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In this study we address the question of how indi-
vidual features may be combined to guide 
bottom- up attention. 

We compare the performance of several models 
including:

1)  a simple linear model
2)  a weighted linear model which was optimized     
      using a genetic algorithm approach
3)  a weighted linear 2nd-order model 
 representing feature interactions
4)  finally a highly non-linear max model 

- 8 subjects watched videos con-
taining synthetic and natural 
scenes.

- a total of 158,476 frames of 
video were shown to subjects 
(~25min of video) 

- Eye tracking was conducted 
with an ISCAN eye tracker at 
240Hz

- the instruction was to “follow main actors and ac-
tions in the scene and not worry about the details” 
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-An Interobserver model performs a lot better than either single 
features or simple bottom-up models that linearly sum features. 
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uniform linear  AUC: 0.63
weighted linear AUC: 0.69
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- We investigated several models of feature 
integration and evaluated how well each 
model can predict human gaze.

-We found that while some 2nd-order fea-
ture combinations may recieve a fairly high 
score, the contribution of 2nd-order feature 
interactions in gaze prediction is minimal.

-We are currently investigating a new dy-
namic highly non-linear feature interaction 
rule that may be at play when humans 
engage in visual tasks. 
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