Chapter 14
Mining Videos for Features that Drive
Attention

Farhan Baluch and Laurent Itti

Abstract Certain features of a video capture human attention and this can be
measured by recording eye movements of a viewer. Using this technique combined
with extraction of various types of features from video frames, one can begin to
understand what features of a video may drive attention. In this chapter we define
and assess different types of feature channels that can be computed from video frames,
and compare the output of these channels to human eye movements. This provides
us with a measure of how well a particular feature of a video can drive attention. We
then examine several types of channel combinations and learn a set of weightings
of features that can best explain human eye movements. A linear combination of
features with high weighting on motion and color channels was most predictive of
eye movements on a public dataset.

14.1 Background

Videos are made up of a stream of running frames each of which has a unique set of
spatial and textural features that evolve over time. Each video therefore presents a
viewer with a large amount of information to process. The human visual system has
limited capacity and evolution has incorporated several mechanisms into the visual
processing systems of animals and humans to allow only the most important and
behaviorally relevant information to be passed on for further processing. The first
stage is the limited amount of high resolution area in the eye, i.e., the fovea. When we
want to focus on a different spatial region of a video we make an eye movement, also
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known as a saccade, to bring the area of interest into alignment with the fovea. Within
the fovea too, attention can focus our perception on features that either interest us or
that are intrinsically visually conspicuous or salient. The former is termed top-down
attention and the latter bottom-up attention [2].

In this chapter we discuss in detail how a video may be decomposed into a set
of features that coarsely map to features computed in the human brain. Using this
neuromorphic approach to predicting eye movements, we can begin to understand
what features of a video attract human attention. This understanding is not only
essential for answering the scientific question of how attention works in the brain, but,
in addition, this understanding can also help us build better computer vision systems
and furthermore has other applications. A model that can successfully predict where
humans allocate attention can be used to enhance marketing displays [5], provide a
means to intelligently compress videos [21], speed up object recognition [32], and
also improve video based security systems [37].

14.1.1 Human Attention and Eye Movements

The study of eye movements as a measure of human attention dates back to over
100years ago; however, it was Yarbus [35] who first reported the manner in which
eye movements may reveal the goal of an observer and those items in the scene that
are determined to be interesting. Often objects that are of interest functionally (or
cognitively) also inherently possess the visual attributes that attract attention, i.e.,
these objects are considered salient both visually and psychologically [7]. Therefore,
studying the eye movements of human subjects while they view static or dynamic
scenes can reveal a lot about the cognitive processes underlying human visual per-
ception. Despite the proliferation of tools now available to study the brain, eye move-
ments provide a simple, quick and non-invasive method to probing human attention
using experimental means. Eye movements are monitored using infra-red or high
definition cameras that can detect and continually track the pupil of the eye. By cali-
brating the change in position of the pupil with certain calibration points on a screen,
a mapping or transformation can be used to translate the movement detected by the
eye tracker to screen coordinates. Using this method, an observer’s eye movement
traces can be overlaid on the image or video being presented, thereby providing a
means of locating the observer’s attentional allocation to the scene.

Features of the visual world attract human attention and gaze. There is necessarily
arelationship between the visual world and a particular human or animal’s behavioral
goals that results in eye movements and shifting of attention. The study of the origin
of an eye movement has been the subject of numerous studies and is a very actively
debated and active area of research [2, 22]. Broadly, however, the cause of an eye
movement or attention shift is categorized as bottom-up if it is a result of the visual
appeal of the sensory input (e.g., orientation of attention towards a light that suddenly
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blinks brightly), and fop-down if it is a result of the behavioral goal of the human
or animal in question (e.g., a volitional shift of gaze to the left when nothing in
the visual environment has changed). While this distinction helps us model and
understand attention, the separation of the two purported sources (i.e., top-down
and bottom-up) is a very challenging question in neuroscience. Since the onset of
visual experience, a human or animal begins to form a subjective percept which,
depending on experience, may force certain stimuli to appear a certain way that may
be different from another individual’s percept. Subjective experience and perception
therefore can challenge the existence of a “normative” visual percept, and, therefore,
make it very difficult to separate bottom-up and top-down influences on attention
[2, 6, 9].

