis  is useful  for  coarsely  spotting  dual-issue  rates  (odd  and  even  pipeline  use)  

and  assessing  what  program  sections  may  be  experiencing  instruction-dependency  

and  data-dependency  stalls.  It  is useful,  for  example,  for  determining  whether  or  

not  dependencies  might  be  mitigated  by  unrolling,  or  whether  reordering  of  

instructions  or  better  placement  of  no-ops  will  improve  the  dual-issue  behavior  in  

a loop.  However,  static  analysis  outputs  typically  do  not  provide  numerical  

performance  information  about  program  execution.  Thus,  it cannot  report  anything  

definitive  about  cycle  counts,  branches  taken  or  not  taken,  branches  hinted  or  not  

hinted,  DMA  transfers,  and  so  forth.  

The  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine  performs  a dynamic  

analysis  of  program  execution.  It is  available  in  the  SDK.  Any  part  of  a program,  

from  a single  line  to the  entire  program,  can  be  studied.  Performance  numbers  are  

provided  for:  

v   Instruction  histograms  (for  example,  branch,  hint,  and  prefetch)  

v   Cycles  per  instruction  (CPI)  

v   Single-issue  and  dual-issue  rates  

v   Stall  statistics  

v   Register  use

The  output  of  the  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine  can  be  

a text  listing  or  a graphic  plot.  

Example 1: Tuning  SPE performance with static and dynamic 

timing analysis 

Static analysis of SPE threads 

The  listing  below  shows  an  spu-timing  static  timing  analysis  for  the  inner  loop  of  

the  SPE  code.  

The  SPE  code  is shown  in  “Step  2: Port  the  PPE  code  for  execution  on  the  SPE”  on  

page  100,  the  Euler  Particle-System  Simulation  example.  This  listing  shows  

significant  dependency  stalls  (indicated  by  the  “-”)  and  poor  dual-issue  rates.  The  
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inner  loop  has  an  instruction  mix  of  eight  even-pipeline  (pipe  0) instructions  and  

ten  odd-pipeline  (pipe  1) instructions.  Therefore,  any  program  changes  that  

minimize  data  dependencies  will  improve  dual-issue  rates  and  lower  the  cycle  per  

instruction  (CPI).  

       .L19:  

0D                                                78       a       $49,$8,$10  

1D 012                                             789       lqx      $51,$6,$9  

0D                                                 89      ila      $47,66051  

1D 0123                                             89       lqx      $52,$6,$11  

0  0                                                9      ai      $7,$7,-1  

0  ----456789                                               fma     $50,$51,$12,$52  

1       -----012345                                         stqx     $50,$6,$11  

1             123456                                        lqx      $48,$8,$10  

0D             23                                          ai      $8,$8,4  

1D             234567                                       lqa     $44,ctx+16  

1               345678                                      lqx      $43,$6,$9  

1                ---7890                                    rotqby   $46,$48,$49  

1                    ---1234                                shufb    $45,$46,$46,$47  

0                        ---567890                          fm      $42,$12,$45  

0d                           -----123456                    fma     $41,$42,$44,$43  

1d                                ------789012               stqx     $41,$6,$9  

0D                                       89                 ai      $6,$6,16  

                                                         .L39:  

1D                                       8901                 brnz     $7,.L19  

The  character  columns  in  the  above  static-analysis  listing  have  the  following  

meanings:  

v   Column  1 —  The  first  column  shows  the  pipeline  that  issued  an  instruction.  

Pipeline  0 is represented  by  0 in  the  first  column  and  pipeline  1 is represented  

by  1.  

v   Column  2 —  The  second  column  can  contain  a D,  d, or  “nothing”.  A D signifies  a 

successful  dual-issue  was  accomplished  by  the  two  instructions  listed  in  

row-pairs.  A  d signifies  a dual-issue  was  possible,  but  did  not  occur  due  to  

dependencies;  for  example,  operands  being  in  flight.  If there  is no  entry  in the  

second  column,  dual-issue  could  not  be  performed  because  the  issue  rules were  

not  satisfied  (for  example,  an  even-pipeline  instruction  was  fetched  from  an  odd  

LS  address  or  an  odd-pipeline  instruction  was  fetched  from  an  even  LS  address).  

See  “Pipelines  and  dual-issue  rules”  on  page  53.  

v   Column  3 —  The  third  column  is always  blank.  

v   Columns  4 through  53  —  The  next  50 columns  represent  clock  cycles  and  are  

repeated  as  0123456789  five  times.  A  digit  is displayed  in  these  columns  

whenever  the  instruction  executes  during  that  clock  cycle.  Therefore,  an  

<n>-cycle  instruction  will  display  <n>  digits.  Dependency  stalls  are  flagged  by  a 

dash  (“-”).  

v   Columns  54  and  beyond  —  The  remaining  entries  on  the  row  are  the  

assembly-language  instructions  or  assembler-line  addresses  (for  example,  .L19) 

of  the  program’s  assembly  code.

Static-analysis  timing  files  can  be  quickly  interpreted  by:  

v   Scanning  the  columns  of digits.  Small  slopes  (more  horizontal)  are  bad.  Large  

slopes  (more  vertical)  are  good.  

v   Looking  for  instructions  with  dependencies  (those  with  dashes  in the  listing).  

v   Looking  for  instructions  with  poor  dual-issue  rates  —  either  a d or  “nothing”  in 

column  2. 

This  information  can  be  used  to  understand  what  areas  of code  are  scheduled  well  

and  which  are  poorly  scheduled.  
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About  SPU_TIMING:  

If you  are  using  a Bash  shell,  you  can  set  SPU_TIMING  as  a shell  variable  by  using  

the  command  export  SPU_TIMING=1. You can  also  set  SPU_TIMING  in  the  makefile  

and  build  the  .s  file  by  using  the  following  statement:  

 SPU_TIMING=1  make  foo.s  

This  creates  the  timing  file  for  file  foo.c  . It sets  the  SPU_TIMING  variable  only  in  

the  sub-shell  of  the  makefile.  It generates  foo.s  and  then  invokes  spu-timing  on  

foo.s  to  produce  a foo.s.timing  file.  

Another  way  to  invoke  the  performance  tool  is by  entering  one  of  the  following  

statements  in  the  command  prompt:  

 SPU_TIMING=1  make  foo.s  

Dynamic analysis of SPE threads 

The  listing  below  shows  a dynamic  timing  analysis  on  the  same  SPE  inner  loop  

using  the  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine. 

The  results  confirm  the  view  of program  execution  from  the  static  timing  analysis:  

v   It shows  poor  dual-issue  rates  (7%)  and  large  dependency  stalls  (65%),  resulting  

in  a overall  CPI  of  2.39.  

v   Most  workloads  should  be  capable  of  achieving  a CPI  of  0.7  to 0.9,  roughly  3 

times  better  than  this.  

v   The  number  of  used  registers  is 73,  a 57.03%  utilization  of  the  full  128  register  

set.
  SPU  DD1.0  

  ***  

  Total  Cycle  count                43120454  

  Total  Instruction  count          18068949  

  Total  CPI                        2.39  

  ***  

  Performance  Cycle  count          43120454  

  Performance  Instruction  count    18068949  (18062968)  

  Performance  CPI                  2.39  (2.39)  

  

  Branch  instructions              1001990  

  Branch  taken                     1000007  

  Branch  not  taken                 1983  

  

  Hint  instructions                1973  

  Hint  hit                         1000001  

  

  Contention  at LS between  Load/Store  and  Prefetch  2000986  

  

  Single  cycle                                           12049144  ( 27.9%)  

  Dual  cycle                                              3006912  (  7.0%)  

  Nop  cycle                                                  4003  (  0.0%)  

  Stall  due  to branch  miss                                  17977  (  0.0%)  

  Stall  due  to prefetch  miss                                    0 (  0.0%)  

  Stall  due  to dependency                                28042299  ( 65.0%)  

  Stall  due  to fp resource  conflict                             0 (  0.0%)  

  Stall  due  to waiting  for hint  target                        110 (  0.0%)  

  Stall  due  to dp pipeline                                      0 (  0.0%)  

  Channel  stall  cycle                                           0 (  0.0%)  

  SPU  Initialization  cycle                                      9 (  0.0%)  

  -----------------------------------------------------------------------  

  Total  cycle                                            43120454  (100.0%)  

  

  Stall  cycles  due  to dependency  on each  pipelines
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FX2         5909  

   SHUF        6011772  

   FX3         1960  

   LS         7022608  

   BR         0 

   SPR         0 

   LNOP        0 

   NOP         0 

   FXB         0 

   FP6         15000050  

   FP7         0 

   FPD         0 

  

  The  number  of used  registers  are  73; the  used  ratio  is 57.03  

Optimizations 

To eliminate  stalls  and  improve  the  CPI  —  and  ultimately  the  performance  —  the  

compiler  needs  more  instructions  to  schedule,  so  that  the  program  does  not  stall.  

The  SPE’s  large  register  file  allows  the  compiler  or  the  programmer  to  unroll  loops.  

In  our  example  program,  there  are  no  inter-loop  dependencies  (loop-carried  

dependencies),  and  our  dynamic  analysis  shows  that  the  register  usage  is fairly  

small,  so  moderately  aggressive  unrolling  will  not  produce  register  spilling  (that  is,  

registers  having  to  be  written  into  temporary  stack  storage).  

Most  compilers  can  automatically  unroll  loops.  Sometimes  this  is effective.  But  

because  automatic  loop  unrolling  is not  always  effective,  or  because  the  

programmer  wants  explicit  control  to  manage  the  limited  local  store,  this  example  

shows  how  to  manually  unroll  the  loop.  

The  first  pass  of  optimizations  include:  

v   Unroll  the  loop  to  provide  additional  instructions  for  interleaving.  

v   Load  DMA-buffer  contents  into  local  nonvolatile  registers  to  eliminate  volatile  

migration  constraints.  

v   Eliminate  scalar  loads  (the  inv_mass  variable).  

v   Eliminate  extra  multiplies  of  dt*inv_mass  and  splat  the  products  after  the  SIMD  

multiply,  instead  of  before  the  multiply.  

v   Interleave  DMA  transfers  with  computation  by  multibuffering  the  inputs  and  

outputs  to  eliminate  (or  reduce)  DMA  stalls.  These  stalls  are  not  reflected  in the  

static  and  dynamic  analyses.  In  the  process  of adding  double  buffering,  the  inner  

loop  is moved  into  a function,  so  that  the  code  need  not  be  repeated.

The  following  SPE  code  results  from  these  optimizations.  Among  the  changes  are  

the  addition  of  a GET  instruction  with  a barrier  suffix  (B),  accomplished  by  the  

spu_mfcdma32()  intrinsic  with  the  MFC_GETB_CMD  parameter.  This  GET  is the  barrier  

form  of  MFC_GET_CMD. The  barrier  form  is used  to ensure  that  previously  computed  

results  are  put  before  the  get  for  the  next  buffer’s  data.  

#include  <spu_intrinsics.h>  

#include  <spu_mfcio.h>  

#include  "particle.h"  

  

#define  PARTICLES_PER_BLOCK              1024  

  

// Local  store  structures  and buffers.  

volatile  context  ctx;  

volatile  vector  float  pos[2][PARTICLES_PER_BLOCK];  

volatile  vector  float  vel[2][PARTICLES_PER_BLOCK];  

volatile  vector  float  inv_mass[2][PARTICLES_PER_BLOCK/4];  
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void  process_buffer(int  buffer,  int cnt,  vector  float  dt_v)  

{ 

  int  i; 

  volatile  vector  float  *p_inv_mass_v;  

  vector  float  force_v,  inv_mass_v;  

  vector  float  pos0,  pos1,  pos2,  pos3;  

  vector  float  vel0,  vel1,  vel2,  vel3;  

  vector  float  dt_inv_mass_v,  dt_inv_mass_v_0,  dt_inv_mass_v_1,  

    dt_inv_mass_v_2,  dt_inv_mass_v_3;  

  vector  unsigned  char  splat_word_0  = 

 (vector  unsigned  char){0,  1, 2, 3, 0, 1, 2, 3,  0, 1, 2, 3, 0, 1, 2, 3};  

  vector  unsigned  char  splat_word_1  = 

 (vector  unsigned  char){4,  5, 6, 7, 4, 5, 6, 7,  4, 5, 6, 7, 4, 5, 6, 7};  

  vector  unsigned  char  splat_word_2  = 

 (vector  unsigned  char){8,  9,10,11,  8, 9,10,11,  8, 9,10,11,  8, 9,10,11};  

  vector  unsigned  char  splat_word_3  = 

 (vector  unsigned  char){12,13,14,15,12,13,14,15,12,13,14,15,12,13,14,15};  

  

  p_inv_mass_v  = (volatile  vector  float  *)&inv_mass[buffer][0];  

  force_v  = ctx.force_v;  

  

  // Compute  the  step  in time  for  the  block  of  particles,  four  

  // particle  at a time.  

  for  (i=0;  i<cnt;  i+=4)  { 

    inv_mass_v  = *p_inv_mass_v++;  

  

    pos0  = pos[buffer][i+0];  

    pos1  = pos[buffer][i+1];  

    pos2  = pos[buffer][i+2];  

    pos3  = pos[buffer][i+3];  

  

    vel0  = vel[buffer][i+0];  

    vel1  = vel[buffer][i+1];  

    vel2  = vel[buffer][i+2];  

    vel3  = vel[buffer][i+3];  

  

    dt_inv_mass_v  = spu_mul(dt_v,  inv_mass_v);  

  

    pos0  = spu_madd(vel0,  dt_v,  pos0);  

    pos1  = spu_madd(vel1,  dt_v,  pos1);  

    pos2  = spu_madd(vel2,  dt_v,  pos2);  

    pos3  = spu_madd(vel3,  dt_v,  pos3);  

  

    dt_inv_mass_v_0  = spu_shuffle(dt_inv_mass_v,  dt_inv_mass_v,  splat_word_0);  

    dt_inv_mass_v_1  = spu_shuffle(dt_inv_mass_v,  dt_inv_mass_v,  splat_word_1);  

    dt_inv_mass_v_2  = spu_shuffle(dt_inv_mass_v,  dt_inv_mass_v,  splat_word_2);  

    dt_inv_mass_v_3  = spu_shuffle(dt_inv_mass_v,  dt_inv_mass_v,  splat_word_3);  

  

    vel0  = spu_madd(dt_inv_mass_v_0,  force_v,  vel0);  

    vel1  = spu_madd(dt_inv_mass_v_1,  force_v,  vel1);  

    vel2  = spu_madd(dt_inv_mass_v_2,  force_v,  vel2);  

    vel3  = spu_madd(dt_inv_mass_v_3,  force_v,  vel3);  

  

    pos[buffer][i+0]  = pos0;  

    pos[buffer][i+1]  = pos1;  

    pos[buffer][i+2]  = pos2;  

    pos[buffer][i+3]  = pos3;  

  

    vel[buffer][i+0]  = vel0;  

    vel[buffer][i+1]  = vel1;  

    vel[buffer][i+2]  = vel2;  

    vel[buffer][i+3]  = vel3;  

  } 

} 

  

  

int  main(unsigned  long  long  spe_id,  unsigned  long  long  argv)
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{ 

  int  buffer,  next_buffer;  

  int  cnt,  next_cnt,  left;  

  float  time,  dt;  

  vector  float  dt_v;  

  volatile  vector  float  *ctx_pos_v,  *ctx_vel_v;  

  volatile  vector  float  *next_ctx_pos_v,  *next_ctx_vel_v;  

  volatile  float  *ctx_inv_mass,  *next_ctx_inv_mass;  

  unsigned  int  tags[2];  

  

  //  Reserve  a pair  of DMA tag IDs 

  tags[0]  = mfc_tag_reserve();  

  tags[1]  = mfc_tag_reserve();  

  

  //  Input  parameter  argv  is a pointer  to the particle  context.  

