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Abstract— The concept of surprise is central to sensory pro-
cessing, adaptation and learning, attention, and decision making.
Yet, no widely-accepted mathematical theory currently exists to
quantitatively characterize surprise elicited by a stimulus or
event, for observers that range from single neurons to complex
natural or engineered systems. We describe a formal Bayesian
definition of surprise that is the only consistent formulation under
minimal axiomatic assumptions. Surprise quantifies how data
affects a natural or artificial observer, by measuring the differ-
ence between posterior and prior beliefs of the observer. Using
this framework we measure the extent to which humans direct
their gaze towards surprising items while watching television
and video games. Humans are strongly attracted to locations
of high Bayesian surprise, with 72% of all human gaze shifts
directed towards locations more surprising than the average, a
figure which rises to 84% when considering only gaze targets
simultaneously selected by all subjects. The resulting theory
of surprise is applicable across different spatio-temporal scales,
modalities, and levels of abstraction.

I. INTRODUCTION

Visual attention is deployed based on a combination of
bottom-up cues derived from the visual stimuli, and top-down
cues derived from volition, expectations, prior recognitions
of objects and of scene contexts, and goals of the observer
[1]. Through the interplay between bottom-up and top-down,
attention operates a rapid pruning of vast amounts of incoming
sensory information, to focus slower and more sophisticated
analysis resources onto only a few most important subsets of
the available data [2], [3]. In real-life environments, often there
is no time for detailed and thorough analysis of all inputs: a
savana monkey must typically take action faster than it can
fully recognize a rapidly approaching leopard. Consequently,
evolving rapid and computationally efficient approximations or
heuristics to important information is key to predation, escape
and mating. We show that current computational understanding
of the nature of these heuristics is encompassed and extended
by a simple Bayesian measure of intrinsic stimulus surprise.

A productive approach to studying attentional selection and
to characterising the putative underlying heuristic computa-
tions that guide attention in complex scenes uses eye-tracking
devices, to evaluate image statistics and neural responses at the
locations visited by gaze [4], [5]. With static natural stimuli,
human observers preferentially look at image locations where
local contrast and entropy, edges and corners, and bottom-up
stimulus saliency are significantly stronger than expected by

chance [6], [7], [8], [9]. Employing synthetic laboratory stim-
uli, several psychophysical studies have recently established
that transient and dynamic aspects of stimuli also strongly
capture attention, namely flicker, onsets of novel stimuli,
abrupt changes in luminance, and motion energy [10], [11],
[12]. However, with dynamic natural scenes, to which we are
confronted during most of our lives, it is not known whether
these features remain strong attractors of attention and suitable
indicators of important information.

Here we propose that attention is attracted by features that
are “surprising” and that surprise is a general, information-
theoretic concept that must be analytically formalized across
spatio-temporal scales and data types [14], [15]. We propose
a Bayesian definition of surprise and test the hypothesis that
surprise attracts attention using psychophysical eye-tracking
experiments in humans subjecs watching realistic stimuli.

II. THEORY

Surprise is fundamentally a property of data with respect
to an observer. As such, its definition must be independent of
the nature of the data or the observer. It must apply equally
well to visual, olfactory, or digital data and to information
processing observers that range from synapses, to neuronal cir-
cuits, to organisms, to computer devices. Surprise exists only
in the presence of uncertain environments, and therefore its
essence must be probabilistic. Consistently with the Bayesian
approach to data modeling and inference, the background
information of an observer is captured by his/her/its prior
probability distribution over the current space of hypotheses
or models M. The fundamental effect of the data D on the
observer is to change the prior distribution P (M) into the
posterior distribution P (M |D) via Bayes theorem P (M |D) =
P (M)P (D|M)/P (D). Thus surprise can be measured by the
distance between the prior and posterior distributions, which is
best done using the relative entropy or Kullback-Liebler (KL)
divergence [13]. In short, surprise is defined by the average of
the log-odd ratio:

S(D,M) = KL(P (M |D), P (M))

=
∫
M

P (M |D) log
P (M |D)
P (M)

dM (1)

taken with respect to the posterior distribution over the model
class M. Surprise can always be computed numerically, but
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also analytically in many practical cases, in particular those
involving probability distributions in the exponential family
[16] with conjugate or other priors.