When modeling the human processes of attention, eye movements serve as the
empirical evidence used to validate and quantify the quality of model. Any model of
visual attention serves to indicate with faithfulness the likelihood of a human observer
allocating attention to certain salient parts of the scene, i.e., a model generates a
saliency map. Similar to the manner in which eye movements can be overlaid on an
image, these eye movement traces can also be overlaid on a saliency map generated
by a model. In this manner, we can find models that have an output that closely
corresponds with human eye movements. Furthermore, we can use the deviation
between the model output and the human eye movements to construct a cost function
that can be optimized to fit parameters of new models developed.

14.1.2 Models of Human Attention

The development of saliency models lies at the interface of understanding human per-
ception and developing visual intelligence in machines. In several domains, engineers
have built systems that mimic or are inspired by biological systems. Biologically-
inspired computer vision has a similar goal. In particular, modeling of attention has
been an area of interest with numerous publications dedicated to the topic over the
years [4]. Modeling attention is equivalent to computing the most conspicuous or
salient regions of an image, that are likely to drive attention and, as a result, elicit
an orientation of gaze towards the location in the image. Two approaches can be
taken to building a model that can best explain a human viewers’ eye movements.
In the first approach, the functioning of the human visual system can be studied and
modeled to arrive at a computational model of human attention, several models take
this approach [14]. The second approach is to examine the patches of an image that
are fixated by human observers and understand their features to build a dictionary of
patches that are likely to elicit eye movements [17, 26]. In this chapter, we describe
in detail a model that follows the first approach and attempts to arrive at a model
based on the functioning and anatomy of the visual systems in biological organisms.

The Itti and Koch [16] model of salience has been widely successful [14] in
accounting for overt allocation of attention in natural images and has become a
benchmark for comparing other models. The model builds on previous theories [18,
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Fig. 14.1 Computation of features and saliency maps from video frames. Multi-scale features are
computed from each video frame e.g. color, intensity, orientation etc. The feature maps are then
combined generally using a simple linear combination to form a conspicuity maps also known as a
saliency map. This example shows a video frame from a recording of a video game and the resulting
saliency map for this frame after linear combination of features

27] of how attention is allocated by computing individual feature maps and then
combining these maps into a single conspicuity map, where salient locations in the
map attract attention. The general framework of this model consists of a decomposi-
tion of an image into various feature maps, by computing filter based features. Each
computed feature forms a channel in the model that can be added or removed from
the final saliency computation. Examples of these features include intensity contrast,
motion energy, color opponent contrast, etc. Numerous such feature channels can be
computed, and, since the development of the original model, a large number of chan-
nels have been added based on neuroscience discoveries of mechanisms of vision
in the brain as well as useful features based on computer vision. Figure 14.1 illus-
trates the manner in which an image is decomposed into a set of features computed
at multiple scales and then finally combined to form a saliency map. The saliency
map can be viewed as an attention probability map that assigns high probability to
regions of the image that are inherently interesting or likely to elicit human attention.
The figure shows the color (C), intensity (I) and orientation (O) channels [16]. In a
similar manner, several other channels can be computed and these have been listed
in Table 14.1.

Each channel from this large set may contribute toward the salience of a location
in the image and, therefore, the potential to elicit a gaze shift from a human. Each
channel outputs a feature map that consists of pixels corresponding to the image. Each
pixel in the feature map indicates the energy that the feature in question contributes at
that location. In the standard implementation, feature maps output from all channels
are linearly summed to form a final saliency map. This saliency map, after some
normalization, serves as a probability map that consists of the same number of pixels
as the input image and the value at each pixel indicates the likelihood of that pixel
eliciting an attention orientation towards it by a human viewer. There are several
strategies to combining the features maps into a final saliency map [15] and this
continues to be an active area of research. In this chapter we will also focus on
methods to combine feature maps and build a saliency map that maximizes the
probability of predicting human gaze.
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Table 14.1 List of feature channels