  //  Fetch  the  context,  waiting  for  it to  complete.  

  spu_writech(MFC_WrTagMask,  1 << tags[0]);  

  spu_mfcdma32((void  *)(&ctx),  (unsigned  int)argv,  sizeof(context),  tags[0],  

    MFC_GET_CMD);  

  (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  

  dt  = ctx.dt;  

  dt_v  = spu_splats(dt);  

  

  //  For  each  step  in time  

  for  (time=0;  time<END_OF_TIME;  time  += dt)  { 

    // For  each  double  buffered  block  of particles  

    left  = ctx.particles;  

  

    cnt  = (left  < PARTICLES_PER_BLOCK)  ? left  : PARTICLES_PER_BLOCK;  

  

    ctx_pos_v  = ctx.pos_v;  

    ctx_vel_v  = ctx.vel_v;  

    ctx_inv_mass  = ctx.inv_mass;  

  

    // Prefetch  first  buffer  of input  data  

    buffer  = 0; 

    spu_mfcdma32((void  *)(pos),  (unsigned  int)(ctx_pos_v),  cnt  * 

      sizeof(vector  float),  tags[0],  MFC_GETB_CMD);  

    spu_mfcdma32((void  *)(vel),  (unsigned  int)(ctx_vel_v),  cnt  * 

      sizeof(vector  float),  tags[0],  MFC_GET_CMD);  

    spu_mfcdma32((void  *)(inv_mass),  (unsigned  int)(ctx_inv_mass),  cnt * 

      sizeof(float),  tags[0],  MFC_GET_CMD);  

  

    while  (cnt  < left)  { 

      left  -= cnt;  

  

      next_ctx_pos_v  = ctx_pos_v  + cnt;  

      next_ctx_vel_v  = ctx_vel_v  + cnt;  

      next_ctx_inv_mass  = ctx_inv_mass  + cnt;  

      next_cnt  = (left  < PARTICLES_PER_BLOCK)  ? left  : PARTICLES_PER_BLOCK;  

  

      // Prefetch  next  buffer  so the  data  is available  for  computation  on next  

      //   loop  iteration.  

      // The  first  DMA  is barriered  so that  we don’t  GET data  before  the 

      //   previous  iteration’s  data  is PUT.  

      next_buffer  = buffer^1;  

  

      spu_mfcdma32((void  *)(&pos[next_buffer][0]),  (unsigned  int)(next_ctx_pos_v),  

        next_cnt  * sizeof(vector  float),  tags[next_buffer],  MFC_GETB_CMD);  

      spu_mfcdma32((void  *)(&vel[next_buffer][0]),  (unsigned  int)(next_ctx_vel_v),  

        next_cnt  * sizeof(vector  float),  tags[next_buffer],  MFC_GET_CMD);  

      spu_mfcdma32((void  *)(&inv_mass[next_buffer][0]),  (unsigned  int)  

        (next_ctx_inv_mass),  next_cnt  * sizeof(float),  tags[next_buffer],  

         MFC_GET_CMD);  

  

      // Wait  for  previously  prefetched  data

 

Chapter  3. Programming  the SPEs 111



spu_writech(MFC_WrTagMask,  1 << tags[buffer]);  

      (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  

      process_buffer(buffer,  cnt,  dt_v);  

  

      // Put  the  buffer’s  position  and velocity  data  back  into  main  storage  

      spu_mfcdma32((void  *)(&pos[buffer][0]),  (unsigned  int)(ctx_pos_v),  cnt * 

        sizeof(vector  float),  tags[buffer],  MFC_PUT_CMD);  

      spu_mfcdma32((void  *)(&vel[buffer][0]),  (unsigned  int)(ctx_vel_v),  cnt * 

        sizeof(vector  float),  tags[buffer],  MFC_PUT_CMD);  

  

      ctx_pos_v  = next_ctx_pos_v;  

      ctx_vel_v  = next_ctx_vel_v;  

      ctx_inv_mass  = next_ctx_inv_mass;  

  

      buffer  = next_buffer;  

      cnt  = next_cnt;  

    } 

  

    //  Wait  for  previously  prefetched  data  

    spu_writech(MFC_WrTagMask,  1 << tags[buffer]);  

    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  

    process_buffer(buffer,  cnt,  dt_v);  

  

    //  Put  the  buffer’s  position  and velocity  data  back  into  main  storage  

    spu_mfcdma32((void  *)(&pos[buffer][0]),  (unsigned  int)(ctx_pos_v),  cnt  * 

      sizeof(vector  float),  tags[buffer],  MFC_PUT_CMD);  

    spu_mfcdma32((void  *)(&vel[buffer][0]),  (unsigned  int)(ctx_vel_v),  cnt  * 

      sizeof(vector  float),  tags[buffer],  MFC_PUT_CMD);  

  

    //  Wait  for  DMAs  to complete  before  starting  the  next  step  in time.  

    spu_writech(MFC_WrTagMask,  1 << tags[buffer]);  

    (void)spu_mfcstat(MFC_TAG_UPDATE_ALL);  

  } 

  

  return  (0);  

} 

Static analysis of optimization 

The  listing  below  shows  a spu_timing  static  timing  analysis  for  the  optimized  SPE  

thread  (process  _buffer  subroutine  only).  

.type    process_buffer,  @function  

                                                               process_buffer:  

0D 0123                                                          shli     $2,$3,10  

1D 012345                                                        lqa      $19,ctx+16  

0D  12                                                          ori      $6,$3,0  

1D  1234                                                         shlqbyi  $24,$4,0  

0D   23                                                         cgti     $3,$4,0  

1D   2345                                                        shlqbyi  $18,$5,0  

0D    34                                                        ila      $4,inv_mass  

1D    3456                                                       fsmbi    $21,0  

0      45                                                       ilhu     $27,1029  

0       56                                                      ilhu     $26,2057  

0        67                                                     ilhu     $25,3085  

0         78                                                    ila      $28,66051  

0          89                                                   a       $20,$2,$4  

0           90                                                  iohl     $27,1543  

0D           01                                                 iohl     $26,2571  

1D           0                                                  lnop  

0D            12                                                iohl     $25,3599  

1D            1234                                               brz      $3,.L7  

0              2345                                              shli     $17,$6,14  

0               34                                              ila      $23,pos  

0D               45                                             ila      $22,vel  

1D               456789                                          hbra     .L10,.L5
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1                 5                                             lnop  

0                  6                                            nop     $127  

                                                               .L5:  

0D                  78                                          ila      $43,pos  

1D                  789012                                       lqd     $41,0($20)  

0D                   89                                          ila      $42,vel  

1D                   890123                                      lqx     $40,$17,$23  

0                     90                                        a       $6,$17,$43  

0                      01                                       a       $7,$17,$42  

0D                      12                                      ai      $21,$21,4  

1D                      123456                                   lqd     $39,16($6)  

0D                       23                                     ai      $20,$20,16  

1D                       234567                                  lqd     $38,32($6)  

0D                        345678                                 fm      $36,$18,$41  

1D                        345678                                 lqd     $37,48($6)  

0D                         45                                    cgt      $16,$24,$21  

1D                         456789                                lqx     $13,$17,$22  

1                           567890                               lqd     $34,16($7)  

1                            678901                              lqd     $14,32($7)  

1                             789012                             lqd     $15,48($7)  

1                              -9012                             shufb    $35,$36,$36,$28  

0D                               012345                          fma     $32,$13,$18,$40  

1D                               0123                            shufb    $33,$36,$36,$27  

0D                                123456                         fma     $10,$34,$18,$39  

1D                                1234                           shufb    $31,$36,$36,$26  

0D                                 234567                        fma     $11,$14,$18,$38  

1D                                 2345                          shufb    $30,$36,$36,$25  

0                                   345678                       fma     $8,$15,$18,$37  

0                                    456789                      fma     $29,$35,$19,$13  

0D                                    567890                     fma     $5,$33,$19,$34  

1D                                    5                         lnop  

0D                                     678901                    fma     $12,$31,$19,$14  

1D                                     678901                    stqx     $32,$17,$23  

0D                                      789012                   fma     $9,$30,$19,$15  

1D                                      789012                   stqd     $10,16($6)  

1                                        890123                  stqd     $11,32($6)  

1                                         901234                 stqd     $8,48($6)  

0D                                         0                    nop      $127  

1D                                         012345                stqx     $29,$17,$22  

0D                                          12                  ai      $17,$17,64  

1D                                          123456               stqd     $5,16($7)  

1                                            234567              stqd     $12,32($7)  

1                                             345678             stqd     $9,48($7)  

0D                                             4                nop      $127  

                                                               .L10:  

1D                                             4567              brnz     $16,.L5  

                                                               .L7:  

0D                                              5               nop      $127  

1D                                              5678             bi      $lr  

Dynamic analysis of optimizations 

The  listing  below  shows  a dynamic  timing  analysis  on  the  IBM  Full  System  

Simulator  for  the  Cell  Broadband  Engine  for  the  optimized  SPE  thread  (process  buffer  

only).  It shows  that  78  registers  are  used,  so the  used  percentage  is 60.94.  

  SPU  DD1.0  

  ***  

  Total  Cycle  count                7134843  

  Total  Instruction  count          10602009  

  Total  CPI                        0.67  

  ***  

  Performance  Cycle  count          7134843  

  Performance  Instruction  count    10602009  (9839265)  

  Performance  CPI                  0.67  (0.73)  

  

  Branch  instructions              253940  

  Branch  taken                     251967
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Branch  not  taken                 1973  

  

  Hint  instructions                2952  

  Hint  hit                         250980  

  

  Contention  at LS between  Load/Store  and  Prefetch  6871  

  

  Single  cycle                                            3815689  ( 53.5%)  

  Dual  cycle                                              3011788  ( 42.2%)  

  Nop  cycle                                                  5898  (  0.1%)  

  Stall  due  to branch  miss                                  34655  (  0.5%)  

  Stall  due  to prefetch  miss                                    0 (  0.0%)  

  Stall  due  to dependency                                  266732  (  3.7%)  

  Stall  due  to fp resource  conflict                             0 (  0.0%)  

  Stall  due  to waiting  for hint  target                         72 (  0.0%)  

  Stall  due  to dp pipeline                                      0 (  0.0%)  

  Channel  stall  cycle                                           0 (  0.0%)  

  SPU  Initialization  cycle                                      9 (  0.0%)  

  -----------------------------------------------------------------------  

  Total  cycle                                             7134843  (100.0%)  

  

  Stall  cycles  due  to dependency  on each  pipelines  

   FX2         8808  

   SHUF        1971  

   FX3         5870  

   LS         32 

   BR         0 

   SPR         1 

   LNOP        0 

   NOP         0 

   FXB         0 

   FP6         250050  

   FP7         0 

   FPD         0 

  

  The  number  of used  registers  are  78, the used  ratio  is 60.94  

The  above  static  and  dynamic  timing  analysis  of the  optimized  SPE  code  reveals:  

v   Significant  increase  in  dual-issue  rate  and  reduction  in dependency  stalls.  The  

static  analysis  shows  that  the  process_buffer  inner  loop  still  contains  a 

single-cycle  stall  and  some  instructions  that  are  not  dual-issued.  Further  

performance  improvements  could  likely  be  achieved  by  either  more  loop  

unrolling  or  software  loop-pipelining.  

v   The  number  of  instructions  has  decreased  by  41%  from  the  initial  instruction  

count.  

v   The  CPI  has  dropped  from  2.39  to a more  typical  0.73.  

v   The  performance  of  the  SPE  code,  measured  in  total  cycle  count,  has  gone  from  

approximately  43  M  cycles  to  7 M  cycles,  an  improvement  of  more  than  6x.  This  

improvement  does  not  take  into  account  the  DMA  latency-hiding  (stall  

elimination)  provided  by  double  buffering.

For  details  about  performance  simulation,  including  examples  of  coding  for  

simulations,  see  Chapter  5, “The  simulator,”  on  page  123.  The  IBM  Full  System  

Simulator  for  the  Cell  Broadband  Engine  described  in  that  chapter  supports  

performance  simulation  for  a full  system,  including  the  MFCs,  caches,  bus,  and  

memory  controller.  ) 
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General SPE programming tips 

This  section  contains  a short  summary  of general  tips  for  optimizing  the  

performance  of  SPE  programs.  

v   Local  Store  

–   Design  for  the  LS  size.  The  LS  holds  up  to 256  KB  for  the  program,  stack,  

local  data  structures,  and  DMA  buffers.  One  can  do  a lot  with  256  KB,  but  be  

aware  of  this  size.  

–   Use  overlays  (runtime  download  program  kernels)  to  build  complex  function  

servers  in  the  LS  (see  “SPE  overlays”  on  page  121).
v    DMA  Transfers  

–   Use  SPE-initiated  DMA  transfers  rather  than  PPE-initiated  DMA  transfers.  

There  are  more  SPEs  than  the  one  PPE,  and  the  PPE  can  enqueue  only  eight  

DMA  requests  whereas  each  SPE  can  enqueue  16.  

–   Overlap  DMA  with  computation  by  double  buffering  or  multibuffering  (see  

“Moving  double-buffered  data”  on  page  86).  Multibuffer  code  or  (typically)  

data.  

–   Use  double  buffering  to hide  memory  latency.  

–   Use  fence  command  options  to order  DMA  transfers  within  a tag  group.  

–   Use  barrier  command  options  to order  DMA  transfers  within  the  queue.
v    Loops  

–   Unroll  loops  to  reduce  dependencies  and  increase  dual-issue  rates.  This  

exploits  the  large  SPU  register  file.  

–   Compiler  auto-unrolling  is not  perfect,  but  pretty  good.
v    SIMD  Strategy  

–   Choose  an  SIMD  strategy  appropriate  for  your  algorithm.  For  example:  

–   Evaluate  array-of-structure  (AOS)  organization.  For  graphics  vertices,  this  

organization  (also  called  or  vector-across)  can  have  more-efficient  code  size  

and  simpler  DMA  needs,  but  less-efficient  computation  unless  the  code  is  

unrolled.  

–   Evaluate  structure-of-arrays  (SOA)  organization.  For  graphics  vertices,  this  

organization  (also  called  parallel-array)  can  be  easier  to SIMDize,  but  the  data  

must  be  maintained  in separate  arrays  or  the  SPU  must  shuffle  AOS  data  into  

an  SOA  form.  

–   Consider  the  effects  of  unrolling  when  choosing  an  SIMD  strategy.
v    Load/Store  

–   Scalar  loads  and  stores  are  slow, with  long  latency.  

–   SPUs  only  support  quadword  loads  and  stores.  

–   Consider  making  scalars  into  quadword  integer  vectors.  

–   Load  or  store  scalar  arrays  as  quadwords,  and  perform  your  own  extraction  

and  insertion  to  eliminate  load  and  store  instructions.
v    Branches  

–   Eliminate  nonpredicted  branches.  

–   Use  feedback-directed  optimization.  

–   Use  the  __builtin_expect  language  directive  when  you  can  explicitly  direct  

branch  prediction.
v    Multiplies  
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–   Avoid  integer  multiplies  on  operands  greater  than  16  bits  in  size.  The  SPU  

supports  only  a “16-bit  x16-bit  multiply”.  A “32-bit  multiply”  requires  five  

instructions  (three  16-bit  multiplies  and  two  adds).  

–   Keep  array  elements  sized  to  a power-of-2  to  avoid  multiplies  when  indexing.  

