
IBM XL C/C++ Alpha Edition for Multicore Acceleration

for Linux, V0.9

Using the single-source compiler

���

IBM XL C/C++ Alpha Edition for Multicore Acceleration

for Linux, V0.9

Using the single-source compiler

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

25.

First Edition

This edition applies to IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9 and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

© Copyright International Business Machines Corporation 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Who should read this document v

How to use this document v

Conventions used in this document v

Related information viii

IBM XL C/C++ publications viii

Standards and specifications documents ix

Other IBM publications ix

Other publications ix

How to send your comments ix

Chapter 1. Introducing IBM XL C/C++

Alpha Edition for Multicore Acceleration

for Linux, V0.9 1

Part of a family of IBM compilers 1

About the Cell Broadband Engine architecture . . . 1

New single-source cross-compiler technology . . . 2

Chapter 2. Installing the XL C/C++

single-source compiler 3

System prerequisites 3

Installing the compiler packages 3

Coexisting with other versions of XL C/C++ . . . 4

Uninstalling the compiler 5

Chapter 3. Developing your applications 7

Writing your program source 7

Using OpenMP pragma directives in your

program source 7

Invoking the compiler 8

Specifying compiler options 8

Compiler options and pragmas specific to this

technical preview 9

XL C/C++ input and output files 10

Linking your compiled applications 11

Compiling and linking in separate steps 11

Appendix. OpenMP pragma directives

provided in this technical preview . . . 13

#pragma omp atomic 13

#pragma omp barrier 14

#pragma omp critical 15

#pragma omp flush 15

#pragma omp for 16

#pragma omp master 19

#pragma omp ordered 19

#pragma omp parallel 19

#pragma omp parallel for 21

#pragma omp parallel sections 21

#pragma omp section, #pragma omp sections . . . 22

#pragma omp single 23

#pragma omp threadprivate 24

Notices 25

Trademarks and service marks 27

Industry standards 27

© Copyright IBM Corp. 2007 iii

iv Getting Started with XL C/C++ - Alpha

About this document

This document contains overview and basic usage information for the IBM XL

C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for

introductory overview and usage information for XL C/C++. It assumes that you

have some familiarity with command-line compilers, a basic knowledge of the C

and C++ programming language, and basic knowledge of operating system

commands. Programmers new to XL C/C++ can use this document to find

information on the capabilities and features unique to the XL C/C++ compiler.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and

C++ languages. Where there are differences between languages, these are indicated

through qualifying text and icons, as described in “Conventions used in this

document.” Additionally, unless indicated otherwise, text in this document pertains

to compilation targeting both the Power Processing Unit (PPU) and Synergistic

Processor Units (SPUs).

While this document covers information on installing and configuring the compiler

environment, and compiling and linking C and C++ applications using the XL

C/C++ compiler, it does not include the following topics:

v Compiler options: see the XL C/C++ Compiler Reference for detailed

information on the syntax and usage of compiler options.

v The C or C++ programming languages: see the XL C/C++ Language Reference

for information on the syntax, semantics, and IBM® implementation of the C or

C++ programming languages.

v Programming topics: see the XL C/C++ Programming Guide for detailed

information on developing applications with XL C/C++, with a focus on

program portability and optimization.

Conventions used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable

names, compiler options and

directives.

If you specify -O3, the compiler

assumes -qhot=level=0. To prevent

all HOT optimizations with -O3, you

must specify -qnohot.

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than

the size requested.

© Copyright IBM Corp. 2007 v

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library

Table 1. Typographical conventions (continued)

Typeface Indicates Example

monospace Programming keywords and

library functions, compiler built-in

functions, examples of program

code, command strings, or

user-defined names.

If one or two cases of a switch

statement are typically executed

much more frequently than other

cases, break out those cases by

handling them separately before the

switch statement.

Icons

All features described in this document apply to both C and C++ languages.

Where a feature is exclusive to one language, or where functionality differs

between languages, the following icons are used:

C

The text describes a feature that is supported in the C language only; or

describes behavior that is specific to the C language.

C++

The text describes a feature that is supported in the C++ language only; or

describes behavior that is specific to the C++ language.

Syntax diagrams

Throughout this document, diagrams illustrate XL C/C++ syntax. This section will

help you to interpret and use those diagrams.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Fragments, which are diagrams of syntactical units other than complete

commands, directives, or statements, start with the │─── symbol and end with

the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword

optional_argument
 ��

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

vi Getting Started with XL C/C++ - Alpha

�� keyword required_argument1

required_argument2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_argument1

optional_argument2

 ��

v An arrow returning to the left above the main line (a repeat arrow) indicates

that you can make more than one choice from the stacked items or repeat an

item. The separator character, if it is other than a blank, is also indicated:

��

�

 ,

keyword

repeatable_argument

��

v The item that is the default is shown above the main path.

��

keyword
 default_argument

alternate_argument

��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.

v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma

comment directive.

��
 (1) (2) (3) (4) (5) (9) (10)

#

pragma

comment

(

compiler

)

date

timestamp

(6)

copyright

user

(7)

(8)

,

"

token_sequence

"

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an

optional character string.

About this document vii

8 A character string must follow the comma. The character string must be

enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

 #pragma

 comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

Examples

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

The following sections provide information on documentation related to XL

C/C++:

v “IBM XL C/C++ publications”

v “Other IBM publications” on page ix

v “Other publications” on page ix

IBM XL C/C++ publications

This guide makes reference to other XL C/C++ publications in addition to those

provided with the technical preview. The complete range of documentation for the

various XL C/C++compiler products is available in the following formats and

locations:

v README files

README files contain late-breaking information, including changes and

corrections to the product documentation. README files are located by default

in the XL C/C++ directory and in the root directory of the installation CD.

v HTML-based information centers

Information centers of searchable HTML files are available for many releases of

XL C/C++. They can be viewed on the Web by going to the XL C/C++ product

Library Web page at http://www.ibm.com/software/awdtools/xlcpp/library/.

v PDF documents

You can access PDF versions of XL C/C++ documents on the Web at

http://www.ibm.com/software/awdtools/xlcpp/library/.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe

Reader, you can download it (subject to license terms) from the Adobe Web site

at http://www.adobe.com.

More documentation related to XL C/C++ including IBM Redbooks, white papers,

tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/xlcpp/library

viii Getting Started with XL C/C++ - Alpha

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/library

Standards and specifications documents

XL C/C++ is designed to support the following standards and specifications. You

can refer to these standards for precise definitions of some of the features found in

this document.

v Information Technology – Programming languages – C, ISO/IEC 9899:1990, also

known as C89.

v Information Technology – Programming languages – C, ISO/IEC 9899:1999, also

known as C99.

v Information Technology – Programming languages – C++, ISO/IEC 14882:1998, also

known as C++98.

v Information Technology – Programming languages – C++, ISO/IEC 14882:2003(E),

also known as Standard C++.

v Information Technology – Programming languages – Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft

technical report has been accepted by the C standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft

technical report has been submitted to the C++ standards committee, and is

available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification

for vector data types, to support vector processing technology, is available at

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v OpenMP Application Program Interface Version 2.5, available at

http://www.openmp.org

Other IBM publications

v IBM C/C++ Language Extensions for Cell Broadband Engine Architecture, Version 2.4,

available at |http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/
30B3520C93F437AB87257060006FFE5E/$file/
Language_Extensions_for_CBEA_2.4.pdf.

v Specifications, white papers, and other technical documents for the Cell

Broadband Engine™ architecture are available at http://www.ibm.com/chips/
techlib/techlib.nsf/products/Cell_Broadband_Engine.

v The Cell Broadband Engine resource center, at http://www.ibm.com/
developerworks/power/cell, is the central repository for technical information,

including articles, tutorials, programming guides, and educational resources.

Other publications

v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

C/C++ documentation, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the document, the part number of the document,

the version of XL C/C++, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

About this document ix

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.openmp.org
http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/30B3520C93F437AB87257060006FFE5E/$file/SPU_language_extensions_2.1.pdf
http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/30B3520C93F437AB87257060006FFE5E/$file/SPU_language_extensions_2.1.pdf
http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/30B3520C93F437AB87257060006FFE5E/$file/SPU_language_extensions_2.1.pdf
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www.ibm.com/developerworks/power/cell/
http://www.ibm.com/developerworks/power/cell/
http://gcc.gnu.org/onlinedocs

x Getting Started with XL C/C++ - Alpha

Chapter 1. Introducing IBM XL C/C++ Alpha Edition for

Multicore Acceleration for Linux, V0.9

IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9 is a

technical preview of an high-performance C/C++ cross-compiler that can be used

for developing computationally intensive applications for use on systems based on

the Cell Broadband Engine architecture.

Part of a family of IBM compilers

IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9 is part of

a larger family of IBM C, C++, and Fortran compilers.

These compilers are derived from a common code base that shares compiler

function and optimization technologies on a variety of platforms and programming

languages, such as AIX®, i5/OS®, selected Linux® distributions, z/OS®, and z/VM®

operating systems. The common code base, along with compliance with

international programming language standards, helps support consistent compiler

performance and ease of program portability across multiple operating systems

and hardware platforms.

About the Cell Broadband Engine architecture

The Cell Broadband Engine architecture specification describes a new single-chip

multiprocessor designed to support media-intensive applications.

© Copyright IBM Corp. 2007 1

At the heart of the new multiprocessor is the PowerPC® Processor Unit (PPU). The

PPU is a 64-bit processor fully compliant with the Power Architecture™ standard,

and capable of running both operating systems and applications. The

multiprocessor also incorporates a set of eight Synergistic Processor Units (SPUs)

into its design. The SPUs are optimized for running computationally intensive

applications, operate independently of each other, and can access memory shared

between all SPUs and the PPU.

In operation, the PPU runs the operating system and performs high-level

application control, while the SPUs divide and perform an application’s

computational work between them.

For more information on the Cell Broadband Engine architecture, see "Cell

Broadband Engine Architecture from 20,000 feet" at http://www.ibm.com/
developerworks/power/library/pa-cbea.html.

New single-source cross-compiler technology

Earlier compilers for the Cell Broadband Engine architecture, such as the V0.8.1

and V0.8.2 compilers offered in past on the alphaWorks Web site, are considered a

dual-source compiler. The compiler provides both PPU- and SPU-specific

invocations to compile the different code segments. You write, compile, and link

code segments destined to run on the PPU separately from code segments destined

for the SPUs.

In contrast, a single-source compiler can compile and link both PPU and SPU code

segments with a single compiler invocation.

The IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9 offers

you at an advance look at a single-source compiler with Open MP API V2.5

support that can compile applications for use on systems based on the Cell

Broadband Engine architecture. With the single-source compiler provided in this

technical preview, code destined for the PPU does not need to be written and

compiled separately from code destined for the SPUs, and you can compile and

link PPU and SPU code segments together with a single compiler invocation.

IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9 is a

cross-compiler. You develop and compile your applications on an IBM POWER or

Intel x86 system running the Fedora 7 Linux operating system. When complete,

you move your compiled application to a system based on the Cell Broadband

Engine architecture, where that application will run.

For an overview of how the single-source compiler works to compile code

optimized specifically for use on the Cell Broadband Engine architecture, see the

"Generation of Parallel Code" section in "Using advanced compiler technology to exploit

the performance of the Cell Broadband Engine architecture", found online at

http://www.research.ibm.com/journal/sj/451/eichenberger.html.

2 Getting Started with XL C/C++ - Alpha

http://www.ibm.com/developerworks/power/library/pa-cbea.html
http://www.ibm.com/developerworks/power/library/pa-cbea.html
http://www.research.ibm.com/journal/sj/451/eichenberger.html

Chapter 2. Installing the XL C/C++ single-source compiler

This section describes how to install the IBM XL C/C++ Alpha Edition for

Multicore Acceleration for Linux, V0.9 cross-compiler on its supported platforms.

Before you begin to install the compiler, be sure to:

v View the README file for any last minute updates you may need to be aware

of.

v Ensure that all system prerequisites are met.

v Familiarize yourself with the installable compiler packages provided in the

installation image.

v Familiarize yourself with the installation steps you will need to complete for

your particular installation.

v Become either root user or a user with administration privileges.

System prerequisites

The following are the system requirements for installing IBM XL C/C++ Alpha

Edition for Multicore Acceleration for Linux, V0.9 on your compilation host:

Supported operating system

v Fedora 7

Supported hardware

v IBM POWER technology-based systems

v Intel x86 systems

Required hard drive space

v Installed compiler packages - approximately 300 MB

v Paging space - 2 GB minimum

v Temporary files - 512 MB minimum

v Intel x86 systems

Required software prerequisites

v gcc v4.1.1

v gcc-c++ v4.1.1

v glibc v2.5

v libgcc v4.1.1

v libstdc++ v4.1.1

v IBM Software Development Kit (SDK) for Multicore Acceleration V3.0

v Perl V5.0 or higher

All software prerequisites can be obtained from your operating system's

installation media and the IBM SDK for Multicore Acceleration V3.0.

Installing the compiler packages

IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9 provides

a set of RPM packages for each supported hardware platform. You must install the

packages that correspond to your hardware platform.

© Copyright IBM Corp. 2007 3

By default, all packages are installed to /opt/ibmcmp. This technical preview does

not support installation to a non-default path.

Package

description

Supported hardware platforms and corresponding package names

IBM POWER Intel x86

C/C++ runtime

(redistributable)

cell-xlc-ssc-rte-0.9.0-0.ppc64.rpm cell-xlc-ssc-rte-0.9.0-0.i386.rpm

C/C++ runtime

links

cell-xlc-ssc-rte-lnk-0.9.0-0.ppc64.rpm cell-xlc-ssc-rte-lnk-0.9.0-0.i386.rpm

C/C++ libraries cell-xlc-ssc-lib-0.9.0-0.ppc64.rpm cell-xlc-ssc-lib-0.9.0-0.i386.rpm

C/C++ OMP

libraries

cell-xlc-ssc-omp-0.9.0-0.ppc64.rpm cell-xlc-ssc-omp-0.9.0-0.i386.rpm

C/C++

compiler

cell-xlc-ssc-cmp-0.9.0-0.ppc64.rpm cell-xlc-ssc-cmp-0.9.0-0.i386.rpm

C/C++ help

and

documentation

cell-xlc-ssc-help-0.9.0-0.ppc64.rpm cell-xlc-ssc-help-0.9.0-0.i386.rpm

C/C++

manpages

cell-xlc-ssc-man-0.9.0-0.ppc64.rpm cell-xlc-ssc-man-0.9.0-0.i386.rpm

If all prerequisites are satisfied, you can install the compiler packages to your

system. To do so:

1. Log in as root or as a user with administration privileges.

2. Copy only the package files corresponding to your hardware platform to the

/rpms directory.

3. Begin installation by issuing the following commands at the command prompt:

cd /rpms

rpm -ivh *.rpm

Alternately, you can select and install each package manually by issuing the

commands shown below in the order given.

 Installation on

IBM POWER

cd /rpms

rpm -ivh cell-xlc-ssc-rte-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-rte-lnk-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-lib-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-omp-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-cmp-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-help-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-man-0.9.0-0.ppc64.rpm

Installation on

Intel x86

cd /rpms

rpm -ivh cell-xlc-ssc-rte-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-rte-lnk-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-lib-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-omp-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-cmp-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-help-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-man-0.9.0-0.i386.rpm

Coexisting with other versions of XL C/C++

In most cases, IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux,

V0.9 can coexist on the same system with other versions of the XL C/C+ compiler

without problem.

4 Getting Started with XL C/C++ - Alpha

Coexisting with previous compilers for Cell Broadband Engine architecture

There are no coexistence issues with the earlier V0.8.1 and V0.8.2 compilers

offered on the alphaWorks Web site.

Having multiple instances of IBM XL C/C++ Alpha Edition for Multicore

Acceleration for Linux, V0.9

Though IBM XL C/C++ Alpha Edition for Multicore Acceleration for

Linux, V0.9 supports multiple hardware platforms, you can only install one

instance of the compiler on your system, and that instance must be the

version of the compiler most appropriate for your system hardware.

Coexisting with XL C/C++ Advanced Edition for Linux, any version

v There are no direct coexistence issues between this compiler and IBM XL

C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9.

v However, the runtime libraries for the Linux and Multicore versions of

the XL C/C++ compilers both share a common name. If you have both a

Linux and a Multicore version of the compiler installed on your system,

and the LD_LIBRARY_PATH environment variable is set, it is possible

for an application to use the wrong runtime libary.

Uninstalling the compiler

To remove IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux,

V0.9 from your system, you must uninstall the compiler packages in reverse order

of installation.

Log in as root or as a user with administration privileges, and issue the

uninstallation commands below that apply to your hardware platform, in the order

given:

 Uninstallation on

IBM POWER

rpm -ivh cell-xlc-ssc-man-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-help-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-cmp-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-omp-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-lib-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-rte-lnk-0.9.0-0.ppc64.rpm

rpm -ivh cell-xlc-ssc-rte-0.9.0-0.ppc64.rpm

Uninstallation on

Intel x86

rpm -ivh cell-xlc-ssc-man-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-help-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-cmp-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-omp-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-lib-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-rte-lnk-0.9.0-0.i386.rpm

rpm -ivh cell-xlc-ssc-rte-0.9.0-0.i386.rpm

Chapter 2. Installing the XL C/C++ single-source compiler 5

6 Getting Started with XL C/C++ - Alpha

Chapter 3. Developing your applications

The basic steps involved in developing applications with IBM XL C/C++ Alpha

Edition for Multicore Acceleration for Linux, V0.9 involve:

1. Writing your C/C++ program source, including using the OpenMP pragmas to

mark code that you want to have run on the SPUs.

2. Compiling your C/C++ program source using the compiler invocations

described later in this section.

3. Moving the compiled application to the target Cell machine for execution.

Writing your program source

The single source compiler provided in IBM XL C/C++ Alpha Edition for

Multicore Acceleration for Linux, V0.9 helps simplify the task of writing

application code destined for Cell Broadband Engine systems.

Application code intended for execution on the SPUs can reside in the same

physical program source file as code intended for the PPU, and does not need to

be partitioned off for separate compilation. Instead, you mark specific code

segments with OpenMP pragma directives that instruct the compiler how that code

segment should be parallelized for the SPUs. The OpenMP specification is

described later in this section.

Otherwise, writing your program source for Cell Broadband Engine applications is

little different from writing program source for any other C/C++ application. You

can focus more on what you want your application to achieve, and less on the

intricacies of manipulating code segments to make the best use of the PPU and

SPU portions of the Cell Broadband Engine processor. The single source compiler

will perform a high level of program optimization and PPU/SPU targeting for you.

For more information, see the "Programming for the Cell BE architecture" section in

"Using advanced compiler technology to exploit the performance of the Cell Broadband

Engine architecture", found online at http://www.research.ibm.com/journal/sj/451/
eichenberger.html.

Using OpenMP pragma directives in your program source

OpenMP directives are a set of API-based commands supported by IBM XL C/C++

Alpha Edition for Multicore Acceleration for Linux, V0.9 and many other IBM and

non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a

particular loop. The existence of the directives in the source removes the need for

the compiler to perform any parallel analysis on the parallel code. OpenMP

directives requires the presence of Pthread libraries to provide the necessary

infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its

own copy of the variable.

© Copyright IBM Corp. 2007 7

http://www.research.ibm.com/journal/sj/451/eichenberger.html
http://www.research.ibm.com/journal/sj/451/eichenberger.html

2. Work sharing directives specify how the work contained in a parallel

region of code should be distributed across the SMP processors.

3. Directives are available to control synchronization between the processors.

XL C/C++ supports the OpenMP API Version 2.5 specification.

For more information, see:

v “OpenMP pragma directives provided in this technical preview,” on page 13

v “Using OpenMP pragma directives in your program source” on page 7

.

Invoking the compiler

The compiler invocation commands provided with IBM XL C/C++ Alpha Edition

for Multicore Acceleration for Linux, V0.9 perform all of the steps required to

compile C or C++ source files and link the object files and libraries into an

executable program.

Invoke the compiler using the basic syntax shown below:

��

(1)

cbexlc

(2)

cbexlc++

cbexlC

�

compiler_option

�

input_file

��

Notes:

1 Basic invocation to compile C source code.

2 Basic invocations to compile C++ source code

Both cbexlC and cbexlc++ will compile either C or C++ program source, but

compiling C++ files with cbexlc may result in link or run time errors because

libraries required for C++ code are not specified when the linker is called by the C

compiler.

Specifying compiler options

Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic

messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options

v In your source code using directive statements

v In a makefile

v In the stanzas found in a compiler configuration file

v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple

compiler options are specified. To resolve these conflicts in a consistent fashion, the

compiler usually applies the following general priority sequence to most options:

8 Getting Started with XL C/C++ - Alpha

1. Directive statements in your source file override command-line settings

2. Command-line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a

command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches

any directories specified with -I in the vac.cfg file before it searches the

directories specified with -I on the command-line. The option is cumulative

rather than preemptive.

See the XL C/C++ Compiler Reference for more information about compiler

options and their usage.

You can also pass compiler options to the linker, assembler, and preprocessor. See

″Compiler options reference″ in the XL C/C++ Compiler Reference for more

information about compiler options and how to specify them.

Compiler options and pragmas specific to this technical

preview

The IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9

technical preview includes support for compiler options and pragma directives not

documented in the XL C/C++ Compiler Reference. These include:

-qarch=cell, -qtune-cell

The cell suboption to the -qarch and -qtune options instructs the compiler

to generate code targeted for processors based on the Cell Broadband

Engine architecture.

 Specifying -qarch=cell sets the following macros:

_ARCH_COM

_ARCH_PPC

_ARCH_PPCGR

_ARCH_PPC64

_ARCH_PPC64GR

_ARCH_PPC64GRSQ

_ARCH_CBEPPE

_ARCH_CELLPPU

_ARCH_CELL

-qarch=celledp, -qtune=celledp

The celledp suboption to the -qarch and -qtune options instructs the

compiler to generate code targeted for processors based on the Cell

Broadband Engine architecture that also incorporate SPUs with enhanced

double precision capability.

 Specifying -qarch=celledp sets the following macros:

_ARCH_COM

_ARCH_PPC

_ARCH_PPCGR

_ARCH_PPC64

_ARCH_PPC64GR

_ARCH_PPC64GRSQ

Chapter 3. Developing your applications 9

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library

_ARCH_CBEPPE

_ARCH_CELLPPU

_ARCH_CELL

_ARCH_CELLEDP

-qipa=overlay

Ordinarily, the compiler default setting is -qipa=nooverlay. For IBM XL

C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9, the

default setting changes to -qipa=overlay. See -qipa in the XL C/C++

Compiler Reference for more information.

OpenMP pragma directives

 The OpenMP directives are a set of API-based commands supported by

IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9

and many other IBM and non-IBM C, C++, and Fortran compilers. These

pragmas instruct the compiler how specific sections of your application

code should be parallized for use by the SPUs.

 For more information, see:

v “OpenMP pragma directives provided in this technical preview,” on

page 13

v “Using OpenMP pragma directives in your program source” on page 7

.

XL C/C++ input and output files

The file types listed below are recognized by XL C/C++. For detailed information

about these and additional file types used by the compiler, see ″Types of input

files″″Types of input files″ and ″Types of output files″″Types of output files″ in the XL

C/C++ Compiler Reference.

 Table 2. Input file types

Filename extension Description

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

 Table 3. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Make dependency file

.i Preprocessed source files

.lst Listing files

.o Object files

10 Getting Started with XL C/C++ - Alpha

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/library

Linking your compiled applications

By default, you do not need to do anything special to link an XL C/C++ program.

The compiler invocation commands automatically call the linker to produce an

executable output file. For example, running the following command:

cbexlc++ file1.C file2.o file3.C

compiles and produces the object files file1.o and file3.o, then all object files

(including file2.o) are submitted to the linker to produce one executable.

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

xlc++ -c file1.C # Produce one object file (file1.o)

xlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)

xlc++ file1.o file2.o file3.o # Link object files with default libraries

For more information about compiling and linking your programs, see the

documentation provided with the IBM SDK for Multicore Acceleration 3.0.

Chapter 3. Developing your applications 11

12 Getting Started with XL C/C++ - Alpha

Appendix. OpenMP pragma directives provided in this

technical preview

This section describes the OpenMP directives supported by IBM XL C/C++ Alpha

Edition for Multicore Acceleration for Linux, V0.9.

The OpenMP pragmas fall into different categories of effect. These are:

Defines code segments in which work is done by threads in parallel

v “#pragma omp parallel” on page 19

v “#pragma omp parallel for” on page 21

v “#pragma omp parallel sections” on page 21

Defines how work will be distributed across threads

v “#pragma omp for” on page 16

v “#pragma omp ordered” on page 19

v “#pragma omp section, #pragma omp sections” on page 22

v “#pragma omp single” on page 23

Controls synchronization among threads

v “#pragma omp atomic”

v “#pragma omp barrier” on page 14

v “#pragma omp critical” on page 15

v “#pragma omp flush” on page 15

v “#pragma omp master” on page 19

Defines scope of data visibility across threads

v “#pragma omp threadprivate” on page 24

You can use these pragmas to mark specific sections of application code for use by

the SPUs. For more information about these pragmas and the OpenMP

specification, see www.openmp.org.

#pragma omp atomic

Description

The omp atomic directive identifies a specific memory location that must be

updated atomically and not be exposed to multiple, simultaneous writing threads.

Syntax

�� # pragma omp atomic

statement
 ��

where statement is an expression statement of scalar type that takes one of the

forms that follow:

© Copyright IBM Corp. 2007 13

http://www.openmp.org

statement Conditions

x bin_op = expr where:

bin_op is one of:

+ * - / & ^ | << >>

expr is an expression of scalar type that does not reference x.

x++

++x

x--

--x

Notes

Load and store operations are atomic only for object x. Evaluation of expr is not

atomic.

All atomic references to a given object in your program must have a compatible

type.

Objects that can be updated in parallel and may be subject to race conditions

should be protected with the omp atomic directive.

Examples

extern float x[], *p = x, y;

/* Protect against race conditions among multiple updates. */

#pragma omp atomic

x[index[i]] += y;

/* Protect against races with updates through x. */

#pragma omp atomic

p[i] -= 1.0f;

#pragma omp barrier

Description

The omp barrier directive identifies a synchronization point at which threads in a

parallel region will wait until all other threads in that section reach the same point.

Statement execution past the omp barrier point then continues in parallel.

Syntax

�� # pragma omp barrier ��

Notes

The omp barrier directive must appear within a block or compound statement. For

example:

if (x!=0) {

 #pragma omp barrier /* valid usage */

}

14 Getting Started with XL C/C++ - Alpha

if (x!=0)

 #pragma omp barrier /* invalid usage */

#pragma omp critical

Description

The omp critical directive identifies a section of code that must be executed by a

single thread at a time.

Syntax

��

�

 ,

#

pragma

omp critical

(name)

��

where name can optionally be used to identify the critical region. Identifiers

naming a critical region have external linkage and occupy a namespace distinct

from that used by ordinary identifiers.

Notes

A thread waits at the start of a critical region identified by a given name until no

other thread in the program is executing a critical region with that same name.

Critical sections not specifically named by omp critical directive invocation are

mapped to the same unspecified name.

#pragma omp flush

Description

The omp flush directive identifies a point at which the compiler ensures that all

threads in a parallel region have the same view of specified objects in memory.

Syntax

��

�

,

#

pragma

omp flush

list

��

where list is a comma-separated list of variables that will be synchronized.

Notes

If list includes a pointer, the pointer is flushed, not the object being referred to by

the pointer. If list is not specified, all shared objects are synchronized except those

inaccessible with automatic storage duration.

An implied flush directive appears in conjunction with the following directives:

v omp barrier

v Entry to and exit from omp critical.

v Exit from omp parallel.

Appendix. OpenMP pragma directives provided in this technical preview 15

v Exit from omp for.

v Exit from omp sections.

v Exit from omp single.

The omp flush directive must appear within a block or compound statement. For

example:

if (x!=0) {

 #pragma omp flush /* valid usage */

}

if (x!=0)

 #pragma omp flush /* invalid usage */

#pragma omp for

Description

The omp for directive instructs the compiler to distribute loop iterations within the

team of threads that encounters this work-sharing construct.

Syntax

��

�

 ,

#

pragma

omp for

clause

for-loop

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to

each thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to

each thread. Each new private object is initialized as if there was

an implied declaration within the statement block. Data variables

in list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to

each thread. The final value of each variable in list, if assigned,

will be the value assigned to that variable in the last iteration.

Variables not assigned a value will have an indeterminate value.

Data variables in list are separated by commas.

reduction (operator:list) Performs a reduction on all scalar variables in list using the

specified operator. Reduction variables in list are separated by

commas.

A private copy of each variable in list is created for each thread.

At the end of the statement block, the final values of all private

copies of the reduction variable are combined in a manner

appropriate to the operator, and the result is placed back into the

original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

ordered Specify this clause if an ordered construct is present within the

dynamic extent of the omp for directive.

16 Getting Started with XL C/C++ - Alpha

schedule (type) Specifies how iterations of the for loop are divided among

available threads. Acceptable values for type are:

dynamic

Iterations of a loop are divided into chunks of size

ceiling(number_of_iterations/number_of_threads).

 Chunks are dynamically assigned to threads on a

first-come, first-serve basis as threads become available.

This continues until all work is completed.

dynamic,n

As above, except chunks are set to size n. n must be an

integral assignment expression of value 1 or greater.

guided Chunks are made progressively smaller until the default

minimum chunk size is reached. The first chunk is of size

ceiling(number_of_iterations/number_of_threads).

Remaining chunks are of size

ceiling(number_of_iterations_left/number_of_threads).

 The minimum chunk size is 1.

 Chunks are assigned to threads on a first-come,

first-serve basis as threads become available. This

continues until all work is completed.

guided,n

As above, except the minimum chunk size is set to n. n

must be an integral assignment expression of value 1 or

greater.

runtime

Scheduling policy is determined at run time. Use the

OMP_SCHEDULE environment variable to set the

scheduling type and chunk size.

static Iterations of a loop are divided into chunks of size

ceiling(number_of_iterations/number_of_threads). Each

thread is assigned a separate chunk.

 This scheduling policy is also known as block scheduling.

static,n Iterations of a loop are divided into chunks of size n.

Each chunk is assigned to a thread in round-robin fashion.

 n must be an integral assignment expression of value 1

or greater.

 This scheduling policy is also known as block cyclic

scheduling.

Note: if n=1, iterations of a loop are divided into chunks

of size 1 and each chunk is assigned to a thread in

round-robin fashion. This scheduling policy is also known

as block cyclic scheduling

nowait Use this clause to avoid the implied barrier at the end of the for

directive. This is useful if you have multiple independent

work-sharing sections or iterative loops within a given parallel

region. Only one nowait clause can appear on a given for

directive.

and where for_loop is a for loop construct with the following canonical shape:

for (init_expr; exit_cond; incr_expr)

 statement

Appendix. OpenMP pragma directives provided in this technical preview 17

where:

 init_expr takes form: iv = b

integer-type iv = b

exit_cond takes form: iv <= ub

iv < ub

iv >= ub

iv > ub

incr_expr takes form: ++iv

iv++

--iv

iv--

iv += incr

iv -= incr

iv = iv + incr

iv = incr + iv

iv = iv - incr

and where:

 iv Iteration variable. The iteration variable must be a signed integer not

modified anywhere within the for loop. It is implicitly made private for

the duration of the for operation. If not specified as lastprivate, the

iteration variable will have an indeterminate value after the operation

completes.

b, ub, incr Loop invariant signed integer expressions. No synchronization is

performed when evaluating these expressions and evaluated side effects

may result in indeterminate values.

Notes

This pragma must appear immediately before the loop or loop block directive to be

affected.

Program sections using the omp for pragma must be able to produce a correct

result regardless of which thread executes a particular iteration. Similarly, program

correctness must not rely on using a particular scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration

of loop execution. This variable must not be modified within the body of the for

loop. The value of the increment variable is indeterminate unless the variable is

specified as having a data scope of lastprivate.

An implicit barrier exists at the end of the for loop unless the nowait clause is

specified.

Restrictions are:

v The for loop must be a structured block, and must not be terminated by a break

statement.

v Values of the loop control expressions must be the same for all iterations of the

loop.

v An omp for directive can accept only one schedule clauses.

v The value of n (chunk size) must be the same for all threads of a parallel region.

18 Getting Started with XL C/C++ - Alpha

#pragma omp master

Description

The omp master directive identifies a section of code that must be run only by the

master thread.