Note that the KL divergence is not symmetric but could
easily be symmetrized using the the symmetric version
[KL(P (M), P (M |D))+KL(P (M |D), P (M))]/2. More im-
portantly, the KL divergence has well-known theoretical ad-
vantages, including invariance with respect to reparameteriza-
tions.

A unit of surprise — a “wow” — may then be defined for a
single model M as the amount of surprise corresponding to a
two-fold variation between P (M |D) and P (M), correspond-
ing to 1 = log P (M |D)/P (M) (with log taken in base 2).
The total number of wows experienced when simultaneously
considering all models is obtained through the integration in
the definition of suprise.

III. ANALYTICAL COMPUTATION OF SURPRISE

Consider a family of models M parameterized by w with
likelihood P (D|M) = P (D|w). By definition, the conjugate
prior P (M) = P (w) has the same functional form as the
likelihood. In this case, by Bayes’ theorem, the posterior
also has the same functional form. While surprise can be
computed with any prior, conjugate priors are useful for their
mathematical simplicity and ease of implementation during,
for instance, Bayesian learning, where the posterior at one
iteration becomes the prior of the following iteration.

A likelihood is in the exponential family with parameter
vector w if it can be expressed in the form, for a single datum
d

P (d|w) = h(d)c(w) exp

(
k∑

i=1

θi(w)ti(d)

)
(2)

Most common distributions (Binomial, Poisson, Gaussian,
etc.) are members of the exponential family. With N inde-
pendent data points (D = d1, . . . , dN ),

P (D|w) = [c(w)]N [
N∏

j=1

h(dj)] exp

(
k∑

i=1

θi(w)Ti(D)

)
(3)

letting Ti(D) =
∑N

j=1 ti(dj) be the sufficient statistics. Most
common distributions belong to the exponential family. The
conjugate prior has a similar exponential form

P (w; αi) = C exp

(
k∑

i=1

αiθi(w)

)
(4)

parameterized by the αi’s. Using Bayes’ theorem, the posterior
has the same exponential form with normalizing constant C ′

and α′
i = αi + Ti(D). Calculation of surprise yields

S(D,M) = log
C ′

C
−

k∑
i=1

Ti(D)E[θi(w)] (5)

where E[θi(w)] is the expectation of θi(w) with respect to the
posterior. Surprise can be rewritten as:

S(D,M) = N [log c(w)+ < log h(d) > − < log P (d) >

−
k∑

i=1

< ti(d) > E[θi(w)]] (6)

where <> denotes averages over the data points. Thus in
general, for large N , surprise grows linearly with the number
of data points.

This general result for the exponential family can easily
be specialized to particular cases. Consider, for example, the
classical case of binary data modeled as a series of independent
and identical coin tosses (Binomial Model). The family M of
models is parameterized by the probability 0 ≤ w ≤ 1 of
observing “heads” on a coin toss, thus encompasses models
of biased coins (small and large w values) and of fair coins
(w ≈ 0.5). The conjugate prior is the Beta prior P (w; α, β) =
Cwα−1(1 − w)β−1 with C = Γ(α + β)/[Γ(α)Γ(β)] and
parameters α, β. With a number n of heads observed after
tossing a coin N times, the posterior is also a Beta distribution
with α′ = α+n and β′ = β+(N−n). Integrating over models,
surprise is

S(D,M) = log
C ′

C
− n[Ψ(α + β + N) − Ψ(α + n)]

− (N − n)[Ψ(α + β + N) − Ψ(β + N − n)]

where Ψ is the digamma function. For example, assume an
observer who initially believes most coins are fair, i.e., whose
prior is concentrated around w = 0.5 (e.g., α = β = 5).
Assume that N = 10 tosses of a coin are observed and happen
to yield exactly n = 10 heads. This observation is surprising
and shifts the observer’s beliefs towards favoring the models
of coins that yield more heads (α ′ = 15, β′ = 5), resulting
in 2.26 wows of surprise. An outcome of 5 heads and 5 tails
would elicit only 0.15 wows from slight sharpening of the
prior around w = 0.5 (α′ = 10, β′ = 10).

IV. EXPERIMENTS AND RESULTS

To test the surprise hypothesis — that surprise attracts
human attention and gaze in natural scenes — we recorded
eye movements from eight naı̈ve observers (three females
and five males, ages 23-32, normal or corrected-to-normal
vision). Each watched a subset from 50 videoclips totaling
over 25 minutes of playtime (46,489 video frames, 640×480,
60.27 Hz, mean screen luminance 30 cd/m2, room 4 cd/m2,
viewing distance 80cm, field of view 28◦ × 21◦). Clips
comprised outdoors daytime and nighttime scenes of crowded
environments, video games, and television broadcast including
news, sports, and commercials. Right-eye position was tracked
with a 240 Hz video-based device (ISCAN RK-464). Two
hundred calibrated eye movement traces (10,192 saccades)
were analyzed, corresponding to four distinct observers for
each of the 50 clips. Figure 1 shows sample scanpaths for one
videoclip.

To characterize image regions selected by participants, we
process videoclips through computational metrics that output
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Fig. 1. (a) Sample eye movement traces from four observers (CZ, NM, RC,
VN) watching one video clip (545 frames, 18.1s) that showed cars passing by
on a fairly static background (most other clips tested in this study had dynamic
backgrounds and camera motion). Squares denote locations segmented as
saccade endpoints [17] (42, 36, 48, and 16 saccades for CZ, NM, RC, and
VN). (b) Our data shows high inter-individual overlap of saccade targets,
as shown here with the locations where one human saccade endpoint was
nearby (within 5.6◦) the instantaneous eye position of one (white squares,
47 saccades), two (cyan squares, 36 saccades) or all three (black squares, 13
saccades) other humans. (c) Given this high overlap, a metric where the master
map was created from the three eye movement traces other than that being
tested yielded the highest KL score of all metrics tested, as derived from
the histograms of metric values at human (blue) and random (green) saccade
targets. Indeed, this metric’s map was very sparse, as demonstrated by the
high number of random saccades landing on locations with near-zero metric
response, yet humans preferentially saccaded towards the three active hotspots
of that metric, as demonstrated by the high number of human saccades landing
on locations with near-unity metric responses.

a topographic dynamic master response map, assigning in
real-time a response value to every input location. A good
master map would highlight, more than expected by chance,
locations gazed to by observers. To score each metric we
hence sample, at onset of every human saccade, master map
activity around the saccade’s future endpoint, and around a
uniformly random endpoint (random sampling was repeated
100 times to evaluate variability). We quantify differences
between histograms of master map samples collected from
human and random saccades using again the Kullback-Leibler
(KL) distance: metrics which better predict human scanpaths
exhibit higher distances from random as, typically, observers
non-uniformly gaze towards a minority of regions with highest
metric responses while avoiding a majority of regions with low
metric responses. This approach presents several advantages

over simpler scoring schemes [6], [9], including agnosticity to
putative mechanisms for generating saccades and the fact that
applying any continuous nonlinearity to master map values
would not affect scoring.
Experimental results. We test six computational metrics,
encompassing and extending the state-of-the-art found in pre-
vious studies. The first three quantify static image properties
(local intensity variance in 16 × 16 image patches [6]; local
oriented edge density as measured with Gabor filters [3]; and
local Shannon entropy in 16 × 16 image patches [7]). The
remaining three metrics are more sensitive to dynamic events
(local motion [3]; outlier-based saliency [3]; and surprise).

For all metrics, we find that humans are significantly
attracted by image regions with higher metric responses.
However, the static metrics typically respond vigorously at
numerous visual locations (Figure 2), hence they are poorly
specific and yield relatively low KL scores between humans
and random. The metrics sensitive to motion, outliers, and
surprising events, in comparison, yield sparser maps and
higher KL scores.

The surprise metric of interest here quantifies low-level
surprise in image patches over space and time, and at this
point does not account for high-level or cognitive beliefs of
our human observers. Rather, it assumes a family of simple
models for image patches, each processed through 72 early
feature detectors sensitive to color, orientation, motion, etc.,
and computes surprise from shifts in the distribution of beliefs
about which models better describe the patches (all source
code is freely available online at http://iLab.usc.edu/toolkit/).
We find that the surprise metric significantly outperforms all
other computational metrics (p < 10−100 or better on t-tests
for equality of KL scores), scoring nearly 20% better than
the second-best metric (saliency) and 60% better than the best
static metric (entropy). Surprising stimuli often substantially
differ from simple feature outliers; for example, a continually
blinking light on a static background elicits sustained flicker
due to its locally outlier temporal dynamics but is only sur-
prising for a moment. Similarly, a shower of randomly-colored
pixels continually excites all low-level feature detectors but
rapidly becomes unsurprising.
Strongest attractors of human attention. Clearly, in our
and previous eye-tracking experiments, in some situations
potentially interesting targets were more numerous than in
others. With many possible targets, different observers may
orient towards different locations, making it more difficult
for a single metric to accurately predict all observers. Hence
we consider (Figure 3) subsets of human saccades where at
least two, three, or all four observers simultaneously agreed
on a gaze target. Observers could have agreed based on
bottom-up factors (e.g., only one location had interesting
visual appearance at that time), top-down factors (e.g., only
one object was of current cognitive interest), or both (e.g., a
single cognitively interesting object was present which also
had distinctive appearance). Irrespectively of the cause for
agreement, it indicates consolidated belief that a location was
attractive. While the KL scores of all metrics improved when
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Fig. 2. (a) Sample frames from our video clips, with corresponding
human saccades and predictions from the entropy, surprise, and human-derived
metrics. Entropy maps, like intensity variance and orientation maps, exhibited
many locations with high responses, hence had low specificity and were
poorly discriminative. In contrast, motion, saliency, surprise, and human-
derived maps were much sparser and more specific, with surprise significantly
more often on target than motion and saliency. For three example frames (first
column), saccades from one subject are shown (arrows) with corresponding
apertures over which master map activity at the saccade endpoint was sampled
(circles). Associated master maps exemplify the varying degrees of sparseness
and specificity of the metrics tested. (b) KL scores for these metrics indicate
significantly different performance levels, and a strict ranking of variance <
orientation < entropy < motion < saliency < surprise < human-derived. KL
scores were computed by comparing the number of human saccades landing
onto each given range of master map values (narrow blue bars) to the number
of random saccades hitting the same range (wider green bars). A score of
zero would indicate equality between the human and random histograms, i.e.,
humans did not tend to hit various master map values any differently from
expected by chance, or, the master map could not predict human saccades
better than random saccades. Among the six computational metrics tested in
total, surprise performed best, in that surprising locations were relatively few
yet reliably gazed to by humans.

progressively focusing onto only those locations, dynamic
metrics improved more steeply, indicating that stimuli which
more reliably attracted all observers carried more motion,
saliency, and surprise. Surprise remained significantly the best
metric to characterize these agreed-upon attractors of human
gaze (p < 10−100 or better on t-tests for equality of KL
scores).

Overall, surprise explained the greatest fraction of human
saccades, indicating that humans are significantly attracted
towards surprising locations in video displays. Over 72% of
all human saccades were targeted to locations predicted to
be more surprising than on average. When only considering

Fig. 3. KL scores when considering only saccades where at least one
(all 10,192 saccades), two (7,948 saccades), three (5,565 saccades), or all
four (2,951 saccades) humans agreed on a common gaze location, for the
static (a) and dynamic metrics (b). Static metrics improved substantially when
progressively focusing onto saccades with stronger inter-observer agreement
(average slope 0.56±0.37 percent KL score units per 1,000 pruned saccades).
Hence, when humans agreed on a location, they also tended to be more reliably
predicted by the metrics. Furthermore, dynamic metrics improved 4.5 times
more steeply (slope 2.44±0.37), suggesting a stronger role of dynamic events
in attracting human attention. Surprising events were significantly the strongest
(t-tests for equality of KL scores between surprise and other metrics, p <
10−100).

saccades where two, three, or four observers agreed on a
common gaze target, this figure rose to 76%, 80%, and 84%,
respectively.

V. DISCUSSION: BITS AND WOWS

Much research has employed Shannon entropy and other
inherently static measures of information to analyze neuronal
processing and behavior [25], [26], [27]. Previous research has
shown with either static scenes or dynamic synthetic stimuli
that humans preferentially fixate regions of high entropy [7],
contrast [6], saliency [9], flicker [10], or motion [11]. However,
even casual observation suggests that these alone fail to
capture neural response transients and adaptation.

Here, by explicitly considering internal models and chang-
ing beliefs and developing new tools to quantify bottom-
up influences on attention in dynamic scenes, we find that
humans fixate surprising locations even more reliably, making
surprise the strongest of all algorithmic metrics tested. These
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conclusions were made possible by developing new tools to
quantify what attracts human gaze over space and time in
dynamic natural scenes. Surprise explains best where humans
look when considering all saccades, and even more so when
restricting the analysis to only those saccades for which human
observers tended to agree. Hence, surprise represents an inex-
pensive, easily computable shortcut to important information
[28].

Shannon’s theory of communication focuses on “repro-
ducing at one point either exactly or approximately a mes-
sage selected at another point [29].” Although eminently
successful for the development of modern computer and
telecommunication technologies, such definition does not cap-
ture subjective and semantic aspects of information. This is
clearly exemplified by the paradox that random snow, the
most boring of all television programs, carries the largest
amount of Shannon information. At onset, snow carries both
surprise and information. Indeed snow may signal storm,
earthquake, toddler’s curiosity, or military putsch. After a
moment, however, the viewer’s model of the image shifts
towards a random pixel model, prior and posterior become
identical, and additional snow frames carry zero surprise albeit
megabytes of Shannon information. Indeed, our video clips,
presumably of interest to millions of television watchers and
gamers, carried ≈ 0.3 megabytes of Shannon information
per second once compressed to constant-quality MPEG4. This
was significantly lower than ≈ 5.0 megabytes/s for matched
MPEG4-compressed uniform snow clips, probably of interest
only to a few engineers [30]. Thus entropy and surprise are
two dual facets of information. Shannon’s entropy

H(D) = −
∫
D

P (D) log P (D)dD, (7)

requires integration over the space of data. Suprise instead
requires integration over the space of models.

Under a small set of axioms [31], [32], [33] the Bayesian
definition of probability provides the only consistent approach
to inference and learning. Likewise, in the same framework,
surprise is the only consistent measure of novelty. Other
measures of novelty, for instance in terms of outliers [34],
can be viewed as approximations to surprise which can be
flawed in some extreme cases.

In the absence of quantitative tools to measure surprise,
most experimental and modeling work to date has adopted
the approximation that novel events are surprising, and has
focused on experimental scenarios which are simple enough
to ensure an overlap between informal notions of novelty
and surprise: for example, a stimulus is novel during testing
if it has not been seen during training [38]. Our definition
opens new avenues for more sophisticated experiments, where
surprise elicited by different stimuli can be precisely compared
and calibrated, yielding predictions at the single-unit as well
as behavioral levels.

The definition of surprise — as the distance between the
posterior and prior distributions of beliefs over models — is
entirely general and readily applicable to the analysis of audi-

tory, olfactory, gustatory, or somatosensory data. While here
we have focused on behavior rather than detailed biophysical
implementation, it is worth noting that detecting surprise in
neural spike trains does not require semantic understanding of
the data carried by the spike trains, and thus could provide
guiding signals during self-organization and development of
sensory areas. At higher processing levels, top-down cues and
task demands are known to combine with stimulus novelty in
capturing attention and triggering learning [36], [39], ideas
which may now be formalized and quantified in terms of
priors, posteriors, and surprise. Surprise, indeed, inherently de-
pends on uncertainty and on prior beliefs. Hence surprise the-
ory can further be tested and utilized in experiments where the
prior is biased, for example by top-down instructions or prior
exposures to stimuli [39]. In addition, simple surprise-based
behavioral measures such as the eye-tracking one used here
may prove useful for early diagnostic of human conditions
including autism and attention-deficit hyperactive disorder,
as well as for quantitative comparison between humans and
animals which may have lower or different priors, including
monkeys, frogs, and flies.