–   Cast  operands  to unsigned  short  prior  to  multiplying.  Constants  are  of type  

int  and  also  require  casting.  Use  a macro  to explicitly  perform  16-bit  

multiplies.  This  can  avoid  inadvertent  introduction  of signed  extends  and  

masks  due  to  casting.
v    Pointers  

–   Use  the  PPE’s  load/store  with  update  instructions.  These  allow  sequential  

indexing  through  an  array  without  the  need  of  additional  instructions  to 

increment  the  array  pointer.  

–   For  the  SPEs  (which  do  not  support  load/store  with  update  instructions),  

use  the  d-form  instructions  to  specify  an  immediate  offset  from  a base  array  

pointer.
v   Dual-Issue  

–   Choose  intrinsics  carefully  to  maximize  dual-issue  rates  or  reduce  latencies.  

–   Dual  issue  will  occur  if a pipe-0  instruction  is even-addressed,  a pipe-1  

instruction  is  odd-addressed,  and  there  are  no  dependencies  (operands  are  

available).  

–   Code  generators  use  nops  to align  instructions  for  dual-issue.  

–   Use  software  pipeline  loops  to  improve  dual-issue  rates.
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Chapter  4.  Programming  models  

On  any  processor,  coding  optimizations  are  achieved  by  exploiting  the  unique  

features  of  the  hardware.  In  the  case  of the  Cell  Broadband  Engine,  the  large  

number  of  SPEs,  their  large  register  file,  and  their  ability  to  hide  main-storage  

latency  with  concurrent  computation  and  DMA  transfers  support  many  interesting  

programming  models.  

With  the  computational  efficiency  of the  SPEs,  software  developers  can  create  

programs  that  manage  dataflow  as  opposed  to  leaving  dataflow  to  a compiler  or  to  

later  optimizations.  

Many  of  the  unique  features  of  the  SPE  are  handled  by  the  compiler,  although  

programmers  looking  for  the  best  performance  can  take  advantage  of  the  features  

independently  of  the  compiler.  It is almost  never  necessary  to program  the  SPE  in  

assembly  language.  C  intrinsics  provide  a convenient  way  to  program  the  efficient  

movement  and  buffering  of data.  

“Application  partitioning”  on  page  13  introduced  some  concepts  for  application  

programming.  

This  chapter  introduces  these  seven  types  of  programming  models: 

v   Function-Offload  Model,  

v   Device-Extension  Model,  

v   Computation-Acceleration  Model,  

v   Streaming  Model,  

v   Shared-Memory  Multiprocessor  Model,  

v   Asymmetric-Thread  Runtime  Model,  

v   User-Mode  Thread  Model.

Function-Offload Model 

In  the  Function-Offload  Model,  the  SPEs  are  used  as  accelerators  for  

performance-critical  procedures.  

This  model  is  the  quickest  way  to effectively  use  the  Cell  Broadband  Engine  with  

an  existing  application.  In this  model,  the  main  application  runs on  the  PPE  and  

calls  selected  procedures  to  run on  one  or  more  SPEs.  

The  Function-Offload  Model  is sometimes  called  the  Remote  Procedure  Call  (RPC)  

Model.  The  model  allows  a PPE  program  to  call  a procedure  located  on  an  SPE  as  

if it were  calling  a local  procedure  on  the  PPE.  This  provides  an  easy  way  for  

programmers  to  use  the  asynchronous  parallelism  of  the  SPEs  without  having  to  

understand  the  low-level  workings  of the  MFC  DMA  layer. 

In  this  model,  you  identify  which  procedures  should  execute  on  the  PPE  and  

which  should  execute  on  the  SPEs.  The  PPE  and  SPE  source  modules  must  be  

compiled  separately,  by  different  compilers.  
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Remote procedure call 

The  Function  Offload  or  Remote  Procedure  Call  (RPC)  Model  is implemented  

using  stubs  as  proxies.  

A  method  stub  , or  simply  stub  , is a small  piece  of  code  used  to stand  in  for  some  

other  code.  The  stub  or  proxy  acts  as a local  surrogate  for  the  remote  procedure,  

hiding  the  details  of server  communication.  The  main  code  on  the  PPE  contains  a 

stub  for  each  remote  procedure  on  the  SPEs.  Each  procedure  on  an  SPE  has  a stub  

that  takes  care  of  running  the  procedure  and  communicating  with  the  PPE.  

When  the  program  on  the  PPE  calls  a remote  procedure,  it  actually  calls  that  

procedure’s  stub  located  on  the  PPE.  The  stub  code  initializes  the  SPE  with  the  

necessary  data  and  code,  packs  the  procedure’s  parameters,  and  sends  a mailbox  

message  to  the  SPE  to  start  its  stub  procedure.  

The  SPE  stub  retrieves  the  parameters  and  executes  the  procedure  locally  on  the  

SPE.  The  PPE  program  then  retrieves  the  output  parameters.  Figure  27  shows  an 

example  of  a program  using  this  method.  

   

Device-Extension Model 

The  Device  Extension  Model  is a special  case  of the  Function-Offload  Model  in  

which  the  SPEs  act  like  I/O  devices.  

SPEs  can  also  act  as  intelligent  front  ends  to  an  I/O  device.  Mailboxes  can  be  used  

as  command  and  response  FIFOs  between  the  PPE  and  SPEs.  

The  SPEs  can  interact  with  I/O  devices  because:  

v   all  I/O  devices  are  memory-mapped,  and  

v   the  SPEs  DMA  transfers  support  transfer  sizes  of  a single  byte.

I/O  devices  can  use  an  SPE’s  signal-notification  facility  (described  in  “Signal  

notification”  on  page  59)  to  tell  the  SPE  when  commands  complete.  

When  SPEs  are  used  in  the  Device-Extension  Model,  they  usually  run privileged  

software  that  is  part  of  the  operating  system.  As  such,  this  code  is trusted  and  may  

be  given  access  to  privileged  registers  for  a physical  device.  For  example,  a secure  

file  system  may  be  treated  as  a device.  The  operating  system’s  device  driver  can  be  

written  to  use  the  SPE  for  encryption  and  decryption  and  for  responding  to 

disk-controller  requests  on  all  file  reads  and  writes  to  this  virtual  device.  

  

Figure  27.  Example  of the  Function-Offload  (or  RPC)  Model
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Computation-Acceleration Model 

The  Computation-Acceleration  Model  is an  SPE-centric  model  that  provides  a 

smaller-grained  and  more  integrated  use  of SPEs.  

The  model  speeds  up  applications  that  use  computation-intensive  mathematical  

functions  without  requiring  significant  rewrite  of the  applications.  Most  

computation-intensive  sections  of the  application  run on  SPEs.  The  PPE  acts  as  a 

control  and  system-service  facility.  

Multiple  SPEs  work  in  parallel.  The  work  is partitioned  manually  by  the  

programmer,  or  automatically  by  the  compilers.  The  SPEs  must  efficiently  schedule  

MFC  DMA  commands  that  move  instructions  and  data.  

This  model  either  uses  shared  memory  to  communicate  among  SPEs,  or  it uses  a 

message-passing  model.  

Streaming model 

In  the  Streaming  Model, each  SPE,  in either  a serial  or  parallel  pipeline,  computes  

data  that  streams  through.  

The  PPE  acts  as  a stream  controller,  and  the  SPEs  act  as  stream-data  processors.  

For  the  SPEs,  on-chip  load  and  store  bandwidth  exceeds  off-chip  DMA-transfer  

bandwidth  by  an  order  of  magnitude.  If each  SPE  has  an  equivalent  amount  of 

work,  this  model  can  be  an  efficient  way  to use  the  Cell  Broadband  Engine  because  

data  remains  inside  the  Cell  Broadband  Engine  as  long  as  possible.  

The  PPE  and  SPEs  support  message-passing  between  the  PPE,  the  processing  SPE,  

and  other  SPEs.  

Although  the  SDK  does  not  include  a formal  streaming  language,  most  of  the  

programs  written  for  the  Cell  Broadband  Engine  are  likely  to  use  the  streaming  

model  to  some  extent.  For  example,  the  Euler  particle-system  simulation  (described  

in  “Example  1: Euler  particle-system  simulation”  on  page  96)  implements  the  

streaming  model.  This  particle-system  simulation  contains  a computational  kernel  

that  streams  packets  of data  through  the  kernel  for  each  step  in  time.  

Shared-Memory Multiprocessor Model 

The  Cell  Broadband  Engine  can  be  programmed  as  a shared-memory  

multiprocessor,  using  two  different  instruction  sets.  The  SPEs  and  the  PPE  fully  

interoperate  in  a cache-coherent  Shared-Memory  Multiprocessor  Model. 

All  DMA  operations  in  the  SPEs  are  cache-coherent.  Shared-memory  load  

instructions  are  replaced  by  DMA  operations  from  shared  memory  to  local  store  

(LS),  followed  by  a load  from  LS  to  the  register  file.  The  DMA  operations  use  an  

effective  address  that  is common  to  the  PPE  and  all  the  SPEs.  Shared-memory  store  

instructions  are  replaced  by  a store  from  the  register  file  to  the  LS,  followed  by  a 

DMA  operation  from  LS  to  shared  memory.  

The  SPE’s  DMA  lock-line  commands  provide  the  equivalent  of  the  PowerPC  

Architecture  atomic-update  primitives  (load  with  reservation  and  store  

conditional).  
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A  compiler  or  interpreter  could  manage  part  of  the  LS  as  a local  cache  for  

instructions  and  data  obtained  from  shared  memory.  

Asymmetric-Thread Runtime Model 

Threads  can  be  scheduled  to  run on  either  the  PPE  or  on  the  SPEs,  and  threads  

interact  with  one  another  in  the  same  way  they  do  in  a conventional  symmetric  

multiprocessor.  The  Asymmetric-Thread  Runtime  Model  extends  thread  task  models  

and  lightweight  task  models  to  include  the  different  instruction  sets  supported  by  

the  PPE  and  SPE.  

Scheduling  policies  are  applied  to the  PPE  and  SPE  threads  to  optimize  

performance.  Although  preemptive  task-switching  is supported  on  SPEs  for  

debugging  purposes,  there  is a runtime  performance  and  resource-allocation  cost.  

FIFO  run-to-completion  models,  or  lightweight  cooperatively-yielding  models,  can  

be  used  for  efficient  task-scheduling.  

A  single  SPE  can  run only  one  thread  at a time;  it cannot  support  multiple  

simultaneous  threads.  

The  Asymmetric-Thread  Runtime  Model  is flexible  and  supports  all  of  the  other  

programming  models  described  in  this  chapter.  Any  program  that  explicitly  calls  

spe_context_create  and  spe_context_run  is an  example  of  the  Asymmetric-Thread  

Runtime  Model.  For  an  example  of envoking  SPE  threads,  see  “Creating  threads  

for  the  SPEs”  on  page  38.  

This  is  the  fundamental  model  provided  by  the  SDK’s  SPU  Runtime  Management  

Library,  and  it is  identified  by  user  threads  (both  PPE  and  SPE)  running  on  the  

Cell  Broadband  Engine’s  heterogeneous  processing  complex.  

User-mode thread model 

The  User-Mode  Thread  Model  refers  to  one  SPE  thread  managing  a set  of user-level  

functions  running  in parallel.  

The  user-level  functions  are  called  microthreads  (and  also  user  threads  and  user-level  

tasks)  . The  SPE  thread  is supported  by  the  operating  system.  The  microthreads  are  

created  and  supported  by  user  software;  the  operating  system  is not  involved.  

However,  the  set  of  microthreads  can  run across  a set  of  SPUs.  

The  SPU  application  schedules  tasks  in  shared  memory,  and  the  tasks  are  

processed  by  available  SPUs.  For  example,  in  game  programming,  the  tasks  can  

refer  to  scene  objects  that  need  updating.  Microthreads  can  complete  at any  time,  

and  new  microthreads  can  be  spawned  at any  time.  

One  advantage  of  this  programming  model  is that  the  microthreads,  running  on  a 

set  of  SPUs  under  the  control  of  an  SPE  thread,  have  predictable  overhead.  A 

single  SPE  cannot  save  and  restore  the  MFC  commands  queues  without  assistance  

from  the  PPE.  

Cell application frameworks 

The  complexity  of  implementing  many  of  these  programming  models  is 

significantly  reduced  by  using  application  frameworks. 
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One  such  framework  is the  Accelerated  Library  Framework  (ALF).  This  framework  

provides  a set  of  functions  to  help  programmers  solve  data  parallel  computation  

problems  on  hybrid  systems  using  a single-program-multiple-data  (SPMD)  

programming  style.  Features  include  architecturally  independent  data  transfer  

management,  parallel  task  management,  multi-buffering,  and  data  partitioning.  

For  further  details  about  the  ALF, refer  to  the  Accelerated  Library  Framework,  User’s  

Guide. 

SPE overlays 

When  code  does  not  fit  in  an  SPE’s  local  store,  overlays  can  be  useful.  

An  overlay  is  SPU  code  that  is  dynamically  loaded  and  executed  by  a running  SPU  

program.  It  cannot  be  independently  loaded  or run on  an  SPE.  SPE  overlays  allow  

the  programmer  to  manage  SPU  code  in a modular  fashion.  

The  specific  SPU  code  that  is needed  at runtime  is dynamically  loaded.  

Additional  information  on  developing  code  with  overlays  is provided  in  the  

Software  Development  Kit,  Programmer’s  Guide. 
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Chapter  5.  The  simulator  

The  IBM  Full  System  Simulator  for  the  Cell  Broadband  Engine  is  a generalized  

simulator  that  can  be  configured  to  simulate  a broad  range  of full-system  

configurations.  

The  simulator  supports  full  functional  simulation  , including  the:  

v   PPE  

v   SPEs  

v   MFCs  

v   PPE  caches  

v   bus  

v   memory  controller

It  can  simulate  and  capture  many  levels  of  operational  details  on  instruction  

execution,  cache  and  memory  subsystems,  interrupt  subsystems,  communications,  

and  other  important  system  functions.  It also  supports  some  cycle-accurate  

simulation  (performance  or  timing  simulation).  

Figure  28  shows  the  simulation  stack.  The  simulator  is part  of  the  software  

development  kit  (SDK).  

 

If  accurate  timing  and  cycle-level  simulation  are  not  required,  the  simulator  can  be  

used  in  its  functional-only  mode  , running  as a debugger  to  test  the  functions  and  

features  of  a program.  

If  cycle-level  analysis  is required,  it can  be  used  in  performance  simulation  (or  timing  

simulation)  mode,  to  get  accurate  performance  analyses.  

  

Figure  28. Simulation  stack
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Simulator  configurations  are  extensible  and  can  be  modified  using  Tool Command  

Language  (Tcl) commands  to  produce  the  type  and  level  of analysis  required.  

The  simulator  itself  is a general  tool  that  can  be  configured  for  a broad  range  of  

microprocessors  and  hardware  simulations.  The  SDK,  however,  provides  a 

ready-made  configuration  of  the  simulator  for  Cell  Broadband  Engine  system  

development  and  analysis.  

Simulator basics 

This  section  provided  as  overview  of IBM  Full  System  Simulator  for  the  Cell  

Broadband  Engine. 

Additional  details  can  be  found  in  the  simulator’s  documentation  installed  in  

/opt/ibm/systemsim-cell/doc. 

Operating-system modes 

The  simulator  has  two  modes  of  operation,  with  regard  to  operating  systems:  Linux  

mode, and  standalone  mode. 

Linux mode 

In  Linux  mode,  after  the  simulator  is configured  and  loaded,  the  simulator  boots  

the  Linux  operating  system  on  the  simulated  system.  