Channel name Abbrev | Refs Description

Color C [16] Double-opponent color center-surround, for
red-green and blue-yellow contrasts

Flicker F [12] Flicker center-surround channel based on frame
by frame differences

Multi-color band G [24] Multi-color band channel with N Gaussian bands
spanning the hue axis

H2SV H [23] A variant over the HSV color space

Intensity I [16] Intensity center-surround channel

DKL Color J [36] A biologically-inspired color model

Skin hue K [31] Skin hue detector

L-junction L [20] Channel tuned to L-shaped corner edges

Motion M [12, 31] Motion channel based on frame by frame
differences

Intensity-band N [24] Intensity channel with N Gaussian bands
spanning the intensity axis

Orientation (0] [16] Gabor-based orientation channel with N
orientations

CIELab Color Q [10] Color channel using the CIE L*a*b* color model

Pedestrian R [31] Pedestrian channel based on simple template
matching for humans

Single-opp. color | S [24] Composite of single-opponent color
center-surround computed separately in the red,
green, blue and yellow color bands

T-junction T [20] Detector tuned to T-shaped edge junctions

Foreground U [13] Foreground/background detection channel

Contour W [23, 25] Elongated contour detection channel

X-junction X [20] Detector tuned to X-shaped crossings of edges

In addition to the specific references listed below, papers [12, 16, 20, 25, 28] provide summary
descriptions of collections of channels, and [13] provides reference source code implementation

14.2 Experimental Study of Attention

To evaluate a model of attention we need to obtain evidence of correspondence
between the output of the model, i.e., its prediction of attention allocation within a
scene, and human attention allocation. As discussed above, one means of measuring
human attention allocation is by examining human eye movements using an eye
tracker. Typically in experiments a specific set of stimuli is chosen and displayed on
the screen. Study participants are given instructions on how to observe the scenes.
Instructions can make a large difference on eye movements, in particular different
types of instructions can emphasize either bottom-up or top-down aspects of the
scene. For example, asking subjects to look for a yellow road sign in scenes may
influence their eye movements spatially towards expected locations of road signs
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(spatial bias) and also may influence them to fixate on items that are yellow (feature
bias). On the other hand, providing minimal instructions and asking subjects to watch
and enjoy the scenes may emphasize bottom-up aspects of attention allocation by
recording eye movements based on scene changes. While efforts can be made to
emphasize bottom-up aspects of a scene there is no way to completely eliminate the
influence of top-down aspects such as the viewers’ personal bias and preferences.

14.2.1 Methods

We will discuss a study where three females and five males aged 23—32 with normal or
corrected-to-normal vision were recruited. This data set, including both the videos
as well as the recorded eye movement traces, are available openly to the public
through the CRCNS program [11] for exploration. All subjects were USC students
or staff members. Subjects gave written consent under a protocol approved by the
Institutional Review Board and were paid for participating in the study. The stimuli
for this study consisted of 50 video clips between 6 and 90s each shown at 30 {ps.
A total of 46,000 video frames and 25 min of total video time. The videos contain a
mix of indoor and outdoor scenes including park scenes, crowds, rooftop bars, TV
news, sports, commercials, and video game footage. Figure 14.2 shows an example
of these stimuli. The stimuli were presented on a monitor at 640 x 480 resolution
running at 60 Hz. An ISCAN RK-464 eye tracker was used to track the subjects’
eyes at 240Hz. A nine point calibration was performed every five clips.

iy

e 9%

\-' “m ;

it

Fig. 14.2 Sample frames from video stimuli consisting of videos of different scenes including
video game, TV adverts, outdoor and indoor scenes



14 Mining Videos for Features that Drive Attention 317

Subjects were seated in a comfortable chair and asked to view the clips while their
eyes were tracked. The instructions to the subjects were: “Follow the main actors
and actions, try to understand overall what happens in each clip. We will ask you
questions about the main contents. Do not worry about details”. This instruction
aimed to emphasize the bottom up component of the visual input being presented to
the subjects. If they were asked to look for anything specific this would introduce
a heavy top-down component and subjects’ eye movements would reflect their own
search strategies more than the inherent ability of the stimulus to draw attention. The
goal of our modeling effort is to model bottom up or purely sensory components of
the environment that can explain attentional shifts and allocation. Therefore subjects
are instructed to focus more on the general scene rather than any specific targets.

As described earlier, the eye movements can be overlaid on the images being
displayed in a post-processing step and in this manner we can observe the viewer’s
location of gaze on the scene and thus infer attentional allocation. The eye traces
recorded during the viewing of the stimuli by the subjects were parsed into saccades
based on a threshold of velocity as described before [1]. A total of 11,430 saccades
were extracted and analyzed. Using the saliency model, we were able to extract
feature maps and saliency maps using different combination rules. We then sampled
these feature and saliency maps at the saccade endpoints to look for correlations
between gaze location and saliency/feature values.

14.2.2 The Inter-observer Model and AUC Metric

To set an upper bound for the performance of models we built an inter-observer model.
To build this model we grouped together the eye movements of all the subjects at
each video frame and added them into a map consisting of all zeros and ones at
locations of eye movement end points as shown in Fig. 14.3. A Gaussian centered
at the location of each saccade endpoint or eye movement was defined with radius
5 pixels and applied to the map. This generated smooth ““salience” maps defining the
output of an inter-observer model. Since we know that each human observer will be
different and we do not expect all to be the same we build this map as an average
location of where we expect humans to fixate in a scene. The expectation is that a
group of humans should predict the eye movements of a new observer who was not
in the set of observers used to build the inter-observer model. To assess the quality
of the model, however, we need a metric.

To quantify the performance of a particular model in predicting gaze, we use an
ROC (receiver operating characteristics) like measure called area under the curve
(AUC). This measure is computed by plotting the values generated in the models
map at saccade end points against the values at 100 random locations on the map [3,
29]. Once these samples are drawn we can slide a threshold of salience and ask what
percentage of human versus random locations were selected by the model at this
threshold. A good model would result in a larger number of human fixated locations
containing high values of and few random locations. The plot serves as an ROC curve
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InterObserver model AUC: 0.80
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Fig. 14.3 Inter-observer model. Left shows a schematic of how the inter-observer model saliency
maps were generated by pooling together eye movements from all subjects and then applying a
gaussian at the saccade end points. Right shows the ROC curve by predicting saccades based on
the inter-observer model. This curve was computed by computing inter-observer maps from seven
subjects and then predicting the saccades of the one left out subject

and the area under this curve gives a measure of the quality of the model in question.
A value of 1 indicates a model that completely accounts for saccade allocation while
avalue of 0.5 indicates a model that is no better than chance at predicting the location
of gaze. All models we discuss in later sections will be gauged using this metric.
Note that the theoretical maximum AUC of 1 is not achievable with a generic model
that is not tailored to each particular individual, because all humans do not always
agree, hence a single model cannot perfectly capture attention allocation of every
single human.

Calculating the AUC metric for the inter-observer model, we obtain a very high
AUC score of 0.80, indicating high (though not perfect) inter-observer agreement.
This AUC score was significantly higher than all individual channels computed
as well as various trained and untrained models as we examine in later sections.
The inter-observer model, therefore sets the upper bound on the performance of the
models. Intuitively, we do not expect a computational model of attention to be any
better (or as good) at predicting human attention than a model constructed from the
eye movements of a group of human observers.

14.3 Analysis of Feature Contributions

To understand the manner in which features interact to guide attention we decom-
posed each video frame into a set of feature maps that when combined would provide
asaliency map [14] as discussed in earlier sections. Each so called channel provided a
single feature map for each video frame. The channels computed were color, intensity,
orientation, flicker, motion, and several others including complex junction channels
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Fig. 14.4 Individual channel AUC. Each bar represents the performance of models built form
individual channels in predicting gaze. See Table 14.1 for channel descriptions. CIOFM represents
a linear combination of the C, I, O, F and M channels without any weighting. The bar labeled
Human represents the inter-observer model. The red line indicates chance level i.e. AUC = 0.5

as listed in Table 14.1. We first analyzed the performance of each of these channels
individually at predicting gaze. This is done by computing a feature map or channel
on each video frame and then applying the AUC metric to test for performance. The
lower bound for AUC is 0.5 i.e. a model is at chance at predicting whether a location
will receive human attention or not, while the upper bound is set by the inter-observer
model.