Beyond sensory biology, computable surprise could guide
the development of data mining and compression systems
(giving more bits to surprising regions of interest), to find
surprising agents in crowds, surprising sentences in books or
speeches, surprising sequences in genomes, surprising medical
symptoms, surprising odors in airport luggage racks, surprising
documents on the world-wide-web, or to design surprising
advertisements.

VI. APPENDIX: ADDITIONAL EXPERIMENTAL DETAILS

Methods: Subjects were USC students and staff, three females
and five males, ages 23-32, normal or corrected-to-normal
vision. Informed consent was obtained from all subjects prior
to the experiments. Each subject watched a subset of the
collection of videoclips, so that eye movement traces from
four distinct subjects were obtained for each clip.

Sampling of master map values around human or random
saccade targets used a circular aperture of diameter 5.6◦,
approximating the size of the fovea and parafovea. Saccade
initiation latency was accounted for by subjecting the master
maps to a temporal low-pass filter with time constant τ =
500ms. The random sampling process was repeated 100 times,
yielding the (very small) error bars of the random histograms
of Figures 1 and 2.

Human-derived metric: A Gaussian blob with σ = 3
master map pixels was continuously painted at each of the
eye positions of the three observers other than that under test,
with some forgetting provided by the master map’s temporal
low-pass filtering. High metric responses were hence sampled
if and only if a saccade of the observer under test was aimed
to approximately a location where other observer(s) were
currently looking. Because this metric is not predictive like the
others, sampling was performed when a saccade ended (and
other humans were expected to also be reaching the endpoint)
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rather than when it started (and other humans possibly also
started).

Static metrics: The variance metric computes local variance
of pixel luminance within 16×16 image patches [6], [21]. The
Shannon entropy metric computes the entropy of the local
histogram of grey-levels in 16 × 16 image patches [7]. The
DCT-based (Discrete Cosine Transform) information metric
similarly computes in image patches the number of DCT
coefficients above detection threshold, for the luminance and
two chrominance channels [37].

The colour, intensity and orientation contrast metrics are
derived from reduced versions of our previously proposed
bottom-up saliency metric [37], [3]. They compute local con-
trast in each feature dimension using difference-of-Gaussian
centre-surround contrast detectors operating at six different
spatial scales.

Dynamic metrics: The flicker and motion metrics rely on
the same centre-surround architecture as the color, intensity
and orientation metrics. The saliency metric combines inten-
sity contrast (six feature maps), red/green and blue/yellow
colour opponencies (12 maps), four orientation contrasts (24
maps), temporal onset/offset (six maps) and motion energy in
four directions (24 maps), totalling 72 feature maps. Central
to the saliency and the color, intensity, orientation, flicker
and motion metrics is non-classical spatial competition for
saliency [37], by which distant active locations in each feature
map inhibit each other, giving rise to pop-out and attentional
capture [22]. Thus, these metrics are not necessarily attracted
to information-rich image regions, as many highly informative
regions will be discarded if they resemble their neighbours,
yielding sparser maps than the contrast, entropy and DCT-
based information metrics which are purely local.

The surprise metric retains the 72 raw feature detection
mechanisms of the saliency metric (but without the non-
classical competition for saliency), and attaches local surprise
detectors to each location in each of the 72 feature maps. Sur-
prise detectors compute both local temporal surprise (or local
temporal novelty) and spatial surprise (or spatial saliency).
Further details on the implementation of this metric have been
described previously [40], and are also available with our
source code, distributed freely at http://iLab.usc.edu/toolkit/.
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