At  runtime,  the  operating  system  is  simulated  along  with  the  running  programs.  

The  simulated  operating  system  takes  care  of all  the  system  calls,  just  as  it would  

in  a non-simulation  (real)  environment.  

Standalone mode 

In  standalone  mode, the  application  is loaded  without  an  operating  system.  

Standalone  applications  are  user-mode  applications  that  are  normally  run on  an  

operating  system.  On  a real  system,  these  applications  rely  on  the  operating  system  

to  perform  certain  tasks,  including  loading  the  program,  address  translation,  and  

system-call  support.  In  standalone  mode,  the  simulator  provides  some  of  this  

support,  allowing  applications  to  run without  having  to first  boot  an  operating  

system  on  the  simulator.  

There  are,  however,  limitations  that  apply  when  building  an  application  to be  

loaded  and  run by  the  simulator  without  an  operating  system.  Typically,  the  

operating  system  provides  address-translation  support.  

v   Since  an  operating  system  is not  present  in  this  mode,  the  simulator  loads  

executables  without  address  translation,  so  that  the  effective  address  is the  same  as  

the  real  address. Therefore,  all  addresses  referenced  in  the  executable  must  be 

valid  real  addresses. 

v   If  the  simulator  has  been  configured  with  64  MB  of  memory,  all  addresses  must  

fit  in the  range  of X’0’  to  X’3FFFFFF’.

Interacting with the simulator 

There  are  two  ways  to  interact  with  the  simulator.  Firstly,  by  issuing  commands  to 

the  simulated  system. Secondly,  by  issuing  commands  to  the  simulator.  

The  simulated  system  is the  Linux  environment  on  top  of  the  simulated  Cell  

Broadband  Engine,  where  you  run and  debug  programs.  You interact  with  it  by  
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entering  commands  at the  Linux  command  prompt,  in  the  console  window. The  

console  window  is a Linux  shell  of  the  simulated  Linux  operating  system.  

You can  also  control  the  simulator  itself,  configuring  it to do  such  tasks  as  collect  

and  display  performance  statistics  on  particular  SPEs,  or  set  breakpoints  in code.  

These  commands  are  entered  at the  simulator  command  line  in  the  simulator  

command  window, or  using  the  equivalent  actions  in  the  graphical  user  interface  

(GUI).  

The  GUI  is a graphical  means  of interacting  with  the  simulator.  The  GUI  is 

described  in  “Graphical  User  Interface”  on  page  126.  

Figure  29  shows  the  simulator  windows,  and  the  layers  with  which  they  

communicate.  

   

Command-line interface 

To start  the  simulator  in  command-line  mode, enter  the  following  command:  

PATH=/opt/ibm/systemsim-cell/bin:$PATH;  systemsim. 

This  command  starts  the  simulator,  which  initializes  the  simulation  and  displays  

the  prompt:  

 systemsim  % 

The  window  displaying  the  simulator  prompt  is the  command  window.  While  

starting  the  simulation,  the  simulator  creates  the  console  window,  which  is initially  

labeled  UART0  in  the  window’s  title  bar. 

All  commands  must  be  entered  at the  prompt  in  the  command  window  (that  is,  

the  window  in  which  the  simulator  was  started).  Some  of  the  important  commands  

are  shown  in  Table 34  on  page  126.  

  

Figure  29. Simulator  structures  and  screens
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Table 34.  Important  Commands  for the IBM  Full  System  Simulator  for  the  Cell  Broadband  

Engine  

Simulator  Command  Meaning  

quit  Closes  the  simulation  and  exits  the  simulator.  

help  Displays  a list of the  available  simulator  commands.  

mysim  go Starts  or continues  the simulation.  The  first  time  it is issued,  

the  simulator  boots  the  Linux  operating  system  on the  

simulation.  

mysim  spu  n set model  

mode  

Sets  SPEn  into  model  mode,  where  n is a value  from  0 to 7 

and  mode  is either  pipeline  or instruction. 

mysim  spu  n display  

statistics  

Displays  to the  simulator  command  window,  the  performance  

analysis  statistics  collected  on SPEn,  where  n is a value  from  0 

to 7. Statistics  are  only  collected  when  the SPE  is executing  in 

pipeline  mode.
  

The  simulator  prompt  is displayed  in the  command  window  when  the  simulation  

is stopped,  or  paused.  When  the  simulation  is  running,  the  command  window,  

instead,  displays  a copy  of  the  output  to  the  console  window  and  simulation-cycle  

information  every  few  seconds,  and  the  prompt  is not  available.  

To stop  the  simulation  and  get  back  the  prompt  —  use  the  Ctrl-c  key  sequence.  

This  will  stop  the  simulation,  and  the  prompt  will  reappear.  

Graphical User Interface 

The  simulator’s  GUI  offers  a visual  display  of  the  state  of the  simulated  system,  

including  the  PPE  and  the  eight  SPEs.  

You can  view  the  values  of the  registers,  memory,  and  channels,  as  well  as viewing  

performance  statistics.  The  GUI  also  offers  an  alternate  method  of  interacting  with  

the  simulator.  Figure  30  on  page  127  shows  the  main  GUI  window  that  appears  

when  the  GUI  is  launched.  
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The  main  GUI  window  has  two  basic  areas:  

v   The  vertical  panel  on  the  left.  

v   The  rows  of  buttons  on  the  right.

The  vertical  panel  represents  the  simulated  system  and  its  components.  The  rows  

of  buttons  are  used  to  control  the  simulator.  

To start  the  GUI  from  the  Linux  run directory,  enter:  

 PATH=/opt/ibm/systemsin-cell/bin:$PATH;  systemsim  -g 

The  simulator  will  then  configure  the  simulator  as  a Cell  Broadband  Engine  and  

display  the  main  GUI  window,  labeled  with  the  name  of the  application  program.  

When  the  GUI  window  first  appears,  click  the  Go  button  to  boot  the  Linux  

operating  system.  

For  a detailed  description  of  starting  the  simulator  and  running  a program  see  

“Running  the  program  in the  simulator”  on  page  44.  

The simulation panel 

When  the  main  GUI  window  first  appears,  the  vertical  panel  contains  a single  

folder  labeled  mysim. 

To see  the  contents  of mysim, click  on  the  plus  sign  (+)  in  front  of  the  folder  icon.  

When  the  folder  is expanded,  you  can  see  its  contents.  These  include  

v   a PPE  (labelled  PPE0:0:0  and  PPE0:0:1, 

v   the  two  threads  of  the  PPE),  

v   eight  SPEs  (SPE0... SPE7).

  

Figure  30. Main  Graphical  User  Interface  for the  simulator
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The  folders  representing  the  processors  can  be  further  expanded  to  show  the  

viewable  objects  and  the  options  and  actions  available.  Figure  31  shows  the  vertical  

panel  with  several  of the  processor  folders  expanded.  

   

PPE components 

There  are  five  PPE  components  visible  in  the  expanded  PPE  folder.  

The  five  visible  PPE  components  are:  

v   PCTrack  

v   PCCCore  

v   GPRegs  

v   FPRegs  

v   PCAddressing

Double-clicking  a folder  icon  brings  up  a window  displaying  the  program-state  

data.  Several  of the  available  windows  are  shown  in  the  figures  provided  here.  

The  general-purpose  registers  (GPRs)  and  the  floating-point  registers  (FPRs)  can  be  

viewed  separately  by  double-clicking  on  the  GPRegs  and  the  FPRegs  folders  

respectively.  

  

Figure  31.  Project  and  processor  folders
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Figure  32  shows  the  GPR  window,  and  Figure  33  shows  the  FPR  window.  As  data  

changes  in  the  simulated  registers,  the  data  in  the  windows  is updated  and  

registers  that  have  changed  state  are  highlighted.  

 

 

The  PPE  Core  window  (PPCCore)  shows  the  contents  of all  the  registers  of  the  PPE,  

including  the  Vector/SIMD  Multimedia  Extension  registers.  Figure  34  on  page  130  

shows  the  PPE  Core  window.  

 

  

Figure  32. PPE  General-Purpose  Registers  window

  

Figure  33. PPE  Floating-Point  Registers  window
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SPE components 

The  SPE  folders  (SPE0  ...  SPE7) each  have  ten  sub-items.  

Five  of the  sub-items  represent  windows  that  show  data  in the  registers,  channels,  

and  memory:  

v   SPUTrack  

v   SPUCore  

v   SPEChannel  

v   LS_Stats  

v   SPUMemory

Two  of  the  sub-items,  and  , represent  windows  that  show  state  information  on the  

MFC:  

v   MFC  

v   MFC_XLate

The  last  three  sub-items  represent  actions  to  perform  on  the  SPE:  

v   SPUStats  

v   Model  

v   Load-Exec

Several  interesting  SPE  data  windows  are  shown  in  this  section’s  figures.  Figure  35  

on  page  131  shows  the  MFC  window,  which  provides  internal  MFC  state  

information.  Figure  36  on  page  132  shows  the  MFC_XLate  window,  which  provides  

translation  structure  state  information.  Figure  37  on  page  133  shows  the  

SPEChannel  window,  which  provides  information  about  the  SPE’s  channels.  

 

  

Figure  34. PPE  Core  window
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Figure  35. SPE  MFC  window

 

Chapter  5. The simulator 131



Figure  36.  SPE  MFC  Address  Translation  window
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The  last  three  items  in  an  SPE  folder  represent  actions  to  perform,  with  respect  to  

the  associated  SPE.  The  first  of  these  is SPUStats.  When  the  system  is stopped  and  

you  double-click  on  this  item,  the  simulator  displays  program  performance  

statistics  in  its  own  pop-up  window.  

Figure  38  on  page  134  shows  an  example  of a statistics  dump.  These  statistics  are  

only  collected  when  the  Model  is set  to  pipeline  mode. 

 

  

Figure  37. SPE  Channels  window

 

Chapter  5. The simulator 133



The  next  item  in  the  SPE  folder  is labelled  either:  

v   Model:  instruction,  

v   Model:  pipeline,  or  

v   Model:  fast.

The  label  indicates  whether  the  simulation  is in:  

v   instruction  mode  for  checking  and  debugging  the  functionality  of  a program,  

v   pipeline  mode  for  collecting  performance  statistics  on  the  program,  or  

v   fast  mode  for  fast  functional  simulation  only.

The  model  can  be  toggled  by  double-clicking  the  item.  The  Perf  Models  button  on  

the  GUI  can  also  be  used  to  display  a menu  for  setting  the  simulator  model  modes  

of  all  of  the  SPEs  simultaneously.  

  

Figure  38.  SPE  statistics
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The  last  item  in  the  SPE  folder,  Load-Exec, is used  for  loading  an  executable  onto  

an  SPE.  When  you  double-click  the  item,  a file-browsing  window  is displayed,  

allowing  you  to  find  and  select  the  executable  file  to  load.  

GUI buttons 

On  the  right  side  of  the  GUI  screen  are  five  rows  of buttons.  These  are  used  to  

manipulate  the  simulation  process.  

The  five  rows  of  buttons,  shown  in  Figure  30  on  page  127,  do  the  following:  

v   Advance  Cycle  —  Advances  the  simulation  by  a set  number  of cycles.  The  default  

value  is 1 cycle,  but  it can  be  changed  by  entering  an  integer  value  in  the  

textbox  above  the  buttons,  or  by  moving  the  slider  next  to the  textbox.  The  

drop-down  menu  at the  top  of  the  GUI  allows  the  user  to  select  the  time  domain  

for  cycle  stepping.  The  time  units  to use  for  cycles  are  expressed  in  terms  of  

various  system  components.  The  simulation  must  be  stopped  for  this  button  to  

work;  if the  simulation  is not  stopped,  the  button  is inactive.  

v   Go  —  Starts  or  continues  the  simulation.  In  the  SDK’s  simulator,  the  first  time  

the  Go  button  is clicked  it initiates  the  Linux  boot  process.  (In  general,  the  action  

of  the  Go  button  is determined  by  the  startup  tcl  file  located  in  the  directory  

from  which  the  simulator  is started.)  

v   Stop  —  Pauses  the  simulation.  

v   Service  GDB  —  Allows  the  external  gdb  debugger  to  attach  to  the  running  

program.  This  button  is also  inactive  while  the  simulation  is running.  

v   Triggers/Breakpoints  —  Displays  a window  showing  the  current  triggers  and  

breakpoints.  

v   Update  GUI  —  Refreshes  all  of the  GUI  screens.  By  default,  the  GUI  screens  are  

updated  automatically  every  four  seconds.  Click  this  button  to force  an  update.  

v   Debug  Controls  —  Displays  a window  of  the  available  debug  controls  and  allows  

you  to  select  which  ones  should  be  active.  Once  enabled,  corresponding  

information  messages  will  be  displayed.  Figure  39  on  page  137  shows  the  Debug  

Controls  window.  

v   Options  —  Displays  a window  allowing  you  to  select  fonts  for  the  GUI  display.  

On  a separate  tab,  you  can  enter  the  gdb  debugger  port.  

v   Emitters  —  Displays  a window  with  the  defined  emitters,  with  separate  tabs  for  

writers  and  readers.  Figure  46  on  page  148  shows  the  Emitters  window.  For  more  

on  emitters,  see  “Emitters”  on  page  147.  

v   Fast  Mode  —  Toggles  fast  mode  on  and  off.  Fast  mode  accelerates  the  execution  

of  the  PPE  at  the  expense  of disabling  certain  system-analysis  features.  It is 

useful  for  quickly  advancing  the  simulation  to a point  of interest.  When  fast  

mode  is  on,  the  button  appears  depressed;  otherwise  it appears  normal.  Fast  

mode  can  also  be  enabled  with  the  mysim  fast  on  command  and  disabled  with  

the  mysim  fast  off  command.  

v   Perf  Models  —  Displays  a window  in  which  various  performance  models  can  be  

selected  for  the  various  system  simulator  components.  Provides  a convenient  

means  to  set  each  SPU’s  simulation  mode  to either  cycle  accurate  pipeline  mode  

or  instruction  mode  or  fast  functional-only  mode.  The  same  capabilities  are  

available  using  the  Model:instruction, Model:pipeline, Model:fast  toggle  menu  

sub-item  under  each  SPE  in  the  tree  menu  at  the  left  of  the  main  control  panel.  

Figure  42  on  page  140  shows  the  SPU  Performance  Model  Modes  window.  

v   SPE  Visualization  —  Plots  histograms  of  SPU  and  DMA  event  counts.  The  counts  

are  sampled  at  user  defined  intervals,  and  are  continuously  displayed.  Two 

modes  of  display  are  provided:  a “scroll”  view, which  tracks  only  the  most  
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recent  time  segment,  and  a “compress”  view, which  accumulates  samples  to  

provide  an  overview  of the  event  counts  during  the  time  elapsed.  Users  can  

view  collected  data  in either  detail  or  summary  panels.  

–   The  detailed,  single-SPE  panel  tracks  SPU  pipeline  phenomena  (such  as  stalls,  

instructions  executed  by  type,  and  issue  events),  and  DMA  transaction  counts  

by  type  (gets,  puts,  atomics,  and  so forth).  

–   The  summary  panel  tracks  all  eight  SPEs  for  the  CBE,  with  each  plot  showing  

a subset  of  the  detailed  event  count  data  available.

Figure  40  on  page  138  shows  the  SPE  Visualization  window.  

v   Process-Tree  and  Process-Tree-Stats  —  This  feature  requires  OS  kernel  hooks  that  

allow  the  simulator  to display  process  information.  This  feature  is currently  not  

provided  in  the  SDK  kernel.  

v   Track  All  PCs  —  Figure  41  on  page  139  shows  the  Track  All  PCs  window.  

v   SPU  Modes  —  Provides  a convenient  means  to  set  each  SPU’s  simulation  mode  

to  either  cycle  accurate  pipeline  mode  or  fast  functional-only  mode.  The  same  

capabilities  are  available  using  the  Model:instruction  or  Model:pipeline  toggle  

menu  sub-item  under  each  SPE  in  the  tree  menu  at the  left  of the  main  control  

panel.  Figure  42  on  page  140  shows  the  SPU  Modes  window.  

v   Event  Log  —  Enables  a set  of  predefined  triggers  to  start  collecting  the  log  

information.  The  window  provides  a set  of buttons  that  can  be  used  to  set  the  

marker  cycle  to  a point  in  the  process.  

v   Exit  —  Exits  the  simulator  and  closes  the  GUI  window.  
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Figure  39. Debug  Controls  window
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Figure  40. SPE  Visualization  window
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Figure  41. Track All PCs  window
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Performance monitoring 

The  simulator  provides  both  functional-only  and  cycle-accurate  simulation  modes.  

The  functional-only  mode  models  the  effects  of instructions,  without  accurately  

modeling  the  time  required  to execute  the  instructions.  In  functional-only  mode,  a 

fixed  latency  is assigned  to  each  instruction;  the  latency  can  be  arbitrarily  altered  

by  the  user. Since  latency  is fixed,  it does  not  account  for  processor  implementation  

and  resource  conflict  effects  that  cause  instruction  latencies  to  vary.  Functional-only  

mode  assumes  that  memory  accesses  are  synchronous  and  instantaneous.  This  

mode  is  useful  for  software  development  and  debugging,  when  a precise  measure  

of  execution  time  is  not  required.  

The  cycle-accurate  mode  models  not  only  functional  accuracy  but  also  timing.  It 

considers  internal  execution  and  timing  policies  as well  as  the  mechanisms  of 

system  components,  such  as arbiters,  queues,  and  pipelines.  Operations  may  take  

several  cycles  to  complete,  accounting  for  both  processing  time  and  resource  

constraints.  

The  cycle-accurate  mode  allows  you  to:  

v   Gather  and  compare  performance  statistics  on  full  systems,  including  the  PPE,  

SPEs,  MFCs,  PPE  caches,  bus,  and  memory  controller.  

v   Determine  precise  values  for  system  validation  and  tuning  parameters,  such  as  

cache  latency.  

v   Characterize  the  system  workload.  

v   Forecast  performance  at  future  loads,  and  fine-tune  performance  benchmarks  for  

future  validation.

  

Figure  42.  SPU  Modes  window
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In  the  cycle-accurate  mode,  the  simulator  automatically  collects  many  performance  

statistics.  Some  of the  more  important  SPE  statistics  are:  

v   Total cycle  count  

v   Count  of  branch  instructions  

v   Count  of  branches  taken  

v   Count  of  branches  not  taken  

v   Count  of  branch-hint  instructions  

v   Count  of  branch-hints  taken  

v   Contention  for  an  SPE’s  local  store  

v   Stall  cycles  due  to dependencies  on  various  pipelines

Displaying performance statistics 

You can  collect  and  display  simple  performance  statistics  on  a program  without  

performing  any  instrumentation  of the  program  code.  Collection  of more  complex  

statistics  requires  program  instrumentation.  

The  following  steps  demonstrate  how  to collect  and  display  simple  performance  

statistics.  The  example  PPE  program  starts  (“spawns”)  the  same  thread  on  three  

SPEs.  

v   When  an  SPE  thread  is spawned,  its  SPE  number  (any  number  between  0 and  7)  

is passed  in  a data  structure  as  a parameter  to the  main  function.  

v   The  SPE  program  contains  a for-loop  that  is executed  zero  or  more  times.  

v   The  number  of  times  it is executed  is equal  to  three  times  the  value  passed  to  its  

main  function.

The names  of  the  PPE  and  SPE  programs  are  tpa1  and  tpa1_spu, respectively.  Part  

of  the  most  important  sections  of  the  programs  are  shown  in  “Example  program:  

tpa1”  on  page  146.  

The  following  steps  are  marked  as  to  whether  they  are  performed  in  the  

simulator’s  command  window  or  its  console  window.  To collect  and  display  simple  

performance  statistics,  do  the  following:  

1.   Start  the  simulator.  Start  the  simulator  by  entering  the  following  command:  

 PATH=/opt/ibm/systemsin-cell/bin:$PATH;  systemsim  

This  command  starts  the  simulator  in  command-line  mode,  and  displays  the  

simulator  prompt. 

 systemsim  % 

2.   In  the  command  window,  set  the  SPUs  to  pipeline  mode. An  SPU  must  be  in  

pipeline  mode  to  collect  performance  statistics  from  that  SPU.  If, instead,  the  

SPU  is  in  instruction  mode,  it will  only  report  the  total  instruction  count.  Use  

the  mysim  spu  command  to  set  those  processors  to  pipeline  mode,  as follows:  

 mysim  spu  0 set  model  pipeline  

 mysim  spu  1 set  model  pipeline  

 mysim  spu  2 set  model  pipeline  

Note:  The  specific  SPU  numbers  are  examples  only. The  operating  system  may  

assign  the  SPU  programs  to  execute  on  a different  set  of SPUs.  You can  also  use  

the  SPU  Modes  button  or  the  folder  under  each  SPE  labeled  Model  to  set  the  

model  to  pipeline  mode.  

3.   In  the  command  window,  boot  Linux. Boot  the  Linux  operating  system  on  the  

simulated  PPE  by  entering:  
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mysim  go 

4.   In  the  console  window,  load  the  executables. Load  the  PPE  and  SPE  executables  

from  the  base  environment  into  the  simulated  environment,  and  set  their  file  

permissions  to  executable,  as  follows:  

 callthru  source  tpa1  > tpa1  

 callthru  source  tpa1_spu  > tpa1_spu  

 chmod  +x tpa1  

 chmod  +x tpa1_spu  

5.   In  the  console  window,  run  the  PPE  program.  Run  the  PPE  program  in  the  

simulation  by  entering  the  name  of  the  executable  file,  as follows:  

 tpa1  

6.   In  the  command  window,  pause  the  simulation  and  display  statistics.  When  the  

program  finishes  execution,  select  the  simulator  control  window.  Pause  the  

simulator  by  entering  the  Ctrl-c  key  sequence.  To display  the  performance  

statistics  for  the  three  SPEs,  enter  the  following  commands:  

 mysim  spu  0 display  statistics  

 mysim  spu  1 display  statistics  

 mysim  spu  2 display  statistics  

As  each  command  is  entered,  the  simulator  displays  the  performance  statistics  in 

the  simulator  command  window.  Figure  43  on  page  143  shows  a screen  image  of  

the  SPE  0 performance  statistics.  
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Although  the  programs  on  SPE  0 and  SPE  2 are  the  same,  the  program  on  SPE  0 

executed  the  loop  zero  times,  but  the  program  on  SPE  2 executed  the  loop  six  

times.  

You can  compare  the  performance  statistics  of SPE  0 (Figure  43)  with  those  of 

SPE  2, which  are  shown  in  Figure  44  on  page  144.  

Note:  The  statistics  collected  in  this  manner  include  the  SPU  cycles  required  to  

load  the  SPE  thread,  start  the  SPE  thread,  and  cleanup  the  SPE  thread  upon  

SPU  DD3.0  

***  

Total  Cycle  count                35185  

Total  Instruction  count          643  

Total  CPI                        54.72  

***  

Performance  Cycle  count          35185  

Performance  Instruction  count    1701  (1502)  

Performance  CPI                  20.68  (23.43)  

  

Branch  instructions              135 

Branch  taken                     120  

Branch  not  taken                 15 

  

Hint  instructions                9 

Hint  hit                         31 

  

Contention  at LS between  Load/Store  and Prefetch  49 

  

Single  cycle                                               1108  (  3.1%)  

Dual  cycle                                                  197  (  0.6%)  

Nop  cycle                                                   137  (  0.4%)  

Stall  due  to branch  miss                                   1655  (  4.7%)  

Stall  due  to prefetch  miss                                    0 (  0.0%)  

Stall  due  to dependency                                     826  (  2.3%)  

Stall  due  to fp resource  conflict                             0 (  0.0%)  

Stall  due  to waiting  for  hint  target                         11 (  0.0%)  

Issue  stalls  due  to pipe  hazards                              6 (  0.0%)  

Channel  stall  cycle                                       31236  ( 88.8%)  

SPU  Initialization  cycle                                      9 (  0.0%)  

-----------------------------------------------------------------------  

Total  cycle                                               35185  (100.0%)  

  

Stall  cycles  due  to dependency  on each  pipelines  

 FX2         62 (  7.5%  of all  dependency  stalls)  

 SHUF        322  ( 39.0%  of  all  dependency  stalls)  

 FX3         2 (  0.2%  of all dependency  stalls)  

 LS         413  ( 50.0%  of all  dependency  stalls)  

 BR         0 (  0.0%  of all  dependency  stalls)  

 SPR         21 (  2.5%  of all  dependency  stalls)  

 LNOP        0 (  0.0%  of all  dependency  stalls)  

 NOP         0 (  0.0%  of all dependency  stalls)  

 FXB         0 (  0.0%  of all dependency  stalls)  

 FP6         0 (  0.0%  of all dependency  stalls)  

 FP7         0 (  0.0%  of all dependency  stalls)  

 FPD         6 (  0.7%  of all dependency  stalls)  

  

The  number  of used  registers  are  128,  the  used  ratio  is 100.00  

dumped  pipeline  stats  

Figure  43. tpa1  statistics  for  SPE  0
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completion.  

   

SPE performance profile checkpoints 

The  simulator  can  automatically  capture  system-wide  performance  statistics  that  

are  useful  in  determining  the  sources  of  performance  degradation,  such  as  channel  

stalls  and  instruction-scheduling  problems.  

You can  also  use  SPE  performance  profile  checkpoints  to  delimit  a specific  region  of 

code  over  which  performance  statistics  are  to  be  gathered.  

SPU  DD3.0  

***  

Total  Cycle  count                35537  

Total  Instruction  count          643  

Total  CPI                        55.27  

***  

Performance  Cycle  count          35537  

Performance  Instruction  count    1802  (1590)  

Performance  CPI                  19.72  (22.35)  

  

Branch  instructions              153 

Branch  taken                     136  

Branch  not  taken                 17 

  

Hint  instructions                15 

Hint  hit                         37 

  

Contention  at  LS  between  Load/Store  and Prefetch  49 

  

Single  cycle                                               1170  (  3.3%)  

Dual  cycle                                                  210  (  0.6%)  

Nop  cycle                                                   150  (  0.4%)  

Stall  due  to branch  miss                                   1854  (  5.2%)  

Stall  due  to prefetch  miss                                    0 (  0.0%)  

Stall  due  to dependency                                     879  (  2.5%)  

Stall  due  to fp resource  conflict                             0 (  0.0%)  

Stall  due  to waiting  for  hint  target                         23 (  0.1%)  

Issue  stalls  due  to pipe  hazards                              6 (  0.0%)  

Channel  stall  cycle                                       31236  ( 87.9%)  

SPU  Initialization  cycle                                      9 (  0.0%)  

-----------------------------------------------------------------------  

Total  cycle                                               35537  (100.0%)  

  

Stall  cycles  due  to dependency  on each  pipelines  

 FX2         86 (  9.8%  of all dependency  stalls)  

 SHUF        348  ( 39.6%  of all  dependency  stalls)  

 FX3         2 (  0.2%  of all dependency  stalls)  

 LS         413  ( 47.0%  of all  dependency  stalls)  

 BR         3 (  0.3%  of all  dependency  stalls)  

 SPR         21 (  2.4%  of all dependency  stalls)  

 LNOP        0 (  0.0%  of all  dependency  stalls)  

 NOP         0 (  0.0%  of all dependency  stalls)  

 FXB         0 (  0.0%  of all dependency  stalls)  

 FP6         0 (  0.0%  of all dependency  stalls)  

 FP7         0 (  0.0%  of all dependency  stalls)  

 FPD         6 (  0.7%  of all dependency  stalls)  

  

The  number  of used  registers  are 128,  the used  ratio  is 100.00  

dumped  pipeline  stats  

Figure  44.  tpa1  statistics  for  SPE  2
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Performance  profile  checkpoints  (such  as prof_clear  , prof_start  and  prof_stop  in  

the  code  samples  below)  can  be  used  to  capture  higher-level  statistics  such  as  the  

total  number  of  instructions,  the  number  of  instructions  other  than  no-op  

instructions,  and  the  total  number  of cycles  executed  by  the  profiled  code  segment.  

The  checkpoints  are  special  no-op  instructions  that  indicate  to the  simulator  that  

some  special  action  should  be  performed.  No-op  instructions  are  used  because  they  

allow  the  same  program  to be  executed  on  real  hardware.  A SPE  header  file,  

profile.h  , provides  a convenient  function-call-like  interface  to  invoke  these  

instructions.  

In  addition  to  displaying  performance  information,  certain  performance  profile  

checkpoints  can  control  the  statistics-gathering  functions  of  the  SPU.  

For  example,  profile  checkpoints  can  be  used  to  capture  the  total  cycle  count  on  a 

specific  SPE.  The  resulting  statistic  can  then  be  used  to further  guide  the  tuning  of  

an  algorithm  or  structure  of  the  SPE.  The  following  example  illustrates  the  

profile-checkpoint  code  that  can  be  added  to  an  SPE  program  in  order  to clear, 

start,  and  stop  a performance  counter:  

 #include  <profile.h>  

 . . . 

 prof_clear();      // clear  performance  counter  

 prof_start();      // start  recording  performance  statistics  

 ...  

  <code_to_be_profiled>  

 ...  

 prof_stop();      // stop  recording  performance  statistics  

When  a profile  checkpoint  is encountered  in  the  code,  an  instruction  is issued  to  

the  simulator,  causing  the  simulator  to  print  data  identifying  the  calling  SPE  and  

the  associated  timing  event.  The  data  is displayed  on  the  simulator  control  

window  in  the  following  format:  

SPUn:  CPm,  xxxxx(yyyyy), zzzzzzz  

where:  

v   n is the  number  of  the  SPE  on  which  the  profile  checkpoint  has  been  issued,  

v   m is  the  checkpoint  number,  

v   xxxxx  is  the  instruction  counter,  

v   yyyyy  is  the  instruction  count  excluding  no-ops,  

v   zzzzzz  is  the  cycle  counter.

The  following  example  uses  the  tpa1_spu  program  and  instruments  the  loop  with  

the  prof_clear  , prof_start  and  prof_stop  profile  checkpoints.  The  relevant  code  

is  shown  here.  

// file  tpa2_spu.c  

  

#include  <sim_printf.h>  

#include  <profile.h>  

  

 ...  

  

 prof_clear();  

 prof_start();  

 for(  i=0;  i<spe_num*3;  i++  ) 

  sim_printf("SPE#:  %lld,  Count:  %d\n",  spe_num,  i);  

 prof_stop();  
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Figure  45  shows  the  output  produced  by  the  program.  

   

Example program: tpa1 

The  following  example  program  tpa1  is used  in  the  sections  above  to show  the  

basic  performance  statistics  that  can  be  collected  and  displayed  without  

instrumentation  of  the  code.  

tpa1.c  is  the  source  code  for  the  PPE,  which  spawns  three  copies  of  program  

tpa1_spu  on  SPEs  0, 1 and  2.  The  code  in  tpa1_spu  executes  the  for-loop  a different  

number  of  times  in  each  of the  SPEs.  For  each  SPE,  the  loop  is executed  three  

times  the  number  passed  in  as the  parameter.  

// file  tpa1.c  - error  checking  removed  to improve  readability  

  

 ...  

  

 // the  value  of nr_spus  is 3 

 for  (i = 0; i < nr_spus;  i++)  { 

    spe_context_ptr_t  spe;  

    spe_program_handle_t  *tpa1_spu;  

    unsigned  int  entry  = SPE_DEFAULT_ENTRY;  

    union  { 

   void  *ptr;  

   unsigned  int  spe_num;  

  } t_info;  

  

   spe  = spe_context_create(0,  NULL);  

   tpa1_spu  = spe_image_open("tpa1_spu")  

   (void)spe_program_load(spe,  &tpa1_spu);  

   printf("Spawning  thread:   %d\n",  i); 

   t_tinfo.spe_num  = i; 

   (void)spe_context_run(spe,  &entry,  0, t_info.ptr,  NULL,  NULL);  

   (void)spe_context_detroy(spe);  

 } 

  

  

  // file  tpa1_spu.c  

  

 main(unsigned  long  long  id,  unsigned  long  long  spe_num)  

 { 

  int  i; 

  

  for(  i=0;  i<spe_num*3;  i++ ) 

    sim_printf("SPE#:  %lld,  Count:  %d\n",  spe_num,  i);  

 } 

SPU2:  CP0,  863(740),  17800  

clear  performance  info.  

SPU2:  CP30,  0(0),  1 

start  recording  performance  info.  

SPE#:  25296904,  Count:  0 

SPE#:  25296904,  Count:  1 

SPE#:  25296904,  Count:  2 

SPE#:  25296904,  Count:  3 

SPE#:  25296904,  Count:  4 

SPE#:  25296904,  Count:  5 

SPU2:  CP31,  118(103),  400  

stop  recording  performance  info.  

Figure  45.  Profile  checkpoint  output  for SPE  2
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Emitters 

In  addition  to  the  basic  cycle-count  and  summary  statistics  provided  by  its  profile  

checkpoints  and  triggers,  the  simulator  also  supports  a user-extensible  

event-analysis  system,  called  emitters. 

The  emitters,  selected  on  the  GUI  screen  (Figure  30  on  page  127),  de-couple  

performance  event-collection  from  performance  analysis  tools.  The  emitter  

event-analysis  system  has  two  primary  functions:  

v   Event  Data  Production  —  During  simulation,  the  simulator  can  identify  a wide  

variety  of  architectural  and  programmatic  events  that  influence  system  and  

software  performance.  Using  configuration  commands,  you  can  request  the  

simulator  to  emit  records  for  a specific  set  of  events  into  a circular,  shared  

memory  buffer.  Reader  programs  attach  to the  shared  memory  buffer  to  

consume  these  event  records.  Examples  of  emitter  events  include  instruction  

execution,  memory-reference  addresses,  and  cache  hits  and  misses.  

v   Event  Processing  —  There  are  one  or  more  readers  that  analyze  event  records  

from  this  buffer.  The  readers  typically  compute  performance  measurements  and  

statistics,  visualize  system  and  application  behavior,  and  capture  traces  for  

post-processing.  The  simulator  is prepackaged  with  a set  of prebuilt  sample  

emitter  readers,  and  users  can  develop  and  customize  their  own  emitter  readers.

Figure  46  on  page  148  shows  the  emitter  selections  available  by  clicking  the  

Emitters  button  on  the  GUI  screen.  

Figure  47  on  page  148  shows  the  emitter  architecture.  Emitters  can  be  used  in  any  

simulator  mode.  The  writer  toggle  buttons  in  the  GUI  are  used  to  enable  or  disable  

production  of  the  associated  event  to the  circular  buffer.  An  emitter  reader  

program  is  needed  to  receive  the  events  from  the  circular  buffer  using  the  emitter  

reader  API.  

The  emitter  framework  is meant  for  programmers  who  wish  to  conduct  

performance  analyses  or  capture  traces  by  developing  custom  reader  programs.  
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The  types  of  events  that  can  be  tracked  are  described  in:  

 /opt/ibm/systemsim-cell/include/emitter/emitter_data_t.h  

The  categories  of  events  are:  

  

Figure  46.  Emitters

  

Figure  47. Emitter  architecture
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v   Begin/end  markers  (Header,  Footer)  

v   PPU  and  SPU  instructions  

v   Cache  hits  or  misses  

v   Process/thread  state  (create,  resume,  kill,  and  so  forth)  

v   Translation  Lookaside  Buffer  (TLB),  Segment  Lookaside  Buffer  (SLB),  

Effective-to-Real  Address  Translation  (ERAT)  operations  

v   Device  operations  (disk)  

v   Annotations  

v   Transactions

SPU performance and semantics 

The  simulator  collects  several  statistics  related  to  SPU  performance.  

Table 35  lists  the  performance  statistics  that  are  available  in  the  public  SDK. 

 Table 35.  Simulator  Performance  Statistics  for  the  SPU  

Statistic  Name  Meaning  

performance_inst_count  Instruction  count  (profile  checkpoint  sensitive),  

including  and  not  including  no-ops.  

performance_cycle_count  Cycle  count  (profile  checkpoint  sensitive).  

branch_taken  Count  of branch  instructions  taken.  

branch_not_taken  Count  of branch  instructions  not  taken.  

hint_instructions  Count  of branch  hint  instructions.  

hint_instruction_hits  Number  of times  a hint  instruction  predicted  

correctly.  

ls_contention  Number  of cycles  in which  local  store  load/store  

instructions  prevented  prefetch.  

sbi_contention  Number  of cycles  in which  the  Synergistic  Bus  

Interface  (SBI)  DMA  operations  prevented  SPU  

local  store  access.  

single_cycle  Number  of cycles  in which  only  one  pipeline  

executed  an instruction.  

dual_cycle  Number  of cycles  in which  both  pipelines  

executed  an instruction.  

sp_issue_block  Number  of cycles  in which  dual-issue  was  

prevented,  due  to an SP-class  instruction  not  

being  available  to issue.  

dp_issue_block  Number  of cycles  in which  dual-issue  was  

prevented,  due  to a DP-class  instruction  not being  

available  to issue.  

cross_issue_cycle  Number  of cycles  in which  issue  pipe{0,1}  sent  an 

instruction  to  the  opposite  issue  pipe{1,  0}. 

nop_inst_count  Number  of NOP  instructions  executed  (NOP,  

LNOP,  HBR,  and  HBC).  

src0_dep_cycle  Number  of cycles  in which  dual-issue  was  

prevented,  due  to operand  dependencies  between  

the  two instructions  that  were  ready  to issue  

simultaneously.  
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Table 35.  Simulator  Performance  Statistics  for the  SPU  (continued)  

Statistic  Name  Meaning  

nop_cycle  Number  of cycles  in which  a NOP  was  executed  

in either  pipeline.  

branch_stall_cycles  Number  of cycles  stalled  due  to branch  miss.  

prefetch_miss_stall_cycles  Number  of cycles  instruction  issue  stalled  due  to 

prefetch  miss.  

pipe_dep_stall_cycles  Number  of cycles  instruction  issue  stalled,  due  to 

source  operand  dependencies  on target  operands  

in any  execution  pipeline.  

pipe_busy_cycles  Number  of cycles  all  execution  pipelines  were  

expected  to be busy  processing  in-flight  

instructions  (unaffected  by flush).  

fp_resource_conflict_stall_cycles  Number  of cycles  stalled  due  to floating-point  

unit  resource  conflict.  

hint_stall_cycles  Number  of cycles  stalled  due  to waiting  for hint  

target.  

siss_stall_cycles  Number  of cycles  stalled  due  to structural  

execution  pipe  dependencies.  

channel_stall_cycles  Number  of cycles  stalled  waiting  for a channel  

operation  to complete.  

XXX_inst_count  (see  below)  Number  of XXX  instructions  executed.  

XXX_dep_stall_cycles  (see  below)  Number  of cycles  stalled  due  to a source  operand  

dependency  on a target  operand  of an in-flight  

instruction  in  the  XXX  execution  pipeline.  

XXX_iss_stall_cycles  (see  below)  Number  of cycles  stalled  due  to a structural  

dependency  on an XXX  class  instruction.  

XXX_busy_cycle  (see  below)  Total cycles  the  XXX  execution  pipeline  was  

expected  to be busy  processing  in-flight  

instructions  (unaffected  by flush).  

Where  XXX  (above)  is one  of: 

FX2  SPX  fixed-point  unit  (fixed  [FX]  class)  instructions.  

SHUF  SFS  shuffle  and  quad-rotate  fixed-point  unit  

(shuffle  [SH]  class)  instructions.  

FX3  SFX  4-cycle  fixed-point  unit  (word  rotate  and  shift  

[WS]  class)  instructions.  

LS SLS  load  and  store  unit (load  and  store  [LS]  class)  

instructions.  

BR SCN  branch  and  control  unit  and  sequencer  

(branch  resolution  [BR]  class)  instructions.  

SPR  SSC  Channel  and  DMA  unit  (channel  interface  

[CH]  class)  instructions.  

LNOP  Odd  pipeline  (load  no  operation  [LNOP]  class)  

no-ops.  

NOP  Even  pipeline  (NOP  class)  no-ops.  

FXB  SFP  byte  operations  (byte  operations  [BO]  class)  

instructions.  

FP6  SFP  FPU  single-precision  (single-precision  

floating-point  [SP]  class)  instructions.  
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Table 35.  Simulator  Performance  Statistics  for  the  SPU  (continued)  

Statistic  Name  Meaning  

FP7  SFP  integer  (floating-point  integer  [FI]  class)  

instructions.  

FPD  SFP  FPU  double-precision  (double-precision  

floating-point  [DP]  class)  instructions.  
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Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM® may  not  offer  the  products,  services,  or  features  discussed  in  this  document  

in  other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  

product,  program,  or  service  is not  intended  to  state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it  is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  grant  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY   10504-1785  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in your  country  or  send  inquiries,  in  writing,  to:

IBM  World  Trade  Asia  Corporation  

Licensing  2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan  

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A  PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of  express  or  

implied  warranties  in  certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of the  publication.  IBM  may  make  improvements  

and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of  the  materials  for  this  IBM  

product  and  use  of  those  Web sites  is at your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in any  way  it 

believes  appropriate  without  incurring  any  obligation  to you.  
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Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of  the  

information  which  has  been  exchanged,  should  contact:

IBM  Corporation  

Software  Interoperability  Coordinator,  Department  49XA  

3605  Highway  52  N  

Rochester,  MN  55901  

U.S.A.  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement,  or  any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurements  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of  

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of non-IBM  products  should  be  addressed  to  the  

suppliers  of  those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  or  

withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

All  IBM  prices  shown  are  IBM’s  suggested  retail  prices,  are  current  and  are  subject  

to  change  without  notice.  Dealer  prices  may  vary.  

This  information  is  for  planning  purposes  only.  The  information  herein  is subject  to 

change  before  the  products  described  become  available.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  

illustrate  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of  developing,  using,  marketing  or  distributing  application  

programs  conforming  to  the  application  programming  interface  for  the  operating  
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platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of these  programs.  

If  you  are  viewing  this  information  softcopy,  the  photographs  and  color  

illustrations  may  not  appear.  

Edition notices 

©  Copyright  International  Business  Machines  Corporation,  Sony  Computer  

Entertainment  Incorporated,  Toshiba  Corporation  2006,  2007.  All  rights  reserved.  

U.S.  Government  Users  Restricted  Rights  —  Use,  duplication,  or  disclosure  

restricted  by  GSA  ADP  Schedule  Contract  with  IBM  Corp.  
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Trademarks  

The  following  terms  are  trademarks  of  International  Business  Machines  

Corporation  in  the  United  States,  other  countries,  or  both:  

BladeCenter  

IBM  

The  IBM  logo  

ibm.com  

POWER  

Power  PC  

PowerPC  

PowerPC  Architecture  

 Cell  Broadband  Engine  and  Cell/B.E.™ are  trademarks  of  Sony  Computer  

Entertainment,  Inc.,  in  the  United  States,  other  countries,  or  both  and  is used  under  

license  therefrom  

Intel®, Intel  Inside® (logos),  MMX,  and  Pentium® are  trademarks  of  Intel  

Corporation  in  the  United  States,  other  countries,  or  both.  

Microsoft®, Windows®, Windows  NT®, and  the  Windows  logo  are  trademarks  of  

Microsoft  Corporation  in  the  United  States,  other  countries,  or  both.  

Java™ and  all  Java-based  trademarks  are  trademarks  of  Sun  Microsystems,  Inc.  in  

the  United  States,  other  countries,  or  both.  

Linux® is  a trademark  of  Linus  Torvalds  in  the  United  States,  other  countries,  or  

both.  

Red  Hat,  the  Red  Hat  “Shadow  Man”  logo,  and  all  Red  Hat-based  trademarks  and  

logos  are  trademarks  or  registered  trademarks  of Red  Hat,  Inc.,  in  the  United  

States  and  other  countries.  

UNIX® is a registered  trademark  of  The  Open  Group  in  the  United  States  and  

other  countries.  

Other  company,  product,  or  service  names  may  be  trademarks  or  service  marks  of 

others.  
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Glossary  

ABI 

Application  Binary  Interface.  This  is  the  standard  

that  a program  follows  to  ensure  that  code  

generated  by  different  compilers  (and  perhaps  

linking  with  various,  third-party  libraries)  will  

run correctly  on  the  Cell  Broadband  Engine.  The  

ABI  defines  data  types,  register  use,  calling  

conventions,  object  formats.  

AOS 

Array  of  structures.  A method  of  organizing  

related  data  values.  Also  called  vector-across  

form.  See  also  SOA. 

API 

Application  Program  Interface.  

ATO  

Atomic  Unit.  Part  of an  SPE’s  MFC.  It is  used  to 

synchronize  with  other  processor  units.  

atomic access 

A bus  access  that  attempts  to  be  part  of  an  atomic  

operation.  

atomic operation 

A set  of  operations,  such  as  read-write,  that  are  

performed  as  an  uninterrupted  unit.  

BIC 

Bus  Interface  Controller.  Part  of  the  Cell  

Broadband  Engine  Interface  (BEI)  to  I/O.  

BIF 

Cell  Broadband  Engine  Interface.  The  EIB’s  

internal  communication  protocol.  It supports  

coherent  interconnection  to  other  Cell  Broadband  

Engines  and  BIF-compliant  I/O  devices,  such  as  

memory  subsystems,  switches,  and  bridge  chips.  

See  also  IOIF. 

BIU 

Bus  Interface  Unit.  Part  of  the  PPE’s  interface  to  

the  EIB.  

branch hint 

A type  of  branch  instruction  that  provides  a hint  

of the  address  of  the  branch  instruction  and  the  

address  of the  target  instruction.  Hints  are  coded  

by  the  programmer  or  inserted  by  the  compiler.  

The  branch  is assumed  taken  to  the  target.  Hints  

are  used  in  place  of  branch  prediction  in  the  SPU.  

built-ins 

A type  of  C and  C++  programming  language  

intrinsic  that  “built  in”  to  the  compiler.  

B 

Byte.  

cache 

High-speed  memory  close  to  a processor.  A cache  

usually  contains  recently-accessed  data  or  

instructions,  but  certain  cache-control  instructions  

can  lock,  evict,  or  otherwise  modify  the  caching  

of data  or  instructions.  

caching-inhibited 

A memory  update  policy  in  which  the  cache  is 

bypassed,  and  the  load  or  store  is performed  to  or  

from  main  memory.  