Syntax

�� # pragma omp master ��

Notes

Threads other than the master thread will not execute the statement block

associated with this construct.

No implied barrier exists on either entry to or exit from the master section.

#pragma omp ordered

Description

The omp ordered directive identifies a structured block of code that must be

executed in sequential order.

Syntax

�� # pragma omp ordered ��

Notes

The omp ordered directive must be used as follows:

v It must appear within the extent of a omp for or omp parallel for construct

containing an ordered clause.

v It applies to the statement block immediately following it. Statements in that

block are executed in the same order in which iterations are executed in a

sequential loop.

v An iteration of a loop must not execute the same omp ordered directive more

than once.

v An iteration of a loop must not execute more than one distinct omp ordered

directive.

#pragma omp parallel

Description

The omp parallel directive explicitly instructs the compiler to parallelize the

chosen block of code.

Appendix. OpenMP pragma directives provided in this technical preview 19

Syntax

��

�

 ,

#

pragma

omp parallel

clause

��

where clause is any of the following:

 if (exp) When the if argument is specified, the program code executes in parallel

only if the scalar expression represented by exp evaluates to a non-zero

value at run time. Only one if clause can be specified.

private (list) Declares the scope of the data variables in list to be private to each thread.

Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each thread.

Each new private object is initialized with the value of the original variable

as if there was an implied declaration within the statement block. Data

variables in list are separated by commas.

num_threads

(int_exp)

The value of int_exp is an integer expression that specifies the number of

threads to use for the parallel region. If dynamic adjustment of the number

of threads is also enabled, then int_exp specifies the maximum number of

threads to be used.

shared (list) Declares the scope of the comma-separated data variables in list to be

shared across all threads.

default (shared

| none)

Defines the default data scope of variables in each thread. Only one

default clause can be specified on an omp parallel directive.

Specifying default(shared) is equivalent to stating each variable in a

shared(list) clause.

Specifying default(none) requires that each data variable visible to the

parallelized statement block must be explcitly listed in a data scope clause,

with the exception of those variables that are:

v const-qualified,

v specified in an enclosed data scope attribute clause, or,

v used as a loop control variable referenced only by a corresponding omp

for or omp parallel for directive.

copyin (list) For each data variable specified in list, the value of the data variable in the

master thread is copied to the thread-private copies at the beginning of the

parallel region. Data variables in list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate

variable.

reduction

(operator: list)

Performs a reduction on all scalar variables in list using the specified

operator. Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end

of the statement block, the final values of all private copies of the

reduction variable are combined in a manner appropriate to the operator,

and the result is placed back into the original value of the shared

reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

20 Getting Started with XL C/C++ - Alpha

Notes

When a parallel region is encountered, a logical team of threads is formed. Each

thread in the team executes all statements within a parallel region except for

work-sharing constructs. Work within work-sharing constructs is distributed

among the threads in a team.

Loop iterations must be independent before the loop can be parallelized. An

implied barrier exists at the end of a parallelized statement block.

Nested parallel regions are always serialized.

#pragma omp parallel for

Description

The omp parallel for directive effectively combines the omp parallel and omp for

directives. This directive lets you define a parallel region containing a single for

directive in one step.

Syntax

��

�

,

#

pragma

omp for

clause

for-loop

��

Notes

With the exception of the nowait clause, clauses and restrictions described in the

omp parallel and omp for directives also apply to the omp parallel for directive.

#pragma omp parallel sections

Description

The omp parallel sections directive effectively combines the omp parallel and

omp sections directives. This directive lets you define a parallel region containing

a single sections directive in one step.

Syntax

��

�

,

#

pragma

omp parallel sections

clause

��

Notes

All clauses and restrictions described in the omp parallel and omp sections

directives apply to the omp parallel sections directive.

Appendix. OpenMP pragma directives provided in this technical preview 21

#pragma omp section, #pragma omp sections

Description

The omp sections directive distributes work among threads bound to a defined

parallel region.

Syntax

��

�

 ,

#

pragma

omp sections

clause

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to each

thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each

thread. Each new private object is initialized as if there was an

implied declaration within the statement block. Data variables in

list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to each

thread. The final value of each variable in list, if assigned, will be

the value assigned to that variable in the last section. Variables not

assigned a value will have an indeterminate value. Data variables

in list are separated by commas.

reduction (operator: list) Performs a reduction on all scalar variables in list using the

specified operator. Reduction variables in list are separated by

commas.

A private copy of each variable in list is created for each thread. At

the end of the statement block, the final values of all private

copies of the reduction variable are combined in a manner

appropriate to the operator, and the result is placed back into the

original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

nowait Use this clause to avoid the implied barrier at the end of the

sections directive. This is useful if you have multiple independent

work-sharing sections within a given parallel region. Only one

nowait clause can appear on a given sections directive.

Notes

The omp section directive is optional for the first program code segment inside the

omp sections directive. Following segments must be preceded by an omp section

directive. All omp section directives must appear within the lexical construct of the

program source code segment associated with the omp sections directive.

When program execution reaches a omp sections directive, program segments

defined by the following omp section directive are distributed for parallel

22 Getting Started with XL C/C++ - Alpha

execution among available threads. A barrier is implicitly defined at the end of the

larger program region associated with the omp sections directive unless the

nowait clause is specified.

#pragma omp single

Description

The omp single directive identifies a section of code that must be run by a single

available thread.

Syntax

��

�

,

#

pragma

omp single

clause

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to each

thread. Data variables in list are separated by commas.

A variable in the private clause must not also appear in a copyprivate

clause for the same omp single directive.

copyprivate (list) Broadcasts the values of variables specified in list from one member of

the team to other members. This occurs after the execution of the

structured block associated with the omp single directive, and before

any of the threads leave the barrier at the end of the construct. For all

other threads in the team, each variable in the list becomes defined with

the value of the corresponding variable in the thread that executed the

structured block. Data variables in list are separated by commas. Usage

restrictions for this clause are:

v A variable in the copyprivate clause must not also appear in a private

or firstprivate clause for the same omp single directive.

v If an omp single directive with a copyprivate clause is encountered in

the dynamic extent of a parallel region, all variables specified in the

copyprivate clause must be private in the enclosing context.

v Variables specified in copyprivate clause within dynamic extent of a

parallel region must be private in the enclosing context.

v A variable that is specified in the copyprivate clause must have an

accessible and unambiguous copy assignment operator.

v The copyprivate clause must not be used together with the nowait

clause.

firstprivate (list) Declares the scope of the data variables in list to be private to each

thread. Each new private object is initialized as if there was an implied

declaration within the statement block. Data variables in list are

separated by commas.

A variable in the firstprivate clause must not also appear in a

copyprivate clause for the same omp single directive.

nowait Use this clause to avoid the implied barrier at the end of the single

directive. Only one nowait clause can appear on a given single directive.

The nowait clause must not be used together with the copyprivate

clause.

Appendix. OpenMP pragma directives provided in this technical preview 23

Notes

An implied barrier exists at the end of a parallelized statement block unless the

nowait clause is specified.

#pragma omp threadprivate

Description

The omp threadprivate directive makes the named file-scope, namespace-scope, or

static block-scope variables private to a thread.

Syntax

��

�

 ,

#

pragma

omp threadprivate

(identifier)

��

where identifier is a file-scope, name space-scope or static block-scope variable.

Notes

Each copy of an omp threadprivate data variable is initialized once prior to first

use of that copy. If an object is changed before being used to initialize a

threadprivate data variable, behavior is unspecified.

A thread must not reference another thread’s copy of an omp threadprivate data

variable. References will always be to the master thread’s copy of the data variable

when executing serial and master regions of the program.

Use of the omp threadprivate directive is governed by the following points:

v An omp threadprivate directive must appear at file scope outside of any

definition or declaration.

v The omp threadprivate directive is applicable to static-block scope variables and

may appear in lexical blocks to reference those block-scope variables. The

directive must appear in the scope of the variable and not in a nested scope, and

must precede all references to variables in its list.

v A data variable must be declared with file scope prior to inclusion in an omp

threadprivate directive list.

v An omp threadprivate directive and its list must lexically precede any reference

to a data variable found in that list.

v A data variable specified in an omp threadprivate directive in one translation

unit must also be specified as such in all other translation units in which it is

declared.

v Data variables specified in an omp threadprivate list must not appear in any

clause other than the copyin, copyprivate, if, num_threads, and schedule

clauses.

v The address of a data variable in an omp threadprivate list is not an address

constant.

v A data variable specified in an omp threadprivate list must not have an

incomplete or reference type.

24 Getting Started with XL C/C++ - Alpha

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2007 25

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

26 Getting Started with XL C/C++ - Alpha

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2007. All rights reserved.

Trademarks and service marks

Company, product, or service names identified in the text may be trademarks or

service marks of IBM or other companies. Information on the trademarks of

International Business Machines Corporation in the United States, other countries,

or both is located at http://www.ibm.com/legal/copytrade.shtml.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries

in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Cell Broadband Engine is a trademark of the Sony Corporation and/or the Sony

Computer Entertainment, Inc., in the United States, other countries, or both and is

used under license therefrom.

Other company, product, and service names may be trademarks or service marks

of others.

Industry standards

The following standards are supported:

v The C language is consistent with the International Standard for Information

Systems-Programming Language C (ISO/IEC 9899-1990).

v The C language is also consistent with the International Standard for

Information Systems-Programming Language C (ISO/IEC 9899-1999 (E)).

v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).

v The C++ language is also consistent with the International Standard for

Information Systems-Programming Language C++ (ISO/IEC 14882:2003 (E)).

Notices 27

http://www.ibm.com/legal/copytrade.shtml

28 Getting Started with XL C/C++ - Alpha

����

Printed in USA

	Contents
	About this document
	Who should read this document
	How to use this document
	Conventions used in this document
	Related information
	IBM XL C/C++ publications
	Standards and specifications documents
	Other IBM publications
	Other publications

	How to send your comments

	Chapter 1. Introducing IBM XL C/C++ Alpha Edition for Multicore Acceleration for Linux, V0.9
	Part of a family of IBM compilers
	About the Cell Broadband Engine architecture
	New single-source cross-compiler technology

	Chapter 2. Installing the XL C/C++ single-source compiler
	System prerequisites
	Installing the compiler packages
	Coexisting with other versions of XL C/C++
	Uninstalling the compiler

	Chapter 3. Developing your applications
	Writing your program source
	Using OpenMP pragma directives in your program source

	Invoking the compiler
	Specifying compiler options
	Compiler options and pragmas specific to this technical preview

	XL C/C++ input and output files
	Linking your compiled applications
	Compiling and linking in separate steps

	Appendix. OpenMP pragma directives provided in this technical preview
	#pragma omp atomic
	#pragma omp barrier
	#pragma omp critical
	#pragma omp flush
	#pragma omp for
	#pragma omp master
	#pragma omp ordered
	#pragma omp parallel
	#pragma omp parallel for
	#pragma omp parallel sections
	#pragma omp section, #pragma omp sections
	#pragma omp single
	#pragma omp threadprivate

	Notices
	Trademarks and service marks
	Industry standards

