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Robot Steering With Spectral Image Information

Christopher Ackerman and Laurent Itti

Abstract—We introduce a method for rapidly classifying visual scenes
globally along a small number of navigationally relevant dimensions: depth
of scene, presence of obstacles, path versus nonpath, and orientation of
path. We show that the algorithm reliably classifies scenes in terms of these
high-level features, based on global or coarsely localized spectral analysis
analogous to early-stage biological vision.We use this analysis to implement
a real-time visual navigational system on a mobile robot, trained online by
a human operator. We demonstrate successful training and subsequent au-
tonomous path following for two different outdoor environments, a run-
ning track and a concrete trail. Our success with this technique suggests a
general applicability to autonomous robot navigation in a variety of envi-
ronments.

Index Terms—Autonomous robot, Fourier transform, gist of a scene, nav-
igation, path following, vision.

I. INTRODUCTION

Previous use of vision for robot navigation has often assumed a
known or otherwise highly constrained environment [1]. In particular,
successful autonomous indoor and outdoor navigation has been demon-
strated with model-based approaches, where a robot compares a man-
ually specified or learned geometric model of the world to its sensory
inputs [2]. However, these approaches are limited by design to environ-
ments amenable to geometric modeling, and where reliable landmark
points are available for model matching [3], [4].
Model-free or mapless algorithms have been proposed to address

these limitations. In “view-based” mapless approaches, scene snap-
shots and associated motor commands are memorized along a route
during training. During autonomous navigation, incoming images
are matched against learned ones, to look up motor commands [5].
Images of the training environment may be stored explicitly and
matched against new inputs by cross-correlation [6]. Effective in small
environments, such approaches tend to generalize poorly (new scenes
must correlate with learned ones), and require prohibitive memory and
computation in larger environments. To alleviate these requirements,
learned information may be implicitly stored in the weights of a trained
neural network; typically, then, images are first reduced to a few land-
mark or characteristic regions, to reduce network complexity [7], [8].
Finally, computationally expensive algorithms involving much image
processing and segmentation [9], including texture recognition [10],
[11], stereo vision [12], or large rule sets [13] have been proposed to
understand the environment. Although less explicit than model-based
approaches, these algorithms also tend to incorporate a high degree
of world knowledge and assumed environmental structure through
design and tuning of feature detectors and rule bases. Here we take
inspiration from biological vision in developing a mapless system with
low memory, computation, and world-knowledge requirements.
The early stages of visual processing in the primate (including

human) brain are believed, in a first approximation, to be organized in
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a triadic architecture recently described by Rensink [14] (also see [15]
and [16]). The first stage consists of a massively parallel computation
of simple visual features over the entire visual field. These features
include intensity contrast, computed by neurons with center-surround
receptive fields [17]; color opponency [18]; local orientation, detected
by Gabor-like receptive fields [19]; stereo disparity [20]; motion
energy [21]; and slightly more complex features including corners,
T-junctions, and other proto-objects [22]. This stage feeds into two
parallel processing branches. One is concerned with directing attention
and gaze toward interesting locations, based on combined bottom-up
(image-based) salience and top-down (voluntary) guidance, and with
recognizing attended objects [15]. Persistent representations of a few
attended and recognized objects are stored in working memory for
later use [23], such as manipulation or landmark-based navigation.
The second branch is concerned with the very rapid, most probably
feedforward, coarse identification of the global setting of the scene,
including its nature or “gist” (e.g., indoor versus outdoor, city versus
beach) and approximate spatial layout [23]–[25]. We have previously
developed an algorithm for bottom-up, saliency-based guidance of
focal visual attention [26], [27]. It has been widely applied to the
automatic detection of attention-grabbing objects in unconstrained
static and dynamic scenes [15], [28], [29], and has been shown to
highly significantly correlate with human eye movements [30], [31].
During navigation, this attentional branch is useful for rapid detection
and identification of landmarks and unexpected spatially localized
events [32], [33]. Here we hypothesize that the gist/layout branch
provides information useful for basic navigation, such as presence of
borders and degree of obstruction.

Recent work by Torralba and Oliva [34]–[36] classifies scenes ac-
cording to their spectral components. Using only global or coarsely lo-
calized spectral information to capture the overall structure of a scene,
they can compute high-level scene descriptors, such as openness and
naturalness, and by casting images into this low-dimensional space,
they classify scenes into semantic categories like mountains or city.
Our approach is similar, but rather than semantic categorization, we
seek to extract information useful for a particular action, navigation.
The Fourier amplitude spectrum reflects an image’s dominant contours,
their orientations, widths, and lengths, and this information should be
able to describe the relevant features of a path. It also reflects the degree
of high- versus low-frequency information in an image, which com-
bined with the above can describe the potential for movement within
the scene.

It is of interest to employ neurally plausible visual computations, be-
cause the mammalian brain exhibits unmatched performance at using
visual information to guide behavior like navigation. There is experi-
mental psychophysical evidence that humans can recognize the overall
gist of scenes after very brief presentations, and this could be facili-
tated by the rapid processing of spatial frequency information. For ex-
ample, humans can identify semantic scene type after 45–135 ms ex-
posure and have the capacity for low-resolution (not enough to define
objects) scene recognition [37]. Rapid high-level scene classification
does not require foveal vision [38] or color [39]. Rapid categorization
of images for the presence or absence of certain classes of objects does
not require attention [40], supporting the idea of a separate processing
branch operating in parallel with attentional vision. As noted by [41],
it is reasonable to think that global gist recognition may build on spa-
tial-frequency-selective neurons in the primary visual cortex, as evolu-
tionarily early mammals lack any higher visual area.

Using only global or very coarsely localized spatial frequency in-
formation to characterize the “navigational gist” of a scene, we apply
these ideas to the task of path following. We demonstrate that scenes
that vary along four navigational class descriptors have distinctive
Fourier spectra, allowing a mapping from spectral information to scene

Fig. 1. Averaged Fourier amplitude spectra for all human-labeled images.
From left to right: Path (top; n = 912) versus Nonpath (bottom; n = 140).
Left (top; n = 54) versus Right (bottom; n = 24). Open (top; n = 256)
versus Closed (bottom; n = 302). Crowded (top; n = 96) versus Empty
(bottom; n = 898).

class. Then we develop an architecture by which spectral information
can be mapped to motor commands, via batch or online learning.

II. CLASSIFICATION FOR NAVIGATION

A. Overview

We consider the following high-level information useful for path fol-
lowing. First, the direction in which the path borders are turning (for
steering); second, whether the agent is on an open stretch or in a closed
environment (which affects speed); third, the density of obstacles in the
environment (to alsomodulate speed, and to trigger other behaviors like
obstacle avoidance, for example, using an attentional vision system to
locate and identify them); fourth and finally, recognizing whether the
agent is on a path can determine whether the other features are to be
used as above, or some other control behavior is necessary. Our system
uses a trained feedforward neural network to estimate these four fea-
tures from global or coarsely localized image spectral information. The
results show that much intuitively navigationally useful information
can be extracted from such computationally inexpensive analysis.
That there is sufficient information in the Fourier amplitude spectra

of the luminance of the images to make the discriminations described
above is supported by the averaged spectra of iconic images of each
feature extreme, as illustrated in Fig. 1. All 1630 photographs used
to create Fig. 1 were taken on the University of Southern California
(USC) campus at slightly above ground level, at a robot’s eye view (see
next section). Thus, they are dominated by path borders, if present, and
other potential ground-level obstacles or barriers. Paths are character-
ized by prominent contours, corresponding to path borders, extending
off into the distance at various angles. As shown in Fig. 1, left, this is
reflected in the averaged amplitude spectrum of path scenes by higher
activity in the diagonal orientations, compared with the vertical and
horizontal axes; in contrast, the nonpath scenes are more dominated
by vertical and horizontal orientations, and also have more high-fre-
quency content, reflecting the relative smoothness of the path portion
of path scenes, compared with nonpath scenes. The direction along
which the path is oriented is also reflected in the spectra. As shown
in Fig. 1, middle left, leftward-oriented scenes have increased activity
in the first quadrant (i.e., the path is at � 135

�; the borders are ori-
ented so that they appear in the intensity gradient as a wave oriented at
� 45

�). Rightward-oriented scenes show the complementary pattern.
Open scenes, with extended depth and low horizon, have less high-fre-
quency energy than closed scenes, whose close-up barriers presumably
supply high-frequency details not visible on the more distant borders in
open scenes (Fig. 1, middle right). Scenes crowded with obstacles con-
tain more high-frequency energy than empty scenes, for reasons similar
to the above, and are somewhat biased in the horizontal frequency di-
rection (vertical lines in image space), reflecting vertical obstacles such
as people (Fig. 1, right).
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Fig. 2. Steps in transformation from RGB image to Fourier amplitude
spectra. Left to right: original image, brightness-only and normalized image,
amplitude spectrum from image Fourier transform, and amplitude spectra from
transform of each of 16 nonoverlapping 30�40-pixel image tiles. Shown are
three Beobot-captured running track images. Top to bottom: straight, leftward
turning, and rightward-turning image class exemplars.

B. Images

The robot from whose vantage point all images were captured and
whose navigation is being guided was built on the chassis of a standard
radio-controlled car, with an on-board Beowulf cluster of four Pen-
tium-III CPUs running Linux, and is referred to as a Beobot [42]. Our
algorithm only used one of the available CPUs, leaving ample compu-
tational resources for other tasks, including attention and object recog-
nition.

To train and test our algorithm, we collected 1343 red–green–blue
(RGB) images taken from a Beobot-mounted camera. Images were
labeled by one human along the dimensions of left-right orientation,
depth, obstacles, and as path, nonpath, or ambiguous. For orientation,
each image was assigned to one of eight different classes, from far left
to far right. For depth and obstacles, each image was assigned to one
of six classes, from closed to open, and from empty to crowded, re-
spectively. Of these, 896 images were used for training and 447 for
testing. The images all were photographs of daytime outdoor scenes
taken on the USC campus, especially but not exclusively along various
paths, and on a running track. It is important to note that nothing in
our technique is specifically designed or tuned to the class of images
used here for testing. Presumably, similar results could be obtained in
very different environments, such as indoors. Pictures were 120�160
or 240�320 pixels; the latter were downscaled to 120�160. Images
varied not only by location and resolution, but also time of day and
cloud cover, and thus overall illumination and shadows, and camera
angle. Figs. 2 and 3 show sample images.

C. Procedure

RGB images were converted to hue, saturation, and value (HSV),
with only the value component being retained. Each imagewas normal-
ized for luminance by subtracting its mean and dividing by its standard
deviation. Next, each image was discrete Fourier transformed. Figs. 2
and 3 show the image-transformation process for images of varying
orientations and environments. The Fourier amplitude spectrum is a
120 � (160=2 + 1) = 9720-element array of real numbers. To re-
duce dimensionality to make learning tractable, we consider aggregate
responses over 40 localized masks applied to the Fourier spectra. The
masks were chosen such that they are equivalent to convolving the orig-
inal image with 40 log-Gabor filters of varying scales and orientations,
in a manner similar to that recently described in [35] and [36]. The
filters are tuned to five spatial frequencies, with eight different orien-
tations at each frequency. The pointwise products between the Fourier

Fig. 3. Steps in transformation from RGB image to Fourier amplitude spectra.
Format is identical to Fig. 2, but the environment is a campus trail.

amplitude spectrum and weighing windows corresponding to the filters
are computed, and the resulting 40 scalars are saved as a feature vector
(FV), such that

FVi =

N�1

x;y=0

A(fx; fy)Gi(fx; fy) (1)

where A(fx; fy) is the amplitude spectrum, and Gi are the filters.
There are intuitive and experimental [43], [44] reasons to believe that

spatial relationships between structural scene components may provide
finer discrimination along our dimensions. To see if capturing these
by including coarsely localized information would benefit classifica-
tion, we next performed the above procedures on 4�4 nonoverlapping
30�40-pixel image tiles. Such tiles are still large enough that they hold
macro-level features of the scene; as in the global case, we are capturing
gross structural elements and not fine object contours or textures. As
this would yield 16�40 = 640 features, to reduce this to a more man-
ageable number, we retained only the first 40 principal components
(PC) of the features computed over the training set. We apply the PC
to the log-Gabor filters [45], producing new filter sets, and then apply
these to the Fourier spectra. These are summed over all tiles for each
image to produce a scene-level descriptor. Each of the 40 global feature
inputs are thus computed by

PCFVi =

16

j=1

N�1

x;y=0

Aj(fx; fy)PCGi;j(fx; fy) (2)

where Aj(fx; fy) are the image tile spectra, and PCGi;j are the PC
log-Gabor filters. Fig. 4 shows the effect of this transformation, before
outer (tile) summation, for 16 PC, in the image domain.
FVs for the 896 training images were used to train a fully connected,

feedforward neural network using backpropagation. Eight output units
encoded the eight orientation classifications, with the unit with highest
activation being the winner, and one output unit each encoded the other
three dimensions by their strength of activation.

D. Classification Results

Table I shows classification results of global and tiled models for
each of the four dimensions. Two points should be noted. First, the low
percentages in the “mistakes” row indicate that serious misjudgments,
for example, mistaking a rightward orientation for leftward, were un-
common for both models. Second, spatial distribution information cap-
tured by using image tiles substantially helped orientation discrimina-
tion and obstacle detection. Several different network architectures, as
well as several simpler linear classifiers, all yielded similarly superior
results for the coarsely localized model over the global one. We there-
fore used this model for navigation.
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Fig. 4. Altered filters are applied to tiled track image spectra from Fig. 2, top,
and reverted to image domain by the inverse Fourier transform to show, out
of the many local features, textures, and clutter present in each tile, the image
features (orientations, scales) that each of the first 16 PC is responsive to.

TABLE I
CLASSIFICATION RESULTS

Global/Tiled. MSE = mean squared error. Mistakes: Pathness, excludes
human-labeled ambiguous scenes; Orientation, incudes human-labeled left or
right turning of any magnitude; Depth, Obstacles, includes human-labeled top
(open, crowded) and bottom (closed, empty) thirds.

III. NAVIGATION

Having demonstrated that navigationally useful information can be
extracted from image spectral components, we developed a preliminary
system to demonstrate the use of this information in an autonomous
robot navigation task. Orientation judgments relate straightforwardly
to steering; we thus chose to use this information to test our approach as
applied to path following. To enable continuous improvement through
online training, we use a neural network that maps the processed visual
features directly onto steering commands, and learns from its errors
in real time. The network is a three-layer backpropagation perceptron
with 40 inputs and 13 outputs, ranging fromhard left to hard right, prob-
abilistically chosen at each iteration based on strength of response. Ini-
tial network weights may be learned offline from images and steering
commands captured with the robot under human control, or they may
be random. Subsequently, weights are refined in an online manner, as a
human operator may provide corrective action (via a remote control) to
the steering choices of the autonomous algorithm. These human-issued
commands are treated as target values, fromwhich an error is computed
for backpropagation.

