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Due to extensive homologies, monkeys provide a sophisticated animal model of human visual attention. However, for
electrophysiological recording in behaving animals simplified stimuli and controlled eye position are traditionally used. To
validate monkeys as a model for human attention during realistic free viewing, we contrasted human (n = 5) and monkey
(n = 5) gaze behavior using 115 natural and artificial video clips. Monkeys exhibited broader ranges of saccadic endpoints
and amplitudes and showed differences in fixation and intersaccadic intervals. We compared tendencies of both species to
gaze toward scene elements with similar low-level visual attributes using two computational modelsVluminance contrast
and saliency. Saliency was more predictive of both human and monkey gaze, predicting human saccades better than
monkey saccades overall. Quantifying interobserver gaze consistency revealed that while humans were highly consistent,
monkeys were more heterogeneous and were best predicted by the saliency model. To address these discrepancies, we
further analyzed high-interest gaze targetsVthose locations simultaneously chosen by at least two monkeys. These were
on average very similar to human gaze targets, both in terms of specific locations and saliency values. Although substantial
quantitative differences were revealed, strong similarities existed between both species, especially when focusing analysis
onto high-interest targets.
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Introduction

Monkeys are widely used as animal models for the study
of human cognitive processes, such as visual attention, due
to the neural homologies between the species. More and
more, there is a shift toward studying vision using natural
and dynamic stimuli. When the visual system is examined
using such stimuli, it responds differently than it does to
simple stimuli traditionally used in the laboratory (for
reviews, see Felsen & Dan, 2005; Kayser, Körding, &
König, 2004; Reinagel, 2001; Simoncelli & Olshausen,
2001). The system also responds differently when mon-
keys view such stimuli freely (Dragoi & Sur, 2006;
Gallant, Connor, & Van Essen, 1998; Vinje & Gallant,
2000). What is not yet known is whether humans and
monkeys behave similarly under such natural viewing

conditions. This is important because, although there are
similarities in the early stages of visual processing,
cortical architecture differences exist in parietal and
frontal areas related to attention and cognitive processing
(Orban, Van Essen, & Vanduffel, 2004).
Computational models (Itti, Koch, & Niebur, 1998; Le

Meur, Le Callet, & Barba, 2007; Privitera & Stark, 2000)
provide a quantitative framework to assess visual behavior
and compare species under complex stimulus conditions.
For example, model output for the scene can be investigated
at actual saccadic target locations. Simple image statistics
(such as local contrast, orientation) and deviations from
global image statistics exhibit differences between fixated
vs. non-fixated locations (Parkhurst & Niebur, 2003;
Reinagel & Zador, 1999), and these statistics are factors in
guiding attention. Such experiments have been done with
monkeys (Dragoi & Sur, 2006) and humans (Itti, 2005;
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Parkhurst, Law, & Niebur, 2002; Peters, Iyer, Itti, & Koch,
2005; Tatler, Baddeley, & Gilchrist, 2005) separately.
However, viewing behavior has yet to be compared directly
using a wide set of complex dynamic natural stimuli (video).
To investigate species correspondence, Einhäuser, Kruse,

Hoffmann, and König (2006) compared 2 monkeys and
7 humans who repeatedly viewed static, grayscale natural
images. Computational models equally predicted the species
gaze shifts, however, differences in viewing strategies were
observed when local image contrast was manipulated. Here,
we expand on this significantly by comparing human and
monkey free-viewing behavior using video clips ranging in
semantic content and species relevance. Additionally, the
main computational model of viewing behavior, the saliency
model, was adapted to better account for the temporal
dynamics of video (Itti & Baldi, 2006). We also measured
consistency among observers’ gaze, which provided context
specific predictions of saccadic targets that complement the
stimulus-driven predictions of the saliency model.
Our results demonstrate correlations between saliency

and both human and monkey visual behaviors; however,
marked differences exist between species in eye move-
ment statistics, model correspondence, and interobserver
consistency. These differences must be considered when
using monkeys as a model of human attention during free
viewing. We find that focusing analysis on a subset of
high-interest gaze locationsVto which two or more
monkeys looked simultaneouslyVcan alleviate such dif-
ferences. We speculate that high-interest locations reveal
commonalities between both species, possibly by empha-
sizing the role of their largely homologous and common
low-level visual systems over their likely more different
and individualized cognitive systems.

Methods

Subjects

Eye movements during free viewing were recorded from
five human (two male) and five monkey (Macaca Mulatta, all
male) subjects. Human subjects provided informed consent
under a protocol approved by the Institutional Review Board
of the University of Southern California. Monkeys were used
with approval by the Queen’s University Animal Care
Committee and were in accordance with the Canadian
Council on Animal Care policy on the use of laboratory
animals and the Policies on the Use of Animals and Humans
in Neuroscience Research of the Society for Neuroscience.

Stimulus presentation

Naive subjects (both human and monkey) watched 115
video clips (totaling approx. 27 minutes in duration,

played in random order) that varied in duration and
semantic content. The clips were subjectively categorized
into six coarse semantic groups (Building/City, Natural,
Sports, Indoor, Non-natural, and Monkey-relevant), as
shown in Figure 1. Stimuli were collected from television
(NTSC source) with a commercial frame grabber (ATI
Wