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a b s t r a c t

The amount of information contained in a piece of data can be measured by the effect this data has on
its observer. Fundamentally, this effect is to transform the observer’s prior beliefs into posterior beliefs,
according to Bayes theorem. Thus the amount of information can be measured in a natural way by the
distance (relative entropy) between the prior and posterior distributions of the observer over the available
space of hypotheses. This facet of information, termed ‘‘surprise’’, is important in dynamic situations
where beliefs change, in particular during learning and adaptation. Surprise can often be computed
analytically, for instance in the case of distributions from the exponential family, or it can be numerically
approximated. During sequential Bayesian learning, surprise decreases as the inverse of the number
of training examples. Theoretical properties of surprise are discussed, in particular how it differs and
complements Shannon’s definition of information. A computer vision neural network architecture is then
presented capable of computing surprise over images and video stimuli. Hypothesizing that surprising
data ought to attract natural or artificial attention systems, the output of this architecture is used in a
psychophysical experiment to analyze human eye movements in the presence of natural video stimuli.
Surprise is found to yield robust performance at predicting human gaze (ROC-like ordinal dominance
score∼0.7 compared to∼0.8 for human inter-observer repeatability,∼0.6 for simpler intensity contrast-
based predictor, and 0.5 for chance). The resulting theory of surprise is applicable across different spatio-
temporal scales, modalities, and levels of abstraction.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of information is central to science, technology,
and many other human endeavors. While several approaches for
quantifying information have been proposed, the most prominent
one so far has been Claude Shannon’s definition introduced over
half a century ago (Aczel & Daroczy, 1975; Blahut, 1987; Cover &
Thomas, 1991; McEliece, 1977; Shannon, 1948). According to this
definition, the amount of information contained in a piece of data
D is measured by− log2 P(D) bits—a rare piece of data with small
probability is considered more informative. Although eminently
successful for the development of modern telecommunication
and computer technologies, Shannon’s definition does not capture
all aspects of information. Here we look at information from a
different angle. Starting from Bayes theorem, we notice that the
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fundamental effect that data has on a given observer is to change
his/her/its prior beliefs into posterior beliefs. Thus we propose to
measure the effect D has on the observer by the distance between
his prior and posterior belief distributions. We call this facet of
information surprise.
Surprise plays an important role in dynamic situationswhen the

beliefs of the observer change significantly in time, as a result of
consecutive applications of Bayes theorem. This can happen in at
least two broad categories of situations: either when the beliefs
keep changing all the time without converging to a stable value,
or when the beliefs progressively converge to a stable value. The
first case corresponds to tracking or adaption in a non-stationary
environment. The second case corresponds to learning from a
stationary data set, when beliefs evolve but finally converge to
a stable value. In our framework, adaptation and learning are
the results of the same fundamental operation: belief update
using Bayes theorem. What distinguishes them is not the basic
underlying mathematical operation, but rather the memory span
and time scales involved.
In what follows, in Section 2 we first provide the mathematical

definition of surprise. In Section 3, we show how surprise can be
computed exactly or approximated efficiently in most common
situations. In Section 4, we study how surprise changes during
learning. In Section 5, we investigate the connections between
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surprise and other theories of information and novelty, including
Shannon’s theory of information. In Section 6, we describe a
neural network architecture for computing surprise over image
and video data in computer vision. Finally, in Section 7, we conduct
psychophysical experiments and apply the surprise architecture
to the problem of modeling attention and predicting rapid eye
movements in humans watching natural stimuli.
The present paper builds on our previously published reports

on the same theme (Baldi, 2002; Itti & Baldi, 2005, 2006,
2009). The two key new components here are: (1) a detailed
and self-contained treatment of the theory with derivation of
closed-form expressions for computing surprise in a number of
important cases, analysis of the relationship between surprise and
Bayesian learning, and comparison of surprise to other theories
of information and novelty; and (2) a detailed presentation of
the computational model of attention developed to investigate to
which extent Bayesian surprise may predict what attracts human
gaze while watching natural video clips. In addition, we also
describe new experimental results comparing two variants of our
computational model (using either Gaussian data and a Gaussian
prior, or Poisson data and a Gamma prior; see below) on two
open-access human gaze tracking datasets, and we develop a new
temporal analysis that reveals a strong time contingency between
the onset of a surprising event in a video clip and the execution
of a human gaze shift towards such event. The reader is invited to
explore our previous publications for more extensive discussions
of the eye-tracking methodologies, general modeling of human
saliency maps, and methodologies for comparing human gaze
recordings to saliency maps generated by a number of different
models available in the literature. All the data collected for the
experiments have been made publicly available.

2. Mathematical definition of surprise

The definition we propose is best understood within the
Bayesian or subjectivist framework of probability theory. In
the subjectivist framework, degrees of belief or confidence are
associated with hypotheses or models. It can be shown that under
a small set of reasonable axioms, these degrees of belief can be
represented by real numbers and that when rescaled to the [0, 1]
interval they must obey the rules of probability and in particular
Bayes theorem (Berger, 1985; Cox, 1964; Gelman, Carlin, Stern,
& Rubin, 1995; Jaynes, 1986, 2003; Savage, 1972). The amount
of surprise in the data for a given observer can be measured by
looking at the changes that take place in going from the prior to
the posterior distributions.
Specifically, consider an observerwith a prior distribution P(M)

over a set M of possible models or hypotheses. The collection
of a piece of data D leads to a reevaluation of beliefs and the
transformation of the prior probability into a posterior distribution
according to Bayes theorem,

P(M|D) =
P(D|M)
P(D)

P(M). (1)

From this equation, the effect of D is clearly to change P(M) to
P(M|D). In other words, we view the data D as an operator acting
on the space of distributions over the space of models. Thus, one basic
way of measuring information carried by D is to measure the distance
between the prior and the posterior distributions. To distinguish it
from Shannon’s communication information, we call this notion of
information the surprise information, or just surprise (Baldi, 2002):

S(D,M) = d[P(M), P(M|D)] (2)

where d is a distance or dissimilarity measure. There are different
ways of measuring distance or dissimilarity between probability
distributions. Inwhat follows, for standardwell-known theoretical
reasons such as invariance with respect to reparameterizations,
we use the relative entropy or Kullback–Liebler (Kullback, 1968)
divergence K

S(D,M) = K(P(M), P(M|D))

=

∫
M

P(M) log
P(M)
P(M|D)

dM

= −H(P(M))−
∫

M

P(M) log P(M|D)dM

= log P(D)−
∫

M

P(M) log P(D|M)dM (3)

where H denotes the entropy.
The alternative version K(P(M|D), P(M)) of the relative en-

tropy may also be used (and may even be slightly preferable in
settings where the ‘‘true’’ or ‘‘best’’ distribution is used as the first
argument). While the basic principles in the following derivations
apply to both forms, here we use the version in Eq. (3) because in
general it leads to slightly simpler analytical expressions. This is
simply because the prior distribution,which occurs twice in Eq. (3),
in general has a simpler expression than the posterior distribu-
tion which contains additional data-dependent terms. Alterna-
tively, the relative entropy might also be symmetrized by taking
[K(P(M), P(M|D))+ K(P(M|D), P(M))]/2. Although the symmet-
ric version is rarely used, the analytical formula to be derived could
be applied to the symmetric version with the proper and obvi-
ous adjustments. The same applies to other variations, such as the
Jensen–Shannondivergence (Lin, 1991;Wong&You, 1985). In con-
sidering the symmetric version, note, however, that there is no
reason why the intuitive notion of surprise ought to be symmet-
ric with respect to the distributions involved. In fact, introspection
dictates that the contrary ought to be true. A broad prior distri-
bution followed by a narrow posterior distribution corresponds to
a reduction in uncertainty, while a narrow prior distribution fol-
lowed by a broad posterior distribution corresponds to an increase
in uncertainty, and both lead to different subjective experiences.
Equivalently, we can define the single-model surprise by the

log-odd ratio

S(D,M) = log
P(M)
P(M|D)

(4)

and the surprise by its average

S(D,M) =

∫
M

S(D,M)P(M)dM (5)

taken with respect to the prior distribution over the model class.
In statistical mechanics terminology, surprise can also be viewed
as the free energy of the negative log-posterior at a temperature
t = 1, with respect to the prior distribution over the space of
models (Baldi & Brunak, 2001).
A unit of surprise – the ‘‘wow’’ – can be defined for a

single model M as the amount of surprise corresponding to a
two-fold variation between the prior and the posterior, i.e., as
− log2 P(M)/P(M|D). Note that unless we use absolute values,
this ratio can be positive or negative depending on whether the
observer’s belief in model M increases or decreases. The total
number ofwows experiencedwhen simultaneously considering all
models is obtained by integrating overM and, as a relative entropy,
is always positive.

3. Analytical computation or approximation of surprise

As a relative entropy, surprise can always be estimated, at least
numerically. But for the concept to be really useful, one ought to be
able to compute surprise analytically, at least in the most standard
statistical cases.
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More precisely, consider a data setD = {d1, . . . , dN} containing
N points. For simplicity, although this does not correspond to any
restriction in the general theory, we consider the case of conjugate
priors, where the prior and the posterior have the same functional
form. In addition to their theoretical interest, conjugate priors are
also important for efficient implementations of iterative Bayesian
learning where the posterior at iteration t becomes the prior for
iteration t + 1. In order to compute surprise in Eq. (3) with
conjugate priors, we need only to compute general terms of the
form

F(P1, P2) =
∫
P1 log P2dx (6)

where P1(x) and P2(x) are two distributions with the same
functional form. The surprise is then given by
S = F(P1, P1)− F(P1, P2) (7)
where P1 is the prior and P2 is the posterior. Note also that
in this case the symmetric divergence can easily be computed
using F(P1, P1)− F(P1, P2)+ F(P2, P2)− F(P2, P1). Details for the
calculation of F(P1, P2) in the following specific examples are given
in the Appendix.

3.1. Discrete data: Multinomial model

Consider the case where di is binary. The simplest class of
models for D is then M(p), the first order Markov model with
a single parameter p representing the probability of emitting a
1. The conjugate prior on p is the Beta distribution (or Dirichlet
distribution in the general multinomial case)

D1(a1, b1) =
Γ (a1 + b1)
Γ (a1)Γ (b1)

xa1−1(1− x)b1−1

= C1xa1−1(1− x)b1−1 (8)
with parameters a1 ≥ 0, b1 ≥ 0, and a1 + b1 > 0. The expectation
is a1/(a1 + b1). With n successes in the sequence D of N samples,
the posterior is a Dirichlet distribution D2(a2, b2) with Baldi and
Brunak (2001)
a2 = a1 + n and b2 = b1 + (N − n). (9)
The surprise can be computed exactly
S(D,M) = K(D1,D2)

= log
C1
C2
+ n[Ψ (a1 + b1)− Ψ (a1)]

+ (N − n)[Ψ (a1 + b1)− Ψ (b1)] (10)
where Ψ is the derivative of the logarithm of the Gamma function
(see Appendix). When N → ∞, and n = pN with 0 < p < 1 we
have
S(D,M) ≈ NK(p, a1)

= NK
(
(p, 1− p),

(
a1

a1 + b1
,
b1

a1 + b1

))
(11)

where K(p, a1) is a concise notation to represent the Kull-
back–Liebler divergence between the empirical distribution (p, 1−
p) and the expectation of the prior (a1/(a1 + b1), b1/(a1 + b1)).
Thus asymptotically surprise grows linearly with the number of
data points with a proportionality coefficient that depends on the
discrepancy between the expectation of the prior and the observed
distribution. The same relationship is true in the case of a multino-
mialmodel.When the prior is symmetric (a1 = b1), a slightlymore
precise approximation is provided by

S(D,M) = K(D1,D2) ≈ N

[
2a1−1∑
k=a1

1
k
− H(p)

]
(12)

whereH(p) denotes the entropyH(p) = −p log p−(1−p) log(1−
p). For instance, when a1 = 1 then K(D1,D2) ≈ N(1− H(p)), and
when a1 = 5 then K(D1,D2) ≈ N[0.746− H(p)].
3.2. Discrete data: Poisson model

As a second discrete example, consider the case where di is
an integer. A simple class of models for D is the class of Poisson
models parameterized byλ. The conjugate prior onλ is the Gamma
prior

Γ1(a1, b1) =
ba11
Γ (a1)

xa1−1e−b1x = C1xa1−1e−b1x (13)

with x ≥ 0, shape a1 > 0, inverse scale b1 > 0. The expectation
is a1/b1. With N observations, the posterior is also a Gamma
distribution Γ2(a2, b2)with

a2 = a1 + Nm̄ and b2 = b1 + N (14)

where m̄ is the samplemean. The surprise can be computed exactly

S(D,M) = K(Γ1,Γ2)

= a1 log
b1

b1 + N
− Nm̄ log(b1 + N)+ log

Γ (a1 + Nm̄)
Γ (a1)

+
Na1
b1
+ Nm̄[log b1 − Ψ (a1)]. (15)

When N →∞, Stirling’s formula yields the approximation

S(D,M) ≈ N
(
a1
b1
− m̄[1− log m̄+ Ψ (a1)− log b1]

)
. (16)

Thus asymptotically surprise information grows linearly with the
number of data points with a proportionality coefficient that
depends on the difference between themean a1/b1 of the prior and
mean m̄ of the sample plus an offset.

3.3. Continuous data: Unknown mean/known variance

When the di are real, we can consider first the case of unknown
mean with a known variance. We have a family M(µ) of models,
with a Gaussian prior G1(µ1, σ 21 ). If the data has known variance
σ 2, then the posterior distribution is Gaussian G2(µ2, σ 22 ) with
parameters given by (Gelman et al., 1995)

µ2 =

µ1
σ 21
+
Nm̄
σ 2

1
σ 21
+

N
σ 2

and
1
σ 22
=
1
σ 21
+
N
σ 2

(17)

where m̄ is the observed mean. In this case

S(D,M) = K(G1,G2)

= log
σ√

σ 2 + Nσ 21
+ N

σ 21

2σ 2
+
N2σ 21 (µ1 − m̄)

2

2σ 2(σ 2 + Nσ 21 )

≈
N
2σ 2
[σ 21 + (µ1 − m̄)

2
] (18)

the approximation being valid for largeN . In the special casewhere
the prior has the same variance as the data σ1 = σ then the
formula simplifies a little and yields

S = K(G1,G2)

=
N
2
−
1
2
log(N + 1)+

N2(µ1 − m̄)2

2(N + 1)σ 2

≈
N
2σ 2
[σ 2 + (µ1 − m̄)2] (19)

the last approximation being valid when N is large. In any case,
surprise grows linearly with N with a coefficient that is the sum of
the prior variance and the square difference between the expected
mean and the empirical mean scaled by the variance of the
data.
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3.4. Continuous data: Unknown variance/known mean

When the dis are real, we can also consider the case of unknown
variance with a known mean. We then have a family M(σ 2) of
models, with a conjugate scaled inverse gamma prior (Gelman
et al., 1995)

Γ1(ν1, s1) =
(
ν1
2 )

ν1/2sν11
Γ (

ν1
2 )

(σ 2)−(
ν1
2 +1)e−

ν1s
2
1

2σ2

= C1(σ 2)−(
ν1
2 +1)e−

ν1s
2
1

2σ2 . (20)

The posterior is then a scaled inverse gamma distribution (Gelman
et al., 1995) with

ν2 = ν1 + N and s22 =
ν1s21 + Nσ̄

2

ν1 + N
. (21)

Here σ̄ 2 =
∑
(xi − m)2/N is the observed variance, based on the

known meanm. The surprise

S(D,M) = K(Γ1,Γ2)

= log
C1
C2
−
N
2

[
Ψ

(ν
2

)
+ log

2
ν1s21

]
+
Nσ̄ 2

2s21
. (22)

For large values of N ,

S = K(Γ1,Γ2)

≈
N
2

(
σ̄ 2

s21
+ log

ν1s21
2σ̄ 2
− Ψ

(ν1
2

))
. (23)

Thus surprise information scales linearly with N , with a coefficient
of proportionality that typically depends mostly on the ratio of the
empirical variance to the scale parameter s21, which is roughly the
expectation of theprior [the expectation of theprior is ν1s21/(ν1−2)
provided ν1 > 2]. The effects of very large or very small values of σ̄
or ν1 can also be seen in the formula above. In particular, surprise is
largest when the empirical variance σ̄ 2 goes to 0 or infinity, i.e., is
very different from the prior expectation.

3.5. Continuous data: Unknown mean/unknown variance

Finally, we can consider the case of unknown mean with un-
known variance.We have a familyM(µ, σ 2) ofmodels, with a con-
jugate prior G1Γ1 = P(µ|σ 2)P(σ 2) = G1(µ1, σ 2/κ1)Γ1(ν1, s1),
product of a normal with a scaled inverse Gamma distribution.
Thus the prior has four parameters (µ1, κ1, ν1, s1), with κ1 > 0,
ν1 > 0, and s1 > 0. The conjugate posterior has the same
form,with similar parameters (µ2, κ2, ν2, s2) satisfying (see for in-
stance Gelman et al. (1995))

µ2 =
κ1

κ1 + N
µ1 +

N
κ1 + N

m̄

κ2 = κ1 + N
ν2 = ν1 + N

ν2s22 = ν1s
2
1 + (N − 1)σ̄

2
+

κ1N
κ1 + N

(m̄− µ1)2

with m̄ =
∑
xi/N and σ̄ 2 =

∑
(xi − m̄)2/(N − 1). The surprise is

S(D,M) = K(G1Γ1,G2Γ2)

=
1
2
log

κ1

κ1 + N
+
N
2κ1

κ1 + N
2

[
N(m̄− µ1)
(κ1 + N)s1

]2
+ log

C1
C2
−
N
2

[
Ψ

(ν1
2

)
+ log

2
ν1s21

]

+

(N − 1)σ̄ 2 + κ1N
κ1+N

(m̄− µ1)2

2s21
. (24)
For large values of N ,

K(G1Γ1,G2Γ2) ≈
N
2

(
1
κ1
+
σ̄ 2

s21
+ log

ν1s21
2σ̄ 2

−Ψ

(ν1
2

)
+
(m̄− µ1)2

s21

)
. (25)

Surprise information is linear in N with a coefficient that is
essentially the sum of the coefficients derived in the unknown
mean and unknown variance partial cases.

3.6. Generalization: Exponential families with conjugate priors

The previous examples can be generalized by considering a
family M(θ) of models parameterized by the parameter vector θ
with a likelihood function associated with the exponential family
of distributions (Brown, 1986)

P(d|M) = h(d)c(θ) exp

(
k∑
i=1

wi(θ)ti(d)

)
(26)

where h(d), c(θ), wi(θ), and ti(d) are known functions of the
respective variables. With N independent data points (D =

d1, . . . , dN )

P(D|M) = [c(θ)]Nh(D) exp

(
k∑
i=1

wi(θ)

N∑
j=1

ti(dj)

)

= [c(θ)]Nh(D) exp

(
k∑
i=1

wi(θ)Ti(D)

)
(27)

where h(D) =
∏N
j=1 h(dj), and Ti(D) =

∑N
j=1 ti(dj) are the

sufficient statistics. The conjugate prior has a similar exponential
form

P(θ) = C1(θ) exp

(
k∑
i=1

A1i wi(θ)

)
(28)

parameterized by the A1i ’s. Using Bayes theorem, the posterior has
the same exponential form

P(θ) = C2(θ) exp

(
k∑
i=1

A2i wi(θ)

)
(29)

parameterized by the A2i ’s satisfying

A2i = A
1
i + Ti(D). (30)

Calculation of surprise yields

S(D,M) = log
C1
C2
−

k∑
i=1

Ti(D)EA1 [wi(θ)] (31)

where EA1 [wi(θ)] is the expectation of wi(θ) with respect to the
prior. Note that if surprise is definedbyK(P(M|D), P(M)), the same
calculation yields

S(D,M) = log
C2
C1
+

k∑
i=1

Ti(D)EA2 [wi(θ)]. (32)

Thus for members of the exponential family (Brown, 1986)
of distributions, the posterior depends entirely on the sufficient
statistics and therefore the surprise also depends crucially on them.
The Ti(D) terms typically grow linearly with the data, and so does
surprise.
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4. Learning and surprise

There is an immediate connection between surprise and
computational learning theory. If we imagine that data points from
a training set are presented sequentially, we can consider that
the posterior distribution after the N-th point becomes the prior
for the next iteration (sequential Bayesian learning). As a system
learns from examples with a static distribution, new data points
ought to become less and less surprising. Thus in this case we can
expect on average surprise to decrease after each iteration. We
shall compute the exact rate of decrease using examples taken
from the distributions studied in the previous section.

4.1. Learning curves: Discrete data
Consider first a sequence of 0–1 examplesD = (dN). The learner

starts with a Dirichlet prior D0(a0, b0). With each example dN ,
the learner updates its Dirichlet prior DN(aN , bN) into a Dirichlet
posterior DN+1(aN+1, bN+1) with (aN+1, bN+1) = (aN + 1, bN) if
dN+1 = 1, and (aN+1, bN+1) = (aN , bN + 1) otherwise. When
dN+1 = 1, the corresponding surprise is easily computed using Eqs.
(56) and (59) (detailed in Appendix). For simplicity, and without
much loss of generality, let us assume that a0 and b0 are integers,
so that aN and bN are also integers for any N . Then if dN+1 = 1 the
relative surprise is

S(DN ,DN+1) = log
aN

aN + bN
+

bN−1∑
k=0

1
aN + k

(33)

and similarly in the case dN+1 = 0 by interchanging the role of aN
and bN . By using the standard integral bound for series based on
monotonically decreasing functions, we have

bN−1∑
k=0

1
aN + k

≤
1
aN
+ log

aN + bN − 1
aN

. (34)

By combining the last two equations we get

0 ≤ S(DN ,DN+1) ≤
1
aN
+ log

(
1−

1
aN + bN

)
. (35)

Asymptotically we have aN ≈ a0 + pN and bN ≈ b0 + (1 − p)N
(this is exactly true in expectation). Therefore, by taking the first
order expansion of log(1− u) and substituting these approximate
values, we see that asymptotically the bound gives

1
aN
+ log

(
1−

1
aN + bN

)
≈
1− p
pN

. (36)

Thus surprise decreases in time with the number of examples as
1/N (Fig. 1). A similar calculation can be done for the Poisson
model.

4.2. Learning curves: Continuous data

In the case of continuous Gaussian data with, for instance,
known variance σ 2, the learner starts with a Gaussian prior
G0(µ0, σ 20 ) on the mean. With each example dN , the learner
updates its Gaussian prior GN(µN , σ 2N) into a Gaussian posterior
GN+1(µN+1, σ 2N+1)with

µN+1 =

µN
σ 2N
+
dN+1
σ 2

1
σ 2N
+

1
σ 2

and
1

σ 2N+1
=
1
σ 2N
+
1
σ 2
. (37)

From Eq. (18), the relative surprise is

S(GN ,GN+1) = log
σ√

σ 2 + σ 2n
+
σ 2N

2σ 2

(
1+

(µN − dN+1)2

σ 2 + σ 2N

)
. (38)
Asymptotically

E[S(GN ,GN+1)] ≤
σ 2N

2σ 2
. (39)

From Eq. (17), we have 1
σ 2N+1
=

1
σ 20
+

(N+1)
σ 2
, or σ 2N+1 =

σ 20 σ
2

σ 2+(N+1)σ 20
,

which asymptotically behaves like σ 2/N .
Combining this asymptotic form with Eq. (39), we see that

in this case surprise can be expected to decrease as 1/2N , again
proportionally to the inverse of the number of data points.
Similar calculations can be done for the general exponential

case (Eqs. (30) and (31)) by noticing that, asN →∞, in a stationary
environment Ti(D) ≈ Nt̄i(d), where t̄i(d) is the average value of ti.

5. Relations of Bayesian surprise to other theories of informa-
tion and surprise

5.1. Theories of information

Several theories have been proposed over the years to try
to capture the concept of information and entropy (Aczel &
Daroczy, 1975; Blahut, 1987; Cover & Thomas, 1991; Jumarie,
1990; McEliece, 1977; Renyi, 1961; Shannon, 1948) and not all
of them can be reviewed here. Shannon’s theory has been by far
the most successful one, and many of the other theories that have
been proposed (Aczel & Daroczy, 1975; Renyi, 1961) can be viewed
as variations on Shannon’s definition. Thus for conciseness here
we focus on the relationship of Bayesian surprise to Shannon’s
definition and then separately on the relationship of Bayesian
surprise to other specific definitions of surprise found in the
literature.
Shannon’s theory of communication defines the information

contained in D at the level of an individual modelM by

I(D,M) = − log P(D|M) (40)

with the corresponding entropy

I(D,M) = H(P(D|M))

= −

∫
D

P(D|M) log P(D|M)dD. (41)

This entropy corresponds to an integral over data, whereas
Bayesian surprise corresponds to an integral over models hence at
this level surprise and information are dual facets of the data.
Shannon’s theory can also be applied at the level of the model

classM. In this case the information carried by D is

I(D) = I(D,M) = − log P(D|M) = − log P(D) (42)

where P(D) = P(D|M) =
∫

M
P(D|M)P(M)dM is also called the

evidence and plays a key role in Bayesian analysis and model class
comparison.
The corresponding entropy is given by

I(D,M) = −

∫
D

P(D|M) log P(D|M)dD. (43)

For a fixed data set D, the surprise is

S(D,M) = −I(D,M)+

∫
M

P(M)I(D,M)dM (44)

and therefore it can also be viewed as the difference between the
average Shannon’s information per model, taken with respect to
the prior, and the Shannon’s information based on the evidence.
If we integrate the surprise with respect to the evidence∫

D

P(D)S(D,M)dD =
∫

D,M

P(D)P(M) log
P(D)P(M)
P(D,M)

dDdM (45)
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Fig. 1. Simulation results corresponding to flips of a 3-sided (red, blue, green) die with a corresponding multinomial learning model. Curves are derived using 400 random
samples, drawn from the distribution red = 0.3, blue = 0.3, and green = 0.4. The x axis correspond to learning iterations. The y axis corresponds to surprise. As predicted
by the theory, during Bayesian learning, surprise decreases on average as 1/N (black curve) as learning progresses. (a) curve corresponding to epochs 1–400; (b) magnified
view corresponding to epochs 100–400. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
we get the Kullback–Liebler divergence K(P(D)P(M), P(D,M)),
which is the permuted version of the mutual information MI
between D and M: MI(D,M) = K(P(D,M), P(D)P(M)). If
surprise is defined by K(P(M|D), P(M)) then the integral of the
surprise is equal to the mutual information between data and
models. Note in contrast that the integral over models of the per-
model entropy (Eq. (41)) is not equal to the mutual information,
but related to it by a convex inequality, as shown by Eq. (44).
In short, Bayesian surprise measures a facet of information that

is different and complementary to Shannon’s definition.

5.2. Theories of surprise

The concepts of ‘‘surprise’’ and ‘‘surprising event’’ have also
been raised multiple times in the statistical literature (Bartlett,
1952; Evans, 1997; Good, 1956; Kvalseth, 1987; Redheffer, 1951;
Weaver, 1948).
One simple approach corresponds to outlier detection theory,

whereby surprising events are defined as rare events, i.e. events
having a low probability. Such a definition of course is closely
related to Shannon’s theory of information since, by definition,
rare events (P(D) small) have high Shannon’s information (I(D) =
− log P(D) large). While it is easy to see that in many cases,
Shannon’s I(D) and the Bayesian surprise S(D) are closely related,
there exist also specific situations where these two approaches
provide clearly distinct answers, and Bayesian surprise matches
intuition better. We illustrate here two somewhat extreme classes
of examples corresponding to high Shannon’s information and low
surprise, and vice versa.
Many bits with few wows: The most simple example is obtained
whenM contains a single model M . The prior is necessarily given
by P(M) = 1, and the posterior distribution is always equal to
the prior. Thus if there is data D satisfying P(D) = ε � 1,
the Shannon’s information log ε can be arbitrarily large, whereas
the surprise is always zero. For a more complex and instructive
example, let M = {M1, . . . ,MN} with a uniform prior P(Mi) =
1/N for every i. Assume that for each model Mi, P(D|Mi) = ε, and
hence P(D) = ε; that is, a datum is observed which is unlikely
for any of the models. By Bayes theorem, we have immediately
P(Mi|D) = P(Mi) = 1/N . Thus in this case Shannon’s information
− log ε grows to infinity aswe decrease the value of ε. On the other
hand, the prior and the posterior distributions being identical,
the surprise is zero. Thus while the number of wows is zero, the
number of bits grows to infinity as− log ε. In this case, although D
is a strong outlier, D is a false positive, in the sense that it carries
no useful information for discriminating between the alternative
hypotheses Mi. Therefore D carries no surprise as its observation
leaves the observer’s expectations unaffected.
Few bitswithmanywows:Conversely, considerM = {M1, . . . ,MN}
with a non-uniform prior given by P(M1) = a and P(Mi) = (1 −
a)/(N − 1) for i = 2, . . . ,N . Consider data D with the likelihood
P(D|M1) = (1 − a)/(N − 1) and P(D|Mi) = a for i = 2, . . . ,N .
A simple calculation shows that P(D) = a(1− a)N/(N − 1)while
the posterior distribution is uniform and given by P(Mi) = 1/N
for any i. Thus for large N , the Shannon’s information converges to
the constant value I(D) = − log[a(a− 1)] bits, determined by the
parameter a. For instance, if a = 0.5 the Shannon’s information
converges to 2 bits. The surprise, however, is given by S(D) =
a logNa + (1 − a) log[(1 − a)N/(N − 1)] which, for large values
of N , converges to a logN + H(a). Thus while the number of bits is
finite, the number of wows grows to infinity as a logN . Data with
these properties would go undetected by standard outlier theory,
but would be picked up by surprise since it is associated with a
significant change from prior to posterior distribution.
Note that examples where D carries few bits but many wows

do not require the number N of models to go to infinity. Consider
the case N = 2 with P(M1) = a and P(M2) = 1 − a. Assume that
P(D|M1) = b and P(D|M2) = c .We then have P(D) = ab+(1−a)c ,
P(M1|D) = ba/P(D), and P(M2|D) = (1 − a)c/P(D). The surprise
is equal to log[ab + (1 − a)c] − a log b − (1 − a) log c. By letting
either b → 0 or c → 0, but not both, we can easily achieve a
diverging amount of surprise in combination with a finite amount
of Shannon’s information.
In any case, in the outlier detection approach, if all possible

events or datasets have very low probability, then they are all very
‘‘surprising’’, which is not very useful in practice. Thus it is clear
that whether an event or data set is surprising or not cannot be
decided on its probability alone. As a minimum, the probabilities
of the other events must also be taken into consideration. Thus
another approach, introduced in Weaver (1948) and further
developed in, for instance, (Good, 1956; Redheffer, 1951), tries
to compare the probability of an event to the probabilities of all
the other possible events by using a ‘‘surprise index’’. Weaver
(1948) considers an experiment with n possible outcomes, with
probabilities p1, . . . , pn and defines the Surprise Index by