Two common limitations of training a neural network by human op-
eration are that humans are very efficient at maintaining accurate con-
trol, so that the learner may never be exposed to extreme situations,
and that often the distribution of control commands is highly skewed
(e.g., many straight path segments for a few turns), yielding unbalanced
training and overrepresentation in the network of common situations
compared with rare ones [46]. We minimize these potential hazards by
letting the robot drive autonomously from the very beginning. Thus, in-
stead of using every frame and the corresponding human control values
for training, we only train on those frames during which the human op-
erator is providing a nonzero corrective input. Instead of driving the
robot as well as possible, the task of our operator is to wait until the

robot starts heading off-track, and only then to apply brief corrective
control. As it takes some time for the operator to realize that the robot
is deviating from a desirable trajectory, and as the operator may vol-
untarily decide to wait until the last moment to apply correction, this
approach ensures that extreme situations will be encountered during
training. Also, because training only occurs in a need-based manner,
rather than at every frame, it is not the potentially skewed distribution
of all inputs, but the hopefully less-skewed distribution of corrected in-
puts, that influences the weights of the network.
We have allowed the robot to run autonomously using this method

on both a running track and a paved concrete campus trail, with suc-
cess. Qualitatively, the robot performed very well, even after limited
training. For example, starting with random weights (entirely novel en-
vironment), the robot was able to run for extended time periods around
the running track, after human corrections had been applied only during
the first half of the track’s circumference. Some generalization ability
was also observed, as the robot required substantially fewer human cor-
rections on its way back from finish to start of the trail, after training
once on the way from start to finish. Future experiments will test for
broader generalization, e.g., training on one path in the summer and
running on another during winter, or training indoors then running out-
doors. Videos of the Beobot in action are available online [47].

IV. DISCUSSION

An important contribution of our work is the finding that the classifi-
cation of pathness, orientation, depth, and obstacles by Fourier ampli-
tude spectra was robust, with very few labelings that were unambigu-
ously wrong. This reinforces the idea that the type of low-level pro-
cessing used here, originally motivated by previous workwith semantic
scene classification [35], [36], may be a generally applicable approach
for the low-dimensional, global description of scenes along a variety of
dimensions. This is particularly interesting in that the low-level visual
features used in our system, based on oriented spatial frequency-band-
pass filters, are compatible with the response properties of early visual
neurons in the monkey brain, as characterized by physiological and
other techniques [48].
Including rough spatial layout information is helpful in more com-

plex environments, such as along campus trails. As can be seen in
Fig. 2, orientation information is available in both the global amplitude
spectrum and the coarsely localized spectra for the track environment,
where the broad lines are prominent features. In the trail environment,
however, as in Fig. 3, it is difficult to discern much from the global
spectrum, which takes into account trees, buildings, and other objects.
In the coarsely localized spectra, however, some of the oriented fea-
tures that indicate path borders in the track environment of Fig. 2 are
also found in the trail environment of Fig. 3.
Our navigation system, learning steering commands directly from

spectral information, is attractive because it allows one to rapidly train
the algorithm in novel environments, with a minimal amount of super-
vision, and adjust for mistakes over time. This holds promise for use in
other navigation tasks, including a fuller implementation of path fol-
lowing, e.g., adding obstacle avoidance and landmark-based orienting
behaviors exploiting focal attention and localized object recognition, or
speed modulation based on scene depth. The current decision system is
very simple, using a single neural network with no temporal memory
(reflex agent), as our main focus is on feature extraction; it is thus re-
markable that it achieved good real-world outdoor navigation perfor-
mance.We avoid computationally expensive and time-consuming tasks
such as segmentation or object recognition, so as to enable real-time op-
eration at relatively high speeds (� 5 mph, limited by safety), nor are
we dependent on specific environmental features. Yet, we have demon-
strated a working system on a physical robot. Although generalization
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of our approach to arbitrary control tasks remains to be proven, in the
task domain studied here, the system appears robust, flexible, and com-
putationally efficient enough to run in real time on one Pentium-III pro-
cessor.
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