CBEA 

Cell  Broadband  Engine  Architecture.  The  Cell  

Broadband  Engine  is one  implementation  of the  

Cell  Broadband  Engine  Architecture.  
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Cell Broadband Engine Linux 

task 

A  task  running  on  the  PPE  and  SPE.  Each  such  

task  has  one  or  more  Linux  threads  and  some  

number  of SPE  threads.  All  the  Linux  threads  

within  the  task  share  the  task’s  resources,  

including  access  to  the  SPE  threads.  

Cell Broadband Engine program 

A  PPE  program  with  one  or  more  embedded  SPE  

programs.  

channel 

Channels  are  unidirectional,  function-specific  

registers  or  queues.  They  are  the  primary  means  

of  communication  between  an  SPE’s  SPU  and  its  

MFC,  which  in  turn  mediates  communication  

with  the  PPE,  other  SPEs,  and  other  devices.  

These  other  devices  use  MMIO  registers  in  the  

destination  SPE  to  transfer  information  on  the  

channel  interface  of  that  destination  SPE.  

Specific  channels  have  read  or  write  properties,  

and  blocking  or  nonblocking  properties.  Software  

on  the  SPU  uses  channel  commands  to  enqueue  

DMA  commands,  query  DMA  and  processor  

status,  perform  MFC  synchronization,  access  

auxiliary  resources  such  as the  decrementer  

(timer),  and  perform  interprocessor-
communication  via  mailboxes  and  

signal-notification.  

CL 

The  class-ID  parameter  in  an  MFC  command.  

coherence 

Memory  and  cache  coherence.  The  correct  

ordering  of stores  to  a memory  address,  and  the  

enforcement  of  any  required  cache  write-backs  

during  accesses  to  that  memory  address.  Cache  

coherence  is  implemented  by  a hardware  snoop  

(or  inquire)  method,  which  compares  the  memory  

addresses  of  a load  request  with  all  cached  copies  

of  the  data  at  that  address.  If  a cache  contains  a 

modified  copy  of the  requested  data,  the  modified  

data  is  written  back  to  memory  before  the  

pending  load  request  is serviced.  

control plane 

Software  or  hardware  that  manages  the  operation  

of  data-plane  software  or  hardware,  by  allocating  

resources,  updating  tables,  handling  errors,  and  

so  forth.  See  also  data-plane. 

cycle 

Unless  otherwise  specified,  one  tick  of  the  PPE  

clock.  

data plane 

Software  or  hardware  that  operates  on  a stream  

or  other  large  body  of data  and  is managed  by 

control-plane  software  or  hardware.  See  also  

control-plane. 

decrementer 

A  register  that  counts  down  each  time  an  event  

occurs.  Each  SPU  contains  dedicated  32-bit  

decrementers  for  scheduling  or  performance  

monitoring,  by  the  program  or  by  the  SPU  itself.  

D-ERAT  

Data  ERAT. 

DMA 

Direct  Memory  Access.  A  technique  for  using  a 

special-purpose  controller  to generate  the  source  

and  destination  addresses  for  a memory  or  I/O  

transfer.  

DMAC 

Direct  Memory  Access  Controller.  A  controller  

that  performs  DMA  transfers.  

DMA command 

A  type  of MFC  command  that  transfers  or  

controls  the  transfer  of a memory  location  

containing  data  or  instructions.  See  also  MFC  

command.  

DMA list 

A  sequence  of  transfer  elements  (or  list  entries)  

that,  together  with  an  initiating  DMA-list  

command,  specifies  a sequence  of  DMA  transfers  

between  a single  area  of  LS  and  discontinuous  
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areas  in  main  storage.  Such  lists  are  stored  in  an  

SPE’s  LS,  and  the  sequence  of  transfers  is initiated  

with  a DMA-list  command  such  as  getl  or  putl.  

DMA-list  commands  can  only  be  issued  by  

programs  running  on  an  SPE,  but  the  PPE  or  

other  devices  can  create  and  store  the  lists  in an  

SPE’s  LS.  DMA  lists  can  be  used  to  implement  

scatter-gather  functions  between  main  storage  and  

the  LS.  

DMA-list command 

A type  of  MFC  command  that  initiates  a sequence  

of DMA  transfers  specified  by  a DMA  list  stored  

in an  SPE’s  LS.  See  also  DMA  list.  

DMA queue 

A set  of  two  queues  for  holding  DMA-transfer  

commands.  The  SPE’s  queue  has  16  entries.  The  

PPE’s  queue  has  four  entries  (two  plus  an  

additional  two  for  the  L2  cache)  for  

SPE-requested  DMA  commands,  and  eight  entries  

for  PPE-requested  DMA  commands.  

dual-issue 

Issuing  two  instructions  at  once,  under  certain  

conditions.  See  also  fetch  group. 

EA 

Effective  address.  

ECC 

Error-Correcting  Code.  

effective address 

An  address  generated  or  used  by  a program  to  

reference  memory.  A  memory-management  unit  

translates  an  effective  address  (EA)  to  a virtual  

address  (VA),  which  it then  translates  to a real  

address  (RA)  that  accesses  real  (physical)  memory.  

The  maximum  size  of the  effective-address  space  

is 2⁶⁴  bytes.  

EIB 

Element  Interconnect  Bus.  The  on-chip  coherent  

bus  that  handles  communication  between  the  

PPE,  SPEs,  memory,  and  I/O  devices  (or  a second  

Cell  Broadband  Engine).  The  EIB  is organized  as  

four  unidirectional  data  rings  (two  clockwise  and  

two  counterclockwise).  

ELF 

Executable  and  Linking  Format.  The  standard  

object  format  for  many  UNIX  operating  systems,  

including  Linux.  Originally  defined  by  AT&T  and  

placed  in  public  domain.  Compilers  generate  ELF  

files.  Linkers  link  to files  with  ELF  files  in  

libraries.  Systems  run ELF  files.  

ERAT  

Effective-to-Real  Address  Translation,  or  a buffer  

or  table  that  contains  such  translations,  or  a table  

entry  that  contains  such  a translation.  

even pipeline 

Part  of  an  SPE’s  dual-issue  execution  pipeline.  

Also  referred  to  as  pipeline  0.  

exception 

An  error, unusual  condition,  or  external  signal  

that  may  alter  a status  bit  and  will  cause  a 

corresponding  interrupt,  if the  interrupt  is 

enabled.  See  also  interrupt.  

fence 

An  option  for  a barrier  ordering  command  that  

causes  the  processor  to wait  for  completion  of  all 

MFC  commands  before  starting  any  commands  

queued  after  the  fence  command.  It  does  not  

apply  to these  immediate  commands:  getllar, 

putllc, and  putlluc. 

fetch group 

A doubleword-aligned  instruction  pair. Dual-issue  

occurs  when  a fetch  group  has  two  instructions  

that  are  ready  to  issue,  and  when  the  first  

instruction  can  be  issued  on  the  even  pipeline  and  

the  second  instruction  can  be  issued  on  the  odd  

pipeline.  
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FIFO 

First  In  First  Out.  Refers  to  one  way  elements  in  a 

queue  are  processed.  It is analogous  to  “people  

standing  in  line.”  

flat register 

An  architecture  with  only  one  register  file,  in  

which  all  types  of operands  are  stored.  Also  

called  a unified  register  file.  By  contrast,  

conventional  register  architectures  have  separate  

sets  of  special-purpose  registers  for  such  things  as  

scalar  operands,  floating-point  operands,  vectors,  

branch-and-link  values,  conditions,  and  so  forth.  

The  SPEs  have  a flat  register  architecture.  The  

PPE  has  a conventional  register  architecture.  

FlexIO 

Rambus  FlexIO  bus,  a high  performance  I/O  bus.  

FPU 

Floating-point  unit.  

FXU 

In  the  PPE,  the  fixed-point  integer  unit.  In  the  

SPU,  the  fixed-point  exception  unit.  

gdb 

GNU  debugger.  A modified  version  of  gdb,  

ppu-gdb,  starts  a Cell  Broadband  Engine  

program.  The  PPE  component  runs first  and  uses  

system  calls,  hidden  by  the  SPU  programming  

library,  to  move  the  SPU  component  of  the  Cell  

Broadband  Engine  program  into  the  local  store  of 

the  SPU  and  start  it running.  

generic intrinsics 

C  and  C++  language  extensions  that  map  to  one  

or  more  specific  intrinsics.  (See  also  intrinsic.)  All  

generic  SPU  intrinsics  are  prefaced  by  the  string  

spu_. For  example,  the  generic  intrinsic  that  

implements  the  stop  assembly  instruction  is 

named  spu_stop. 

guarded 

Prevented  from  responding  to  speculative  loads  

and  instruction  fetches.  The  operating  system  

typically  implements  guarding,  for  example,  on  

all  I/O  devices.  

hypervisor 

A  control  (or  virtualization)  layer  between  

hardware  and  the  operating  system.  It allocates  

resources,  reserves  resources,  and  protects  

resources  among  (for  example)  sets  of SPEs  that  

may  be  running  under  different  operating  

systems.  

The  Cell  Broadband  Engine  has  three  operating  

modes:  user, supervisor  and  hypervisor.  The  

hypervisor  performs  a meta-supervisor  role  that  

allows  multiple  independent  supervisors’  

software  to run on  the  same  hardware  platform.  

For  example,  the  hypervisor  allows  both  a 

real-time  operating  system  and  a traditional  

operating  system  to  run on  a single  PPE.  The  PPE  

can  then  operate  a subset  of  the  SPEs  in the  Cell  

Broadband  Engine  with  the  real-time  operating  

system,  while  the  other  SPEs  run under  the  

traditional  operating  system.  

IEEE 754 

The  IEEE  754  floating-point  standard.  A  standard  

written  by  the  Institute  of  Electrical  and  

Electronics  Engineers  that  defines  operations  and  

representations  of binary  floating-point  arithmetic.  

I-ERAT  

Instruction  ERAT. 

imprecise exception 

A  synchronous  exception  that  does  not  adhere  to  

the  precise  exception  model.  In the  Cell  

Broadband  Engine,  single-precision  floating-point  

operations  generate  imprecise  exceptions.  See  also  

precise  exception.  

instruction latency 

The  total  number  of  clock  cycles  necessary  to  

execute  an  instruction  and  produce  the  results  of 

that  instruction.  
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in-order 

In  program  order.  The  PPE  and  SPEs  execute  

instructions  in-order;  that  is,  they  do  not  

rearrange  them  (out-of-order).  

interrupt 

A change  in  machine  state  in  response  to  an  

exception.  See  also  exception.  

intrinsic 

A C-language  command,  in the  form  of a function  

call,  that  is  a convenient  substitute  for  one  or  

more  inline  assembly-language  instructions.  

Intrinsics  make  the  underlying  ISA  accessible  

from  the  C and  C++  programming  languages.  

IOC 

I/O  Interface  Controller.  

I/O device 

Input/output  device.  From  software’s  viewpoint,  

I/O  devices  exist  as  memory-mapped  registers  

that  are  accessed  in  main-storage  space  by  

load/store  instructions.  The  operating  system  

typically  configures  access  to  I/O  devices  as  

caching-inhibited  and  guarded.  

IOIF 

Cell  Broadband  Engine  I/O  Interface.  The  EIB’s  

noncoherent  protocol  for  interconnection  to  I/O  

devices.  See  also  BIF. 

JSRE 

Joint  Software  Reference  Environment.  An  

organization  of  the  Cell  Broadband  Engine  

developers  pursuing  the  development  of  reference  

software  and  standards  for  the  Cell  Broadband  

Engine.  

JTAG  

Joint  Test Action  Group.  A test-access  port  defined  

by  the  IEEE  1149  standard.  

KB 

Kilobyte.  

L1 

Level-1  cache  memory.  The  closest  cache  to  a 

processor,  measured  in access  time.  

L2 

Level-2  cache  memory.  The  second-closest  cache  

to a processor,  measured  in  access  time.  An  L2  

cache  is typically  larger  than  an  L1  cache.  

LA 

An  LS  address  of  a DMA  list.  It  is used  as a 

parameter  in  an  MFC  command.  

latency 

The  time  between  when  a function  (or  

instruction)  is called  and  when  it returns.  

Programmers  often  optimize  code  so  that  

functions  return  as quickly  as  possible;  this  is 

referred  to as  the  low-latency  approach  to  

optimization.  Low-latency  designs  often  leave  the  

processor  data-starved,  and  performance  can  

suffer.  

libspe.a 

An  SPU-thread  runtime  management  library.  

lnop 

A NOP  in  an  SPU’s  odd  pipeline.  It  can  be  

inserted  in  code  to  align  for  dual  issue  of  

subsequent  instructions.  

local store 

The  256-KB  local  store  (LS)  associated  with  each  

SPE.  It holds  both  instructions  and  data.  

loop unrolling 

A programming  optimization  that  increases  the  

step  of  a loop,  and  duplicates  the  expressions  

within  a loop  to  reflect  the  increase  in  the  step.  

This  can  improve  instruction  scheduling  and  

memory  access  time.  

LS 

See  local  store. 
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LSA 

Local  Store  Address.  An  address  in  the  LS  of  an  

SPU,  by  which  programs  running  in  the  SPU  and  

DMA  transfers  managed  by  the  MFC  access  the  

LS.  

list element 

See  transfer  element  and  DMA  list.  

Linux thread 

A  thread  running  on  the  PPE  in  the  Linux  

operating-system  environment.  

mailbox 

A  queue  in  an  SPE’s  MFC  for  exchanging  32-bit  

messages  between  the  SPE  and  the  PPE  or  other  

devices.  Two mailboxes  (the  SPU  Write Outbound  

Mailbox  and  SPU  Write Outbound  Interrupt  

Mailbox)  are  provided  for  sending  messages  from  

the  SPE.  One  mailbox  (the  SPU  Read  Inbound  

Mailbox)  is provided  for  sending  messages  to  the  

SPE.  

main memory 

See  main  storage. 

main storage 

The  effective-address  (EA)  space.  It consists  

physically  of  real  memory  (whatever  is  external  to 

the  memory-interface  controller,  including  both  

volatile  and  nonvolatile  memory),  SPU  LSs,  

memory-mapped  registers  and  arrays,  

memory-mapped  I/O  devices  (all  I/O  is  

memory-mapped),  and  pages  of  virtual  memory  

that  reside  on  disk.  It does  not  include  caches  or  

execution-unit  register  files.  See  also  local  store. 

makefile 

A  descriptive  file  used  by  the  make  command  in  

which  the  user  specifies:  (a)  target  program  or  

library,  (b)  rules about  how  the  target  is to  be  

built,  (c)  dependencies  which,  if updated,  require  

that  the  target  be  rebuilt.  

MB 

Megabyte.  

memory channel 

An  interface  to  external  memory  chips.  The  Cell  

Broadband  Engine  supports  two  Rambus  Extreme  

Data  Rate  (XDR)  memory  channels.  

memory-mapped 

Mapped  into  the  Cell  Broadband  Engine’s  

addressable-memory  space.  Registers,  SPE  local  

stores  (LSs),  I/O  devices,  and  other  readable  or  

writable  storage  can  be  memory-mapped.  

Privileged  software  does  the  mapping.  

method stub 

A  small  piece  of  code  used  to stand  in  for  some  

other  code.  

MFC 

Memory  Flow  Controller.  It is part  of an  SPE  and  

provides  two  main  functions:  moves  data  via  

DMA  between  the  SPE’s  local  store  (LS)  and  main  

storage,  and  synchronizes  the  SPU  with  the  rest  

of  the  processing  units  in the  system.  

MFC proxy commands 

MFC  commands  issued  using  the  MMIO  

interface.  