Figure 14.4 plots the AUC scores for individual channels as well as the inter-
observer model. It is clear that individual channels fall short of the AUC score
obtained from the inter-observer model. As expected humans are able to predict the
attention allocation of other humans better than models of attention. A simple linear
combination of the color (C), intensity (I), orientation (O), flicker (F) and motion
(M) channels results in a model that performs reasonably well at predicting human
attention allocation in scenes. In the rest of our discussion we focus on methods
of finding highly predictive combinations of features using linear and non-linear
combinations. We focus on the C, I, O, F, M channels because those have been
historically prevalent, and we examine how different combinations of these would
provide differences in gaze prediction.

When comparing features, we found that the motion channel was most predictive
among the five analyzed channels (C, I, O, F and M). Figure 14.5 plots a histogram
of the number of locations versus saliency value assigned by the model. One set of
bars indicate the number of random locations that were assigned a certain saliency
value while another set indicates the number of locations that were targets of human
attention/saccades assigned that same level of saliency. The inset ROC curve in
Fig. 14.5 plots is used to compute the AUC score which for the motion channel is
0.64, a reasonably good score.

Since the videos contain a significant amount of motion and the instruction to
the subjects was to follow the main actors and actions it is intuitive that the motion
channel is predictive of locations where subjects make saccades. While the inter-
observer map sets the absolute upper bound on models, the motion channel with its
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Fig. 14.5 Performance of the motion channel. Histogram shows probability of saccade (green) or
random location hit (blue) towards locations of different saliency values from O to 1. The histogram
is for saliency of the motion channel. Inset is an ROC curve computed by sliding a threshold along
saliency values. The yellow area shows the area over which the AUC score is computed

high AUC score also sets a benchmark for other channels and models that combine
channels.

14.4 Results

14.4.1 Linear Model with Trained Weights

To test the prediction that is driven by a weighted linear combination of features
we trained a linear model to predict saccades by optimizing an objective function
defined by the AUC cost. We used a genetic algorithm to find the optimal combination
of weights for five features C, I, O, F and M. A genetic algorithm approach was
used to enable comparison of this model with the larger optimization of a model
with 20 features as discussed below. We started with random weights and enforced
a constraint of allowing a weight to vary between O and 1.A population of 100
candidates was used and each individual consisted of five values of weights for each
of the features. At each iteration each individual provided five weights for features
which were used to build a saliency model and output a final saliency map. This
map was used to compute the AUC score and determine how well the model did at
predicting human gaze. Each individual’s AUC score was computed and this was used
as the fitness value for this candidate. Standard mutation and cross-over operators
were used to breed new individuals. The results of the optimization with five features
are shown in Fig.14.6.
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Fig.14.6 Linear combination with learned weights. a Multi-scale features are computed from each
video frame e.g. color, intensity, orientation etc. The feature maps are then combined generally
using a simple linear combination to form a conspicuity maps also known as a saliency map.
b The evolution of the best AUC of the population of individuals used in the genetic algorithm
optimization. ¢ The final weights learned by the genetic algorithm. It can be seen that motion has
the highest weight at the end of learning. d A comparison of ROC curves between a linear model
with uniform weights versus a linear model with learned weights

The genetic algorithm converged on a solution in about 200 generations. The
fittest individuals had an average AUC value of 0.69. As predicted, the weight for
the motion channel was the highest. The color and orientation channels also show
a significant contribution in predicting salience. The weight for the flicker channel
was very low, probably because this channel is highly correlated with the motion
channel [36], and hence the optimization algorithm discarded it as redundant. Our
results are in line with studies that have found that color and motion are among
the top features that attract gaze [1, 34]. The weighted linear model with first order
features performed significantly better than the uniform linear model that combined
the features with uniform weights. As discussed below this turns out to be the most
predictive model among the ones analyzed in this study.

14.4.2 Second Order Feature Interaction Model

To study the effect of non-linear interactions we generated second order features
by point-to-point multiplication of each of the five features studied (CIOFM). This
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Fig. 14.7 Inter-observer model. a The manner in which features were combined to form second
order terms and were then linearly combined. 20 weights were learned by the genetic algorithm.
b Top shows the evolution of AUC scores as a function of generation of the population, the score
converges around 800 generations. Bottom shows the weights for each term

generated a total of 20 features including combinations such as CO (color orientation
combination), CI (color intensity interaction) etc. Once again we used the genetic
algorithm approach to search for the parameters for this model. In this case we had
20 features to learn and therefore this was a much larger optimization problem which
took longer to converge on a solution. Figure 14.7 shows the manner in which the
genetic algorithm learned the best weights and converged to a solution after about
800 generations. This is significantly longer than the linear weighted model with
five terms as would be expected since a much higher dimensional space (20) was
explored in this experiment.

The results from this experiment are surprising in that second-order complex
features do not help boost performance and the genetic algorithm converges to a
solution that is similar to the linear case with only first order terms. Motion again is
the strongest feature. The best AUC score 0.69 is similar to the model with only first
order term. Second order features therefore did not improve the score and while one
would expect this additional interaction information to help predict eye movements
better, the principle of parsimony compels us to consider the first order model the
better one. This is somewhat consistent with evidence from the physiology of the
visual system in that there is a very small number of cells that might be tuned
to second order combinations of features. While there is evidence of hierarchy of
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Fig. 14.8 Model comparison. a The ROC curves for the different models computed. Chance is
represented by the dashed black line the red line labeled human in the legend represents the inter-
observer model which performs the best. The uniform linear model represents the model using
CIOFM features in a simple linear combination with uniform weights. The weighted linear model
is the one that was trained using a genetic algorithm but consists only of linear terms. The 2nd
order model uses both first order and 2nd order terms to define feature combinations. b The AUC
computed from the curves in a. As can be seen the second order model does not perform any better
than the linear model

features building up to a single percept, neurons tuned to combinations of features
within our set are limited to color-orientation and color-motion cells [19, 30]. Even
in lower brain areas like the superior colliculus, a key structure that enables the
mechanisms of attention, there exist cells that are responsive to motion and even
color [8, 33].

14.4.3 Model Comparison

‘We compared the performance of all the models studied (Fig. 14.8), i.e., linear model
with uniform weights, linear model with learned weights, trained model with 2nd
order terms and the human inter-observer model. The linear model with trained
weights performs the best, but the inter-observer model has the highest performance
in predicting human attention. This shows that a linear model with no higher level
knowledge of the semantic content of the scene performs the best when compared
to other models.

It is important and interesting to note that the model that included both linear
and second-order terms performed no better than a model that consisted of linear
terms but these terms were weighted. The weights were learned by using a genetic
algorithm that maximized the AUC score. These results suggest that a biologically
inspired model of attention that combines features in a linear manner to form a
saliency map is likely to be closely related to mechanisms of attention in the brain
that give rise to the observed eye movements.
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14.5 Conclusions

In this chapter we processed and decomposed videos into several features and then
searched for a good combination of features that can predict human attention allo-
cation. Human attention consists of a volitional top-down component and an image
driven bottom-up component. We presented a study that focused on the bottom-up
aspects of attention. By recording of human observers as they watched natural videos
we established a means to validate various models explored.

A linear combination of features was sufficient to provide prediction of human
gaze, and second-order interactions of these features did not help performance. There-
fore salience of a region in an image is determined through a linear combination of
features and we can account for almost 70 % of the variance through a weighted
linear model. Top-down attention then may act by providing the weights that were
learned by our genetic algorithm.

While the linear combination model did reasonably well in predicting human
gaze, an inter-observer model built from the eye movements of several observers
outperformed the linear model. Humans are therefore better at predicting the eye
movements of each other when compared to such a model of saliency. There is much
further research to be done to both elucidate the mechanisms of attention in humans
as well as build models that can mine videos for features that drive attention.
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