SI =
E(p)
pi
=

n∑
i=1
p2i

pi
. (46)

The SI measures ‘‘whether the probability realized, namely, pi is
small as compared with the probability that one can expect on
the average to realize, namely, E(p). If this ratio is small and
SI correspondingly large, then one has a right to be surprised’’
(Weaver, 1948). Unlike simple outlier detection, the surprise index
does consider an event in the context of other events. However,
the surprise index does not consider explicitly prior and posterior
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distributions and is obviously quite different from the concept of
Bayesian surprise described in this paper.
Perhaps closest in spirit to our work, but still different and de-

rived completely independently, is thework of Evans (Evans, 1997;
Evans, Guttman, & Swartz, 2006) which takes a Bayesian perspec-
tive and considers prior andposterior distributions and their ratios.
More precisely, consider a family of models parameterized by θ ,
and a function T (θ)with a set of possible values ti. Evans proposes
to introduce a total ordering on the ti and a surprise inference prin-
ciple by considering that t1 is strictly preferred to t2 if ‘‘the rela-
tive increase in belief for t1, from a priori to a posteriori, is greater
than the corresponding increase for t2’’. In turn, this preference or-
dering is used to determine inferences and applied to estimation,
hypothesis testing, and model checking procedures (Evans, 1997).
This statistical work, however, does not take an explicit informa-
tion theoretic perspective, and does not define surprise as the rel-
ative entropy between the prior and posterior distributions.

6. A neural network implementation of surprise for computer
vision

Here we describe a neural network architecture for processing
and computing surprise over image and video data in a bottom-
up fashion. The architecture is inspired by the neurobiology of
early visual processing in the primate brain (Itti & Baldi, 2005,
2006, 2009; Itti & Koch, 2001). In this section we first describe the
low-level, Hubel and Wiesel-like, visual feature detection front-
end of the proposed system followed by two alternative surprise
computation back-ends operating on the feature responses.

6.1. Low-level visual feature extraction

The proposed system employs a relatively mature and standard
low-level feature extraction front-end (Itti & Koch, 2000; Itti,
Koch, & Niebur, 1998). This front-end analyzes the incoming input
images at several spatial resolutions and along several low-level
feature dimensions, including color contrast, luminance contrast,
oriented edges, and motion energy. In a manner inspired by how
early visual processing is organized in the primate brain, the front-
end processing thus decomposes the image into a number of sub-
bands. Surprise is then computed at the level where the responses
from the low-level feature detectors are integrated, as opposed to
directly at the pixel level.
A schematic diagram of the system is given in Fig. 2. Input

video frames are analyzed in dyadic image pyramids with 9 scales
(from scale 0 corresponding to the original image, to scale 8
corresponding to the image reduced by a factor of 256 horizontally
and vertically). The pyramids are constructed by iteratively
filtering and decimating the input image. In the implementation
used here, pyramids are computed for the following low-level
visual features thought to guide human attention (Wolfe &
Horowitz, 2004): (1) luminance; (2) red–green color opponency;
(3) blue–yellow color opponency; (4) four oriented edge filters
(using Gabor kernels) spanning 180◦; (5) luminance flicker (as
computed from the difference between the previous image and
the current one); and (6) four directions of motion spanning
360◦. Additional details about the implementation of these image
pyramids have been published previously (Itti, Dhavale, & Pighin,
2003; Itti et al., 1998). The final feature output is in the form
of ‘‘feature maps’’ which are obtained by taking across-scale
differences between pairs of levels within each feature pyramid.
These differences coarsely approximate center-surround contrast
enhancement mechanisms found in the early stages of biological
visual processing (Grossberg & Raizada, 2000; Hubel & Wiesel,
1962; Suder & Worgotter, 2000). Center-surround differences are
computed for the following scale pairs: 2–5, 2–6, 3–6, 3–7, 4–7,
4–8. All featuremaps are then resampled to scale 4 (where the final
combined surprise map is later computed); for 640 × 480 input
videos, thesemaps thus have 40×30pixels. In total, 72 such feature
maps are computed (6 for luminance, 12 for color opponencies, 24
for oriented Gabor edges, 6 for flicker, and 24 for motion). Fig. 2c
shows all the feature maps computed for the example input image
shown.

6.2. Surprise computation in feature space

Surprise is computed for every pixel in each of the 72
center-surround feature maps. The underlying motivation is that
simulated neurons in the feature maps may establish some very
simple beliefs about the world as seen through their spatially- and
feature-selective center-surround receptive fields. For instance, a
neuron sensitive to red/green opponent contrast at a given location
and scale may accumulate over time beliefs about the amount
of red/green contrast present in the small portion of the world
that is captured by the neuron’s receptive field. When new data
is observed with each new incoming video frame, the beliefs
established thus far are used as prior, and Bayes’ rule is applied
to compute the posterior. The posterior at one video frame then
becomes the prior for the next video frame. Using conjugate priors
facilitates this process by ensuring that the posterior has the same
functional form as the prior. The current implementation derives
prior distributions at time t entirely from past inputs combined
through Bayesian learning; however, the theory does not limit
what may influence the prior distributions. Other sources such as
top-down knowledge, behavioral states, or individual preferences
could also influence the prior within the same general framework.
Here we explore two model classes to implement surprise:

Gaussian (with a Gaussian conjugate prior) which is formally
simple and parallels background adaptation techniques used
in computer vision (Grimson, Stauffer, Romano, & Lee, 1998),
and Poisson (with a Gamma conjugate prior) which may more
accurately model incoming neural spike trains from the low-level
feature extraction stages (Softky & Koch, 1993).
To accommodate for changing data and events at multiple

temporal scales, we employ a chained cascade of surprise detectors
at every pixel in every feature map, where the output of
one surprise detector serves as input to the next detector in
the cascade. Our implementation uses 5 such cascaded feature
detectors at every pixel and for every feature. The first (fastest)
is updated with feature map data from the low-level feature
computations, and detector i + 1 samples from i, so that time
constants increase exponentially with i. In total, the system thus
comprises 72[maps]×(40×30)[pixels]×5[timescales] = 432,000
surprise detectors.
Finally, to account not only for temporally surprising events

(e.g., sudden appearance of an object) but also for spatially
surprising items (e.g., a red object among many green objects),
we compute surprise both locally over time, and spatially in an
instantaneousmanner. For local temporal surprise, a single neuron
in oneof the featuremaps is considered, and theprior is established
over time from the observations received to date in the receptive
field of that one neuron. For spatial surprise, a single neuron is
also considered, but its prior is now derived from the compound
instantaneous activity of the surrounding neurons in the map, at
the next faster time scale. For every video frame at time t , location
(x, y), feature f , and time scale i, a neighborhood distribution of
models is computed as the weighted combination of distributions
from the next-faster local models, over a large neighborhood
with two-dimensional Difference-of-Gaussians profile (σ+ = 20
and σ− = 3 feature map pixels). As new data arrives, spatial
surprise is the KL divergence between the prior neighborhood
distribution and the posterior after update by local samples from
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Fig. 2. (a) Sample frames of video clips to be processed by the model and for which human eye movement recordings are available (see next section). (b) Computation of
surprise at the single-neuron level, each time new data is received from a new video frame. (c) Architecture of the full computational system which analyzes video frames
along the dimensions of color, intensity, orientation, flicker, and motion, computing surprise at multiple spatial and temporal scales within each of these feature channels.
The surprise output from all feature channels finally gives rise to the master surprise maps. Higher (brighter) values in this map represent the system’s prediction of where
the strongest attractors of attention currently are in the video inputs (in the example shown, the man running towards the camera is most surprising).
the neighborhood’s center. For example, consider a neuron that
observes a locally red image patch surrounded by a large green
background. That neuron’s neighbors would contribute a spatial
prior that strongly suggests that the world is green. However,
when that prior is combined with the local data received by the
neuron of interest, which indicates that the world is red, a large
difference between prior and posterior arises, and consequently a
large spatial surprise (see Fig. 3 for pseudo-code).
Our theory does not constrain how temporal and spatial

surprises may combine. In previous work (Itti & Baldi, 2005), we
addressed this issue by turning to empirical single-unit recordings
of complex cells in striate cortex of anesthetized monkey (Müller,
Metha, Krauskopf, & Lennie, 1999). From fitting the neural data,
total surprise S is given by:

S =
[
ST +

SS
20

] 1
3

(47)

where ST is the temporal and SS the spatial surprise. This
formulation resulted from a least-squares fit of a function of the
form S = [a1ST + a2SS + a3ST SS]a4 to the neural data. We further
posit that surprise combines multiplicatively across time scales,
such that an event is surprising only if at all relevant time scales,
allowing themodel to learn periodic stimuli of various frequencies.
One caveat with this approach is that stimuli which may fully
adapt the surprise detectors at one time scale and yield zero
surprise at that scalemay effectively zero out potentially surprising
events at other time scales. To address this, we introduce below
an additional step just before the prior is updated, whereby the
variance of the prior is slightly relaxed (increased) prior to the
arrival of every video frame. A parameter ζ regulates the amount of
relaxation.With 0 < ζ < 1, the variance of the priorwill not settle,
even if, e.g., the data is stationary, resulting in surprise values that
are always non-zero. We finally assume that surprise sums across
features, such that a locationmay be surprising by its color,motion,
or other. It is interesting to note that other alternatives may be
more desirable, e.g., a max operation across features (Li, 2002;
Zhaoping & May, 2007). However, for the datasets evaluated here,
this alternative yields lower ordinal dominance scores (Fig. 5).
The sum is then passed through a saturating sigmoidal

nonlinearity to enforce plausible neuronal firing dynamics and
yields the final master map used for comparison with human gaze
behavior.

6.2.1. Gaussian data with Gaussian prior
With Gaussian models, the data from every low-level feature

detector at every location in every video frame is assumed to
have a Gaussian distribution with mean given by the feature
detector’s response to the current frame, and fixed variance which
approximates to the observation noise at the feature detection
stage (which, in turns, reflects the sensor’s noise and possibly the
neural noise inherent to the feature computation process).
Thus, for each of the 72 feature types (e.g., luminance,

red–green opponency, etc.), video frame, spatial center-surround
feature scale, 2D image location in the rescaled feature map, and
temporal scale, we here use the unknown mean/known variance
formulation of Section 3.3, Eq. (17). With the addition of the prior
relaxation term 0 < ζ < 1 (which here simply divides the prior’s
variance σ 21 , we obtain:

µ2 =

µ1ζ

σ 21
+
Nm̄
σ 2

ζ

σ 21
+

N
σ 2

and
1
σ 22
=

ζ

σ 21
+
N
σ 2
. (48)
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Fig. 3. Simplified algorithm to compute surprise over space and time at multiple scales. This algorithm is applied to each of the 72 feature maps. The incoming data is the
array of raw feature detector values for the feature map’s feature type and center-surround spatial scale.
We assume thatN = 1 data samples are received for every new
video frame, the data sample value (and m̄ since N = 1) is given by
the feature detector’s response to the current video frame, and the
variance σ 2 of the data is fixed and reflects noise in the sensor and
the early stages of processing (we use s̄ = 5 given RGB pixel values
in the [0 . . . 255]3 range). Our simulations use ζ = 0.7. Surprise
is computed exactly per Eq. (18) (without the approximation for
large N).

6.2.2. Poisson data with Gamma prior
In a somewhat more neurally-plausible implementation, we

model data received from feature map f at location (x, y)
and time t as Poisson distributions M(λ) (which describe well
cortical pyramidal cell firing statistics (Softky & Koch, 1993)),
parameterized by firing rate λ ≥ 0. λ is trivially estimated over
the duration of each video frame as simply the feature detector’s
response λ = f (x, y, t). In contrast with the Gaussian case, here
the variance of the sample is not arbitrarily fixed but directly
determined by the assumed Poisson nature of the data samples,
and thus is equal to the mean λ.
As detailed in Section 3.2, the prior P(M) satisfying the

conjugate prior property on Poisson data is the Gamma probability
density, Eq. (13). With the addition of the ζ prior relaxation term
(which here again divides the prior’s variance, by multiplying both
a1 and b1), we slightly modify Eq. (14) and obtain:

a2 = ζa1 + Nm̄ and b2 = ζb1 + N. (49)
We here again assume that N = 1 data samples are received
at every video frame. Our simulations here again use ζ = 0.7.
Surprise is computed exactly using Eq. (15).

7. An application of surprise to psychophysics and eye move-
ments

Developing an ability to rapidly detect surprising events is
crucial in allowing living systems to quickly identify potential
predators, preys, or mates and in ensuring survival. It is reasonable
to postulate that surprising events ought to attract attention
mechanisms in living systems, and that the same principle may
be useful in the design of artificial systems, for instance in
computer vision and surveillance. Indeed, it has been noted
that events previously described as novel or salient tend to
attract attention (Ranganath & Rainer, 2003). To test the surprise
theory, we here present an application to finding surprising
objects and events in natural video streams. Using eye-tracking
experiments with human subjects, we quantitatively evaluate the
extent to which surprising visual events occurring in natural video
stimuli may indeed capture the attention and gaze of human
observers. The application presented here extends previous similar
experimentations (Itti & Baldi, 2005, 2006, 2009) by adding a new
dataset, comparing two different model classes, Gaussian data
with a Gaussian prior, and Poisson data with a Gamma prior, and
introducing a new temporal analysis which demonstrates a strong
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time contingency between the onset of a surprising event in the
stimuli and the initiation of a human eye movement towards that
event.

7.1. Subjects, stimuli and gaze recording methods

Our experiments use a publicly available human eyemovement
dataset from the NSF-CRCNS data sharing project (crcns.org). This
dataset contains two components.
In the first component, we recorded eyemovements from eight

naïve observers. Eachwatched a subset from 50 videoclips totaling
over 25 min of playtime (‘‘original’’ dataset). Clips comprised
outdoors daytime and nighttime scenes of crowded environments,
video games, and television broadcast including news, sports,
and commercials. The right-eye position was tracked with a 240
Hz video-based device (see Itti and Baldi (2006) for additional
methodological details). To maintain interest, observers were
instructed to follow the stimuli’smain actors and actions, as simple
questions would be asked to them at the end of the experiment
to test their understanding of the contents of the clips. Here we
only retain those clips for which gaze recordings from at least
4 observers were available (to allow for the establishment of
an upper bound inter-observer correlation performance, below).
Two hundred calibrated eye movement traces (10,192 gaze shifts
or ‘‘saccades’’) were analyzed, corresponding to four distinct
observers for each of the 50 clips.
In the second component, the video clips were cut into 1–3 s

short ‘‘clippets’’ which were then re-assembled in random order
into an ‘‘MTV-style’’ set of clips (Carmi & Itti, 2006). Another set of
8 observers watched the clips and we here again only retain clips
for which recordings are available for at least 4 observers. The goal
of the random shuffling of clippetswas to abolish some of the long-
term cognitive influences on attention and gaze, so that observer’s
gaze allocation would be more strongly short-term. Here, this
dataset is of particular interest because it will help us gauge the
extent to which past events beyond a few seconds may influence
our modeled low-level vision priors, surprise, and human gaze. In
total, 6648 saccades were analyzed for the MTV-style dataset.
Informed consent was obtained from all subjects prior to the

experiments. Each subject watched a subset of the collection
of video clips, so that eye movement traces from four distinct
subjects were obtained for each clip. Video clips were presented
on a 22′′ CRT monitor (LaCie, Inc.; 640 × 480, 60.27 Hz double-
scan, mean screen luminance 30 cd/m2, room 4 cd/m2, viewing
distance 80 cm, field of view 28◦ × 21◦). The clips comprised
between 164 and 2814 frames or 5.5 s to 93.9 s, totaling 46,489
frames or 25:42.7 playback time. Frames were presented on a
Linux computer under SCHED_FIFO scheduling which ensured
microsecond-accurate timing (Finney, 2001).
The right-eye position was tracked at 240 Hz using a video-

based device (ISCAN RK-464), which robustly estimates the gaze
from comparative real-time measurements of both the center of
the pupil and the reflection of an infrared light source onto the
cornea. Saccades were defined by a velocity threshold of 20◦/s and
amplitude threshold of 2◦.
Sampling of master map values around human or random sac-

cade targets used a circular aperture of diameter 5.6◦, approximat-
ing the size of the fovea and parafovea. Saccade initiation latency
was accounted for by subjecting the master maps to a temporal
low-pass filter with time constant τ = 500 ms. The random sam-
pling process was repeated 100 times.
7.2. Gaze prediction results

We evaluate in Fig. 4 four different attention systems that
predict human saccades: one using surprise with Gaussian data
and prior (Section 6.2.1), one using surprise with Poisson data
and Gamma prior (Section 6.2.2), a simple baseline control system
which simply computes local pixel variance in small image
patches, and a human inter-observer system—all further described
below. In addition, in Fig. 5 we compare these systems with
additional previously published systems and with variations on
our surprise-based systems.
The Gaussian/Gaussian and Poisson/Gamma surprise systems

are as described above. The Variance system simply computes the
local variance of pixel luminance within 16 × 16 image patches.
The resulting variance map has been suggested to already predict
human gaze above chance (Reinagel & Zador, 1999); hence we
use this very simple system as a baseline or lower bound. The
inter-observer system is built by plotting a Gaussian blob with
σ = 3 master map pixels (4.5◦), continuously at each of the eye
positions of the three observers other than that under test, with
some forgetting provided by the master map’s temporal low-pass
filter. High values on this map would hence be present only at
the locations currently gazed at by some human observer. This
system allows us to establish an upper bound for how well the
other systems might be expected to predict human gaze.
To characterize image regions selected by our observers, we

process the video clips through the different systems. Each system
outputs a topographic dynamic master response map, assigning in
real-time a response value to every input location. A good master
map should highlight, more than expected by chance, locations
gazed to by our humanobservers. Hence to score and compare each
system, we sample, at the onset of every human saccade made,
the master map activity around the saccade’s future endpoint,
and around a uniformly random endpoint. Random sampling is
repeated 100 times to evaluate variability. To quantify the extent
to which humansmay be attracted towards hotspots in the master
maps, we use ordinal dominance analysis (Bamber, 1975). To this
end, we first normalize master map values sampled at human and
random saccade endpoints by the maximum activity in the master
map at the time of the saccade. For each system, histograms of
master map values at human and random saccade endpoints are
then created (Fig. 4). In a manner similar to computing a Receiver
Operating Characteristic (ROC) curve, we then sweep a threshold
from 0 to 1; for each threshold value we count the percentage
of eye positions and random positions which land above the
threshold (‘‘hits’’). The ordinal dominance curve is then created
similarly to an ROC curve, with the difference that it plots human
hits vs. random hits. This curve indicates howwell a simple binary
threshold is able to discriminate the signal (master map values at
human gaze locations) fromnoise (values at random locations).We
finally score each system by computing the area under the curve
(AUC) from the ordinal dominance curve. The process is repeated
100 times for the 100 random samples, which allows us to attach
a confidence estimate to each AUC value.
An AUC value of 0.5 would indicate a systemwhich is at chance

in predicting where human observers looked. Our inter-observer
system yields AUC scores of 0.805± 0.002 for the first (‘‘original’’)
dataset and 0.827 ± 0.002 for the second (‘‘MTV-style’’) dataset.
The surprise and variance systems are hence expected to score
between 0.5 and 0.8, with higher scores indicating a better ability
to predict human gaze. Scores are shown in Fig. 4. All three systems
perform significantly above the chance level (AUC = 0.5; t-test,
p < 10−10 or better). Furthermore, both variants of the surprise-
based system perform significantly better than the much simpler
variance-based system (t-tests on the respective AUC scores, p <
10−10 or better). The Poisson/Gamma surprise system exhibits

http://crcns.org
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c

d

e
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Fig. 4. Histograms of master map values at saccade endpoints for random (wide green bars) and humans (narrow blue bars), for the ‘‘original’’ (a, b, c) and ‘‘MTV-style’’ (d,
e, f) datasets. Human histograms particularly differ from the random ones in that humans gaze towards low master map values (leftmost bins in each histogram) less often
than expected by chance, while they gaze towards high mastermap values (rightmost bins) more often than expected by chance. AUC scores indicate significantly different
performance levels, and a strict ranking of chance< variance< Gaussian/Gaaussian surprise< Poisson/Gamma surprise< inter-observer.
a small but significant advantage over the Gaussian/Gaussian
surprise system in these experiments. These two surprise systems
score about half-way between chance and inter-observer.
Fig. 5 shows an example video frame and corresponding

master maps for the computational systems studied here, as
well as for a few systems evaluated previously (Itti & Baldi,
2009), and variations on the surprise systems described below. In
particular, the Michelson contrast system, as in Mannan, Ruddock,
and Wooding (1996), is an interesting alternative to our local
variance system. However, we find that in these datasets it
actually performs slightly below chance level (corresponding to
a score of 0.5), indicating that observers tended to preferentially
look towards locations with a lower contrast than expected by
chance. This is in agreement with the original results of Mannan
et al., who conclude that a number of local features tested in
their experiments (including Michelson contrast, edge density
measures, and others) is a poor predictor of human fixations. The
Entropy and DCT-based information systems are very simplified
measures of information in local image patches, and have been
previously proposed as gaze predictors (Itti & Baldi, 2009; Itti
et al., 1998; Privitera & Stark, 2000). We find that they score above
chance, but below surprise. Finally, we evaluated the hypothesis
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Fig. 5. Example maps generated by the computational systems tested. One video frame is shown (clip beverly08, frame 127) with the corresponding master map for each
model. The current eye position of one human observer is indicated by the small cyan square (on the person running in the video clip). Ordinal dominance scores are indicated
for each system, for both the original and MTV-style dataset. Higher scores indicate better systems, i.e. systems which predict high master map values near the locations
selected by human gazes and low map values everywhere else.
of Zhaoping and colleagues that salience signals may combine
across different feature channels according to a maximum rule
rather than a sum rule (Li, 2002; Zhaoping & May, 2007). To
this end, we implemented variants of the surprise systems where
color, intensity, orientation, flicker and motion sources of surprise
combine with a max rule. With the datasets evaluated here, this
alternative yields lower AUC scores (Fig. 5). The reason for the
lower scores when taking themaximum across features is that this
often yields a lower gaze target to clutter signal-to-noise ratios.
These intriguing results obtained with our free-viewing datasets
should be evaluated further with future experiments aimed more
directly at addressing the max vs. sum question.
To further investigate the extent to which events detected as

surprising by our systems might attract human gaze, we recorded,
at the landing location of every saccade, the history of master map
values for up to 1000 ms preceding the initiation of the saccade of
interest (Fig. 6). In both datasets, a sudden surge of surprise is seen
at saccade landing points shortly before saccades are initiated. A
similar but weaker surge is observed also for the Variance system,
indicating that the sudden appearance of textured objects might
also have attracted saccades. However, the surge for the variance
system is significantly weaker than for any of the surprise systems.
In the MTV-style experiments, a surge of surprise is also observed
for random saccades around 500 ms prior to human saccades;
this reflects the global surge of surprise which is observed at
every abrupt jump-cut when the scene changes from one 1–3 s
clippet to the next. The surge in the random saccade data suggests
that humans tended to execute saccades in a manner that was
somewhat time-locked to jump-cuts in the stimuli. This is also
reflected by the larger surge observed for human saccades in the
MTV-style compared to the original dataset.

8. Discussion

The Bayes theorem is the most fundamental theorem of
learning and adaptation, quantifying how the prior distribution
over the space of models or hypotheses ought to be revised into a
posterior distribution as data is collected. Accordingly, the distance
between the prior and posterior distributions is also bound to
be a fundamental quantity, that may have escaped systematic
attention. Here we have defined this quantity – surprise – and
studied its properties systematically.
Surprise is different from Shannon’s entropy, which it comple-

ments. Surprise is also different from several other definitions of
information that have been proposed (Aczel & Daroczy, 1975) as
alternatives to Shannon’s entropy. Most alternative definitions of
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Fig. 6. History of master map values at locations selected by human saccades, for up to 1000 ms prior to the initiation of each saccade, for the ‘‘original’’ (left) and ‘‘MTV-
style’’ (right) datasets. Curves are normalized in pairs (human saccades, solid lines, and random saccades, dashed lines) by the surprise value for human saccades at−1000
ms. This allows an easy comparison between the curves for the different systems. Stars indicate the time points where the surprise-based systems performed significantly
differently from the variance-based system (t-tests, p < 0.05 after Bonferroni correction).
entropy, such as Rényi’s entropies, are actually algebraic varia-
tions on Shannon’s definition rather than conceptually different
approaches.
To measure the effect of data on the observer’s prior and

posterior distributions, one could envision using the difference
between the entropy of the prior and the entropy of the posterior.
However, such a difference would only quantify the difference in
uncertainty between the prior and posterior distributions. Unlike
surprise which is always positive, such a difference could be either
positive or negative and therefore less appealing as a measure.
More fundamentally, the posterior could, for instance, be very
different from the prior, but retain a similar level of entropy. Thus
data greatly affecting the observer could appear insignificant by
this measure.
In many important cases related to the exponential family

of distributions, surprise can be computed analytically and
efficiently, both in terms of exact and approximate formula. The
analytical results presented here could be extended in several
directions including non-conjugate and other prior distributions as
well asmore complexmultidimensional distributions (e.g., inverse
Wishart). In general, however, the computation of surprise can
be expected to require numerical techniques including Monte
Carlo methods to approximate integrals over model classes. In this
respect, the computation of surprise should benefit from ongoing
progress in Markov chain and other Monte Carlo methods, as well
as progress in computing power.
The concept of surprise has its own limitations. In particular,

it does not capture all the semantic/relevance aspects of data. If,
while surfing the web in search of a car to purchase one stumbles
on a picture of Marilyn Monroe, the picture may carry a low
degree of relevance, a high degree of surprise, and a low-to-
high amount of Shannon’s information depending on the pixel
structure. Thus, relevance, surprise, and Shannon’s entropy are
three different facets of information that can be present in different
combinations. Although there have been several attempts (e.g.
Jumarie (1990) and Tishby, Pereira, and Bialek (1999)), defining
relevance remains a central open challenge. Surprise, however,
appears remarkable for its simplicity and generalitywhich ought to
result in its applicability to areas as diverse as learning, datamining
and compression, and the design or reverse engineering of natural
or artificial sensory systems.
We have only touched upon the connection between surprise

and statistical learning theory (Hastie, Tibshirani, & Friedman,
2001; Vapnik, 1995) by showing that surprise decreases as 1/N
during sequential learning in simple cases. This analysis could
be extended to more complex settings, such as artificial neural
networks. At higher abstraction levels, informal ideas of novelty
and surprise have been proposed that could capture attention
and trigger learning (Grossberg, 2000; Ranganath & Rainer, 2003),
which may now be formalized in terms of priors and posteriors.
Highly surprising data could signal that learning is required and
highly unsurprising data could signal that learning is completed,
or adaptation no longer necessary.
A surprising training set is a prerequisite for learning. The

amount of surprise in training data, however, should not be so
excessive as to overwhelm the learning system. Thus information
surprise in the training set ought to be calibrated to the capacity
of the learning system. Furthermore, when the degree of surprise
of the data with respect to the model class becomes low, the data
is no longer informative for the given model class. This, however,
does not necessarily imply that a good models of the data have
been learnt since the model class itself could be unsatisfactory and
in need of a complete overhaul. The process by which a learning
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system realizes that amodel class is unsatisfactory in an alternative
free setting – the open-ended aspect of inference – has so far
eluded precise formalizations and ought to be the object of future
investigations.
As a side note, and to avoid any confusion, it is also worth

noting that relative entropy has often been used as a training
function for neural networks and other machine learning systems
(e.g. Baldi and Brunak (2001) and references therein), but in
a completely different sense. In a multinomial classification
problem, for instance, model parameters can be adjusted in order
tominimize the relative entropy

∑
ti log ti−

∑
ti log pi aggregated

over all training examples. For a single training example, ti is the
0–1 target representing membership in the i-th class and pi is
the probability of membership in the i-th class computed by the
learning system. This relative entropy between the vectors t and
p has little to do with the relative entropy between the prior and
posterior distributions over the parameters of the model that is
used to compute p.
In data mining applications, surprise could be used to sys-

tematically detect novelty in areas ranging from surveillance to
information retrieval. In data compression applications, surprise
could be used to guide dynamical encoding of information, allo-
cating more bits to surprising data. For sensory systems, we have
described an application of surprise to computer vision and the
analysis of human attentional gaze shifts. Human attention is an
exceedingly complex phenomenon, under the control of both bot-
tom up and top down influences. Our results are not intended in
any way to prove that human brains compute surprise to control
eye movements. It is however encouraging to see that the simple
bottom-up version of surprise outperforms other state-of-the-art
metrics in predicting gaze shifts and that, in principle, top down in-
fluences could be incorporated into the surprise framework, sim-
ply by modulating the prior distribution. A number of additional
theoretical frameworks and computational models has been pro-
posed to explain attention guidance and eye movements, using
information-theoretic principles in very restricted scenarios, such
as discriminating shape silhouettes or searching for a known tar-
get in a noisy environment (Najemnik & Geisler, 2005; Renninger,
Coughlan, Verghese, & Malik, 2005). While interesting, these ap-
proaches still need additional development before they can be ap-
plied to the CRCNS eye-tracking datasets, or other kinds of ‘‘real
data’’, for the purpose of comparison with surprise or other theo-
ries. Indeed, such theories and approaches are not yet able tomake
useful predictions for arbitrary image or video stimuli and observer
tasks. This is a fundamental difference between these very inter-
esting but more specialized theories and our new approach: Our
surprise theory and associated computational model are capable
of making predictions (good or bad) for any set of image or video
stimuli and any set of associated eye movement traces (human or
other) acquired under any observer task.
Finally, in sensory systems and beyond the visual attention

application studied here, surprise may be computed on auditory,
olfactory, gustative, somatosensory, or other features, using
exactly the same definition. Surprisemay be computed at different
temporal and spatial scales, and different levels of abstraction.
Indeed, detecting surprise in neuronal spike trains or other
data streams is a very general operation that does not require
understanding the ‘‘meaning’’ carried by the data and therefore
may be suitable for learning in deep architectures and other self-
organization processes.
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Appendix A. Discrete case

A.1. Multinomial case (Dirichlet prior)

In the two-dimensional case, consider two Dirichlet distribu-
tions D1 = D(a1, b1)(x) = C1xa1−1(1 − x)b1−1 and D2 = D(a2, b2)
(x) = C2xa2−1(1− x)b2−1, with C1 = Γ (a1 + b1)/Γ (a1)Γ (b1), and
similarly for C2. To calculate the relative entropy in the two dimen-
sional case, we use the formula (Gradshteyn & Ryzhik, 1980)∫ 1

0
xu−1(1− x)v−1 log xdx = B(u, v)[Ψ (u)− Ψ (u+ v)] (50)

where B(u, v) is the beta function B(u, v) =
∫ 1
0 x
u−1(1−x)v−1dx =

Γ (u)Γ (v)/Γ (u+ v) andΨ (x) is the derivative of the logarithm of
the gamma function Ψ (x) = d(logΓ (x))/dx. A cross term of the
form

F(D1,D2) =
∫ 1

0
C1xa1−1(1− x)b1−1[log C2 + (a2 − 1) log x

+ (b2 − 1) log(1− x)]dx (51)

is equal to

F(D1,D2) = log C2 + (a2 − 1)[Ψ (a1)− Ψ (a1 + b1)]
+ (b2 − 1)[Ψ (b1)− Ψ (a1 + b1)] (52)

using the fact that C1B(a1, b1) = 1. In particular, the entropy of
a two-dimensional Dirichlet distribution such as D1 is obtained
by taking: −F(D1,D1). With some algebra, the Kullback–Liebler
divergence between any two Dirichlet distributions is finally given
by:

K(D1,D2) = log
C1
C2
+ (a1 − a2)[Ψ (a1)− Ψ (a1 + b1)]

+ (b1 − b2)[Ψ (b1)− Ψ (a1 + b1)]. (53)

With n successes in the sequence D, the posterior is a Dirichlet
distribution D2(a2, b2)with Baldi and Brunak (2001)

a2 = a1 + n and b2 = b1 + (N − n). (54)

Using this relation between the prior and the posterior, we get the
surprise

S(D1,D2) = log
C1
C2
+ n[Ψ (a1 + b1)− Ψ (a1)]

+ (N − n)[Ψ (a1 + b1)− Ψ (b1)]. (55)

Using the general fact thatΨ (x)−Ψ (y) =
∑
∞

k=0(
1
y+k−

1
x+k ), which

impliesΨ (x+n)−Ψ (x) =
∑n−1
k=0

1
x+k when n is an integer, we get

S(D1,D2) = log
C1
C2
+ n

(
∞∑
k=0

1
a1 + k

−
1

a1 + b1 + k

)

+ (N − n)

(
∞∑
k=0

1
b1 + k

−
1

a1 + b1 + k

)
. (56)

Now we have
∞∑
k=0

(
1

a1 + k
−

1
a1 + b1 + k

)
=

bb1c−1∑
k=0

(
1

a1 + k

)
+ Rest (57)

where

0 ≤ Rest =
∞∑
k=0

(
1

a1 + bb1c + k
−

1
a1 + b1 + k

)

≤ (b1 − bb1c)
∞∑
k=0

1
(a1 + bb1c + k)2

(58)
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and similarly for the symmetric term. The rest is exactly 0 when a1
and b1 (and hence a2 and b2) are integers, and in general decreases
with the size of a1 and b1. This yields the approximation

S(D1,D2) ≈ log
C1
C2
+ n

(
bb1c−1∑
k=0

1
a1 + k

)

+ (N − n)

(
ba1c−1∑
k=0

1
b1 + k

)
. (59)

This approximation is exact when a1 and b1 are integers. Now for
x > 0 we have log((x + n)/x) <

∑n−1
k=0 1/(x + k) < log((x + n −

1)/x)+ 1/x or 0 <
∑n−1
k=0 1/(x+ k)− log((x+ n)/x) < 1/x. Thus,

S(D1,D2) ≈ log
C1
C2
+ n log

a1 + b1
a1

+ (N − n) log
a1 + b1
b1

. (60)

Now we have,

log
C1
C2
= log

Γ (a1 + b1)Γ (a2)Γ (b2)
Γ (a1)Γ (b1)Γ (a2 + b2)

= log
(a1 + n− 1)(a1 + n− 2) . . . a1(b1 + N − n− 1) . . . b1
(a1 + b1 + N − 1)(a1 + b1 + N − 2) . . . (a1 + b1)

.

We can use bounds of the form log a+
∫ a1+n1
a1

log xdx < log a1+

· · · log(a1 + n − 1) ≤ log a1
∫ a1+n
a1+1

log xdx to estimate this term.
Alternatively, one can assume that a1 and b1 are integers and
use binomial coefficient approximations, such as those in Bollobas
(1985). In all cases, neglecting constant terms and terms of order
logN , if we let n = pN (0 < p < 1) and N go to infinity we have

log
C1
C2
≈ − log

(
N
n

)
≈ −NH(p) (61)

whereH(p) is the entropy of the (p, q) distribution with q = 1−p.
Thus when N →∞, and n = pN with 0 < p < 1 we have

S(D1,D2) ≈ N
(
p log

a1 + b1
a1

+ q log
a1 + b1
b1

− H(p)
)

≈ NK(p, a1) (62)

where K(p, a1) is the relative entropy between the empirical
distribution (p, q) and the expectation of the prior ( a1

a1+b1
,

b1
a1+b1

).
Thus, asymptotically surprise grows linearly with the number of
data points with a proportionality coefficient that depends on the
discrepancy between the expectation of the prior and the observed
distribution. The same relationship can be expected to be true in
the case of a multinomial model.

A.2. Symmetric prior (a1 = b1)

Consider now the case of a symmetric prior, then

S(D1,D2) = log
C1
C2
+ N[Ψ (2a1)− Ψ (a1)]. (63)

Using formulas in Gradshteyn and Ryzhik (1980), Ψ (2a1) −
Ψ (a1) =

∑
∞

k=0
(−1)k

2a1+k
+ log 2, thus

S(D1,D2) = log
C1
C2
+ N

∞∑
k=0

(−1)k

2a1 + k
+ log 2

≈ N

(
∞∑
k=0

(−1)k

2a1 + k
+ log 2− H(p)

)
(64)

the approximation being in the regime n = pN and N →
∞. When a1 is an integer, we also have Ψ (2a1) − Ψ (a1) =∑2a1−1
k=1 (−1)k+1/k =

∑2a1−1
k=a1

1/k. Thus when a1 is an integer
S(D1,D2) = N

[
2a1−1∑
k=a1

1
k

]
+ log

(2a1 − 1)
(
2a1−2
a1−1

)
(2a1 + N − 1)

(
N+2a1−2
n+a1−1

) . (65)

As N →∞with 0 < p < 1

S(D1,D2) ≈ N

[
2a1−1∑
k=a1

1
k

]
− log

(
N + 2a1 − 2
n+ a1 − 1

)

≈ N

[
2a1−1∑
k=a1

1
k

]
− log

(
N
n

)
(66)

and therefore

S(D1,D2) ≈ N

[
2a1−1∑
k=a1

1
k
− H(p)

]
. (67)

For instance, when a1 = b1 = 1, this gives:

S(D1,D2) = N − log(N + 1)− log
(
N
n

)
(68)

with the asymptotic form

S(D1,D2) ≈ N(1− H(p))+ log
√
2Nπpq
N + 1

≈ N(1− H(p)). (69)

With a uniform symmetric prior, the empirical distribution with
maximal entropy brings the least information. When a1 = b1 = 5
this gives R(D1,D2) ≈ N[0.746 − H(p)]. As we increase a1 +
b1, keeping a1 = b1, the constant

∑2a1−1
a1

(1/k) decreases to its
asymptotic value log 2 which corresponds to the asymptotic form
S(D1,D2) ≈ NK(p, 0.5). The stronger the strength of the uniform
prior (the larger a1 + b1), the smaller the surprise created by a die
with maximum entropy.

A.3. Poisson case (Gamma prior)

We consider two Gamma distributions Γ1 = Γ1(a1, b1)x =
C1xa1−1e−b1x and Γ2 = Γ2(a2, b2)(x) = C2xa2−1e−b2x with C1 =
ba11 /Γ (a1), and similarly for C2. To calculate the relative entropy,
we use the formula (Gradshteyn & Ryzhik, 1980)∫
∞

0
xu−1e−vx log xdx =

Γ (u)
vu
[Ψ (u)− log v]. (70)

A cross term F(Γ1,Γ2)

F(Γ1,Γ2) =
∫
∞

0
C1xa1−1e−b1x[log C2

+ (a2 − 1) log x− b2x]dx (71)

is then equal to:

F(Γ1,Γ2) = a2 log b2 − logΓ (a2)− b2
a1
b1

+ (a2 − 1)[Ψ (a1)− log b1]. (72)

With some algebra, the KL divergence between two Gamma
distributions is given by

K(Γ1,Γ2) = log
ba11
ab22
+ log

Γ (a2)
Γ (a1)

+ b2
a1
b1
− a1

+ (a1 − a2)[Ψ (a1)− log b1]. (73)

With N observations in D, the posterior is Gamma and satisfies

a2 = a1 + Nm̄ b2 = b1 + N. (74)
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With these values, this finally yields the surprise S(Γ1,Γ2)

S(D,M) = K(Γ1,Γ2) = a1 log
b1

b1 + N
− Nm̄ log(b1 + N)

+ log
Γ (a1 + Nm̄)
Γ (a1)

+
Na1
b1
+ Nm̄[log b1 − Ψ (a1)]. (75)

When N is large, using Stirling’s formula, the dominant terms
in N logN cancel leaving the approximation

S(D,M) ≈ N
(
a1
b1
− m̄[1− log m̄+ Ψ (a1)− log b1]

)
. (76)

Appendix B. Continuous case

B.1. Unknown mean/known variance

Consider now two Gaussians G1(µ1, σ1) and G2(µ2, σ2). Then,
after some algebra, the cross term is given by

F(G1,G2) =
∫
+∞

−∞

G1 logG2dx

= −
1
2
log(2πσ 22 )−

σ 21 + (µ1 − µ2)
2

2σ 22
(77)

here using for simplicity natural logarithms. F(G,G) = 1
2 log

[2πeσ 2] = H(G) is the entropy. The Kullback–Liebler divergence
can then be obtained

K(G1,G2) = −
1
2
+ log

σ2

σ1
+
σ 21 + (µ1 − µ2)

2

2σ 22
. (78)

Consider nowadata setwithN points d1, . . . , dN with empirical
mean m̄. If the data has known variance σ 2, then the posterior
parameters are given by:

µ2 =

µ1
σ 21
+
Nm̄
σ 2

1
σ 21
+

N
σ 2

and
1
σ 22
=
1
σ 21
+
N
σ 2
. (79)

In the general case

S(G1,G2) = log
σ√

σ 2 + Nσ 21
+ N

σ 21

2σ 2
+
N2σ 21 (µ1 − m̄)

2

2σ 2(σ 2 + Nσ 21 )

≈
N
2σ 2
[σ 21 + (µ1 − m̄)

2
] (80)

when N is large. In the special case where the prior has the same
variance has the data σ1 = σ then the formula simplifies a little
and yields

S(G1,G2) =
N
2
−
1
2
log(N + 1)+

N2(µ1 − m̄)2

2(N + 1)σ 2

≈
N
2σ 2
[σ 2 + (µ1 − m̄)2] (81)

when N is large. In any case, surprise grows linearly with N with
a coefficient that is the sum of the prior variance and the square
difference between the expected mean and the empirical mean
scaled by the variance of the data.

B.2. Unknown variance/known mean

In the case of unknown variance and known mean, we have
a family M(σ 2) of models with a conjugate prior for σ 2 that is a
scaled inverse gamma distribution (Gelman et al., 1995)

Γ1(ν1, s1) =
(
ν1
2 )

ν1/2sν11
Γ (

ν1
2 )

(σ 2)−(
ν1
2 +1)e−

ν1s
2
1

2σ2 dσ 2

= C1(σ 2)−(
ν1
2 +1)e−

ν1s
2
1

2σ2 dσ 2 (82)
with ν1 > 0 degrees of freedom and scale s1 > 0. F can be
computed expanding the integrals and using the fact that∫
+∞

0 xν/2−1e−x log x = Γ ( ν2 )Ψ (
ν
2 ). This yields:

F(ν1, s1; ν2, s2) = log
(ν2/2)ν2/2s

ν2
2

Γ (
ν2
2 )

+

(ν2
2
+ 1

) [
Ψ

(ν1
2

)
+ log

2
ν1s21

]
−
ν2s22
2s21

. (83)

The posterior is then a scaled inverse gamma distribution (Gel-
man et al., 1995) with

ν2 = ν1 + N and s22 =
ν1s21 + Nσ̄

2

ν1 + N
(84)

where σ̄ 2 is the empirical variance σ̄ 2 =
∑
i(xi−m)

2/N , based on
the known meanm. The surprise is given by

S(Γ1,Γ2) = log
C1
C2
−
N
2

(
Ψ

(ν1
2

)
+ log

2
ν1s21

)
+
Nσ̄ 2

2s21
. (85)

For large values of N , taking only the leading terms

S(Γ1,Γ2) ≈
N
2

(
σ̄ 2

s21
+ log

ν1s21
2
− Ψ

(ν1
2

))
+ logΓ

(
ν1 + N
2

)
−
ν1 + N
2

log
ν1 + N
2

−
(ν1 + N)
2

log
ν1s21 + Nσ̄

2

ν1 + N
(86)

S(Γ1,Γ2) ≈
N
2

(
σ̄ 2

s21
+ log

ν1s21
2σ̄ 2
− Ψ

(ν1
2

))
. (87)

Thus surprise information scales linearly with N , with a coefficient
of proportionality that typically depends mostly on the ratio of the
empirical variance to the scale parameters s21, which is roughly the
expectation of theprior [the expectation of the prior is ν1s21/(ν1−2)
provided ν1 > 2]. The effects of very large of very small values of σ̄ ,
or ν1 can also be seen in the formula above. In particular, surprise
is largest when the empirical variance σ̄ 2 goes to 0 or infinity, i.e. is
very different from the prior expectation.

B.3. Unknown mean/unknown variance

In the case of unknown mean and unknown variance, we have
a family M(µ, σ 2) of models with a conjugate prior of the form
G1Γ1 = P(µ|σ 2)P(σ 2) = G1(µ1, σ 2/κ1)Γ1(ν1, s1). Thus the prior
has four parameters (µ1, κ1, ν1, s1), with κ1 > 0, ν1 > 0, and
s1 > 0. The conjugate posterior has the same form, with similar
parameters (µ2, κ2, ν2, s2) satisfying (see for instance (Gelman
et al., 1995))

µ2 =
κ1

κ1 + N
µ1 +

N
κ1 + N

m̄

κ2 = κ1 + N
ν2 = ν1 + N

ν2s22 = ν1s
2
1 + (N − 1)σ̄

2
+

κ1N
κ1 + N

(m̄− µ1)2

(88)

with m̄ =
∑
xi/N and σ̄ 2 =

∑
(xi − m̄)2/(N − 1). Computation

of F = F(µ1, κ1, ν1, s1;µ2, κ2, ν2, s2) is similar to the two cases
treated above and yields:

F(µ1, κ1, ν1, s1;µ2, κ2, ν2, s2) = −
1
2

[
log
2π
κ2
+
κ2

κ1
+ log

ν1s21
2
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− Ψ

(ν1
2

)
+ κ2(µ2 − µ1)

2s−21

]
+
log( ν22 )

ν2/2sν22
Γ
(
ν2
2

)
+

(ν2
2
+ 1

) [
Ψ

(ν1
2

)
+ log

2
ν1s21

]
−
ν2s22
2s21

. (89)

From Eq. (89), we can derive the surprise

S(G1Γ1,G2Γ2) =
1
2

[
log

κ1

κ2
− 1+

κ2

κ1
+ κ2(µ2 − µ1)

2s−21

]
+ log

C1
C2
+

(
ν1 − ν2

2

)[
Ψ

(ν1
2

)
+ log

2
ν1s21

]
+
ν2s22 − ν1s

2
1

2s21
. (90)

Substituting the value of the posterior parameters

S(G1Γ1,G2Γ2) =
1
2
log

κ1

κ1 + N
+
N
2κ1
+
κ1 + N
2

[
N(m̄− µ1)
(κ1 + N)s1

]2
+ log

C1
C2
−
N
2

[
Ψ

(ν1
2

)
+ log

2
ν1s21

]

+

(N − 1)σ̄ 2 + κ1N
κ1+N

(m̄− µ1)2

2s21
. (91)

For simplicity, we can consider the case where µ1 = m̄. Then

S(G1Γ1,G2Γ2) =
1
2
log

κ1

κ1 + N
+
N
2κ1
+ log

C1
C2

−
N
2

[
Ψ

(ν1
2

)
+ log

2
ν1s21

]
+
(N − 1)σ̄ 2

2s21
. (92)

In all cases, for large values ofN we always have the approximation

S(G1Γ1,G2Γ2) ≈
N
2

(
1
κ1
+
σ̄ 2

s21
+ log

ν1s21
2σ̄ 2

−Ψ

(ν1
2

)
+
(m̄− µ1)2

s21

)
. (93)

Surprise is linear in N with a coefficient that is essentially the sum
of the coefficients derived in the unknown mean and unknown
variance partial cases.

Appendix C. Exponential families with conjugate priors

Let A1 and A2 denote the parameters of two distributions P1 and
P2 in the exponential family. Simple integration yields

F(P1, P2) = log C2 +
k∑
i=1

A2i EA1 [wi(θ)] (94)

where EA1 [wi(θ)] denotes expectation with respect to P1. Surprise
S is then derived from F(P1, P1)− F(P1, P2).
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