MIC 

Memory  Interface  Controller.  The  Cell  Broadband  

Engine’s  MIC  supports  two  memory  channels.  

MMIO 

Memory-Mapped  Input/Output.  See  also  

memory-mapped. 

MMU 

Memory  Management  Unit.  A  functional  unit  that  

translates  between  effective  addresses  (EAs)  used  

by  programs  and  real  addresses  (RAs)  used  by  

physical  memory.  The  MMU  also  provides  

protection  mechanisms  and  other  functions.  

M:N thread model 

A  programming  model  in  which  M  threads  are  

distributed  over  N  processor  elements.  
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MPI 

Message  Passing  Interface.  

MSR 

Machine  State  Register.  

MT 

Multithreading.  See  multithreading. 

multithreading 

Simultaneous  execution  of  more  than  one  

program  thread.  It  is  implemented  by  sharing  one  

software  process  and  set  of execution  resources  

but  duplicating  the  architectural  state  (registers,  

program  counter,  flags,  and  so  forth)  of each  

thread.  

NaN 

Not-a-Number.  A  special  string  of  bits  encoded  

according  to  the  IEEE  754  Floating-Point  

Standard.  A  NaN  is  the  proper  result  for  certain  

arithmetic  operations;  for  example,  0/0  = NaN. 

There  are  two  types  of  NaNs,  quiet  NaNs  and  

signaling  NaNs.  Only  the  signaling  NaN  raises  a 

floating-point  exception  when  it is generated.  

NCU 

Non-Cacheable  Unit.  

odd pipeline 

Part  of an  SPE’s  dual-issue  execution  pipeline.  

Also  referred  to  as  pipeline  1. 

OpenMP 

An  API  that  supports  multiplatform,  

shared-memory  parallel  programming.  

overlay 

SPU  code  that  is  dynamically  loaded  and  

executed  by  a running  SPU  program.  

page table 

A table  that  maps  virtual  addresses  (VAs)  to real  

addresses  (RA)  and  contains  related  protection  

parameters  and  other  information  about  memory  

locations.  

PC 

Personal  Computer.  

performance simulation 

Simulation  by  the  IBM  Full  System  Simulator  for  

the  Cell  Broadband  Engine  in  which  both  the  

functional  behavior  of operations  and  the  time  

required  to  perform  the  operations  is simulated.  

Also  called  cycle-accurate  simulation.  

pervasive logic 

Logic  that  provides  power  management,  thermal  

management,  clock  control,  software-performance  

monitoring,  trace  analysis,  and  so  forth.  

pipelining 

A technique  that  breaks  operations,  such  as  

instruction  processing  or  bus  transactions,  into  

smaller  stages  so  that  a subsequent  stage  in  the  

pipeline  can  begin  before  the  previous  stage  has  

completed.  

PMD 

Power  Management  and  Debug.  

POSIX 

Portable  Operating  System  Interface.  

PowerPC 970 

A 64-bit  microprocessor  from  IBM  in  the  PowerPC  

family.  It  supports  both  the  PowerPC  and  

Vector/SIMD  Multimedia  Extension  instruction  

sets.  

PowerPC Architecture 

A computer  architecture  that  is based  on  the  third  

generation  of RISC  processors.  The  PowerPC  

architecture  was  developed  jointly  by  Apple,  

Motorola,  and  IBM.  
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PPE 

PowerPC  Processor  Element.  The  general-purpose  

processor  in  the  Cell  Broadband  Engine.  

PPSS 

PowerPC  Processor  Storage  Subsystem.  Part  of 

the  PPE.  It  operates  at  half  the  frequency  of  the  

PPU  and  includes  an  L2  cache  and  Bus  Interface  

Unit  (BIU).  

PPU 

PowerPC  Processor  Unit.  The  part  of  the  PPE  that  

includes  the  execution  units,  memory-
management  unit,  and  L1  cache.  

precise exception 

An  exception  for  which  the  pipeline  can  be  

stopped,  so instructions  that  preceded  the  faulting  

instruction  can  complete,  and  subsequent  

instructions  can  be  flushed  and  redispatched  after  

exception  handling  has  completed.  

preferred slot 

The  left-most  word  (bytes  0,  1, 2,  and  3)  of  a 

128-bit  register  in  an  SPE.  The  SIMD  element  in  

which  scalar  values  are  naturally  maintained.  

privileged mode 

Also  known  as  supervisor  mode.  The  permission  

level  of  operating  system  instructions.  The  

instructions  are  described  in PowerPC  Architecture,  

Book  III  and  are  required  of  software  that  accesses  

system-critical  resources.  

problem state 

The  permission  level  of  user  instructions.  The  

instructions  are  described  in PowerPC  Architecture,  

Books  I and  II  and  are  required  of  software  that  

implements  application  programs.  

PTE 

Page  Table Entry.  See  page  table. 

QoS 

Quality  of Service.  It  usually  relates  to a 

guarantee  of  minimum  bandwidth  for  streaming  

applications.  

RA 

Real  Address.  See  real  address. 

real address 

An  address  for  physical  storage,  which  includes  

physical  memory,  the  PPE’s  L1  and  L2  caches,  

and  the  SPE’s  local  stores  (LSs)  if the  operating  

system  has  mapped  the  LSs  to the  real-address  

space.  The  maximum  size  of  the  real-address  

space  is 2⁴²  bytes.  

scalar 

An  instruction  operand  characterized  by  a single  

value.  

scarf hint 

A  performance  hint  for  DMA  put  operations.  The  

hint  is intended  to  allow  another  processor  or  

device,  such  as the  PPE,  to  capture  the  data  into  

its  cache  as  the  data  is transferred  to storage.  

SCN 

SPU  Control  Unit.  A unit  in  the  SPU  that  handles  

branches  and  program  control.  

SDK 

Software  Development  Kit.  Sample  software  for  

the  Cell  Broadband  Engine  that  includes  the  

Linux  operating  system.  

semi-pipelined 

A  processor  is semi-pipelined  if it  fetches  the  next  

instruction  while  decoding  and  executing  the  

current  instruction.  

SFP 

SPU  Floating-Point  Unit.  It handles  

single-precision  and  double-precision  

floating-point  operations.  
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SFS 

SPU  Odd  Fixed-Point  Unit.  It  handles  shuffle  

operations.  

SFX 

SPU  Even  Fixed-Point  Unit.  It handles  arithmetic,  

logical,  and  shift  operations.  

signal 

Information  sent  on  a signal-notification  channel.  

These  channels  are  inbound  (to  an  SPE)  registers.  

They  can  be  used  by  the  PPE  or  other  processor  

to  send  information  to  an  SPE.  Each  SPE  has  two  

32-bit  signal-notification  registers,  each  of which  

has  a corresponding  memory-mapped  I/O  

(MMIO)  register  into  which  the  signal-notification  

data  is written  by  the  sending  processor.  Unlike  

mailboxes,  they  can  be  configured  for  either  

one-to-one  or  many-to-one  signalling.  

These  signals  are  unrelated  to  UNIX  signals.  See  

also  channel  and  mailbox. 

signal notification 

See  signal. 

SIMD 

Single  Instruction  Multiple  Data.  Processing  in  

which  a single  instruction  operates  on  multiple  

data  elements  that  make  up  a vector  data-type.  

Also  known  as vector  processing.  This  style  of 

programming  implements  data-level  parallelism.  

SIMDize 

Transform  scaler  code  to  vector  code.  

single-ported 

Single-ported  memory  allows  only  one  access  at a 

time.  

SLB 

Segment  Lookaside  Buffer.  It is used  to  map  an  

effective  address  (EA)  to  a virtual  address  (VA).  

SLS 

SPU  Load  and  Store  Unit.  It handles  loads,  stores,  

and  branch  hints,  and  it includes  the  SPE’s  local  

store  (LS).  

SMM 

Synergistic  Memory  Management  Unit.  It 

translates  EAs  to  RAs  in  an  SPU.  

snoop 

To compare  an  address  on  a bus  with  a tag  in a 

cache,  in  order  to detect  operations  that  violate  

memory  coherency.  Also  called  inquire. 

SOA 

Structure  of arrays.  A method  of  organizing  

related  data  values.  Also  called  parallel-array  

form.  See  also  AOS. 

SPE 

Synergistic  Processor  Element.  It includes  an  SPU,  

an  MFC,  and  an  LS.  

specific intrinsic 

A type  of  C and  C++  language  extension  that  

maps  one-to-one  with  a single  SPU  assembly  

instruction.  All  SPU  specific  intrinsics  are  named  

by  prefacing  the  SPU  assembly  instruction  with  

si_. 

SPE thread 

(a)  A  thread  running  on  an  SPE.  Each  such  thread  

has  its  own  128  x 128-bit  register  file,  program  

counter,  and  MFC  Command  Queues,  and  it can  

communicate  with  other  execution  units  (or  with  

effective-address  memory  through  the  MFC  

channel  interface).  (b)  A  thread  scheduled  and  run 

on  an  SPE.  A program  has  one  or  more  SPE  

threads.  Each  thread  has  its  own  SPU  local  store  

(LS),  register  file,  program  counter,  and  MFC  

command  queues.  

SPI 

Serial  Peripheral  Interface.  Connects  to  pervasive  

logic  elements.  
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splat 

To replicate,  as  when  a single  scalar  value  is 

replicated  across  all  elements  of  an  SIMD  vector.  

SPR 

Special-Purpose  Register.  

SPU 

Synergistic  Processor  Unit.  The  part  of  an  SPE  

that  executes  instructions  from  its  local  store  (LS).  

SPU ISA 

SPU  Instruction  Set  Architecture.  An  SIMD  

instruction  set  executed  in  SPEs  that  is  similar  to 

the  Vector/SIMD  Multimedia  Extension  

instruction  set  executed  by  the  PPE.  

spulet 

A  standalone  SPU  program  that  is  managed  by  a 

PPE  executive.  

SSC 

SPU  Channel  and  DMA  Unit.  It  handles  all  input  

and  output  functions  for  an  SPU.  

SSE 

Single  SIMD  Extensions.  An  Intel  instruction  set.  

sticky bit 

A  bit  that  is set  by  hardware  and  remains  set  

until  cleared  by  software.  

stub 

See  method  stub. 

supervisor mode 

See  privileged  mode. 

software-managed memory 

An  SPE’s  local  store  (LS),  which  is  filled  from  

main  memory  using  software-initiated  DMA  

transfers.  Although  most  processors  reduce  

latency  to  memory  by  using  caches,  an  SPE  uses  

its  DMA-filled  LS.  This  approach  provides  a high  

degree  of  control  for  real-time  programming.  

However,  this  approach  is advantageous  only  if 

the  DMA  transfer-size  is sufficiently  large  and  the  

DMA  command  is issued  well  before  the  data  is 

needed,  because  the  latency  and  instruction  

overhead  associated  with  DMA  transfers  exceeds  

the  latency  of  servicing  a cache  miss.  

synchronization 

The  order  in  which  storage  accesses  are  

performed.  

system storage 

All  program-addressable  memory  in  a system,  

including  main  storage  (main  memory),  the  PPE’s  

L1  and  L2  caches,  and  the  SPE’s  local  store  (LS).  

tag group 

A  group  of DMA  commands.  Each  DMA  

command  is tagged  with  a 5-bit  tag  group  

identifier.  Software  can  use  this  identifier  to  check  

or  wait  on  the  completion  of all  queued  

commands  in  one  or  more  tag  groups.  All  DMA  

commands  except  getllar, putllc, and  putlluc  are  

associated  with  a Tag Group.  

Tcl  

Tool Command  Language.  An  interpreted  script  

language  used  to develop  GUIs,  application  

prototypes,  Common  Gateway  Interface  (CGI)  

scripts,  and  other  scripts.  

TG 

A  tag-group  ID  parameter  in  an  MFC  command.  

thread 

A  sequence  of  instructions  executed  within  the  

global  context  (shared  memory  space  and  other  

global  resources)  of  a process  that  has  created  

(spawned)  the  thread.  Multiple  threads  (including  

multiple  instances  of the  same  sequence  of 

instructions)  can  run simultaneously,  if each  

thread  has  its  own  architectural  state  (registers,  

program  counter,  flags,  and  other  program-visible  

state).  

Each  SPE  can  support  only  a single  thread  at any  

one  time.  The  multiple  SPEs  can  simultaneously  

support  multiple  threads.  The  PPE  supports  two  
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threads  at  any  one  time,  without  the  need  for  

software  to  create  the  threads.  The  PPE  does  this  

by  duplicating  architectural  state.  

throughput 

The  number  of  instructions  completed  per  cycle.  

A high-throughput  application  design  seeks  to  

keep  pipelines  full.  To improve  throughput,  

functions  may  need  to  do  nontrivial  amounts  of  

work  and  operate  with  good  locality  of data  

reference.  

TKM 

Token  Management  Unit.  Part  of  the  Element  

Interconnect  Bus  (EIB)  that  software  can  program  

to  regulate  the  rate  at  which  particular  devices  are  

allowed  to  make  EIB  command  requests.  

TLB 

Translation  Lookaside  Buffer.  An  on-chip  cache  

that  translates  virtual  addresses  (VAs)  to  real  

addresses  (RAs).  A  TLB  caches  page-table  entries  

for  the  most  recently  accessed  pages,  thereby  

eliminating  the  necessity  to  access  the  page  table  

from  memory  during  load/store  operations.  

transfer element 

See  DMA  list.  

TS 

The  transfer-size  parameter  in  an  MFC  command.  

unified register file 

A register  file  in  which  all  data  types—integer,  

single-precision  and  double-  floating-point,  

logicals,  bytes,  and  others—use  the  same  register  

file.  The  SPEs  (but  not  the  PPE)  have  unified  

register  files.  

user mode 

The  mode  in which  problem  state  software  runs. 

See  also  problem  state. 

VA  

Virtual  Address.  

vector 

An  instruction  operand  containing  a set  of data  

elements  packed  into  a one-dimensional  array.  

The  elements  can  be  fixed-point  or  floating-point  

values.  Most  Vector/SIMD  Multimedia  Extension  

and  SPU  SIMD  instructions  operate  on  vector  

operands.  Vectors  are  also  called  SIMD  operands  or  

packed  operands.  

Vector/SIMD 

The  SIMD  instruction  set  of  the  PowerPC  

Architecture,  supported  on  the  PPE.  

virtual address 

An  address  to the  virtual-memory  space,  which  is 

much  larger  than  the  physical  address  space  and  

includes  pages  stored  on  disk.  It is translated  

from  an  effective  address  (EA)  by  a segmentation  

mechanism  and  used  by  the  paging  mechanism  to  

obtain  the  real  address  (RA).  The  maximum  size  

of the  virtual-address  space  is 2⁶⁵  bytes.  

virtual memory 

The  address  space  created  using  the  memory  

management  facilities  of  a processor.  

virtual mode 

The  mode  in  which  virtual-address  translation  is 

enabled.  

VPN 

Virtual  Page  Number.  The  number  of  the  page  in 

virtual  memory.  

VXU 

Vector/SIMD  Multimedia  Extension  unit.  

word 

Four  bytes.  

workload 

A set  of  code  samples  in  the  SDK  that  

characterizes  the  performance  of  the  architecture,  

algorithms,  libraries,  tools,  and  compilers.  
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writeback flag 

A  flag  written  by  an  SPE  to  main  storage  that  

notifies  the  PPE  of  a specific  event.  

XDR 

Rambus  XDR  DRAM  memory  technology.  

XIO 

A  Rambus  XDR  Extreme  Data  Rate  I/O  (XIO)  

memory  channel.  

xlc 

The  IBM  optimizing  C compiler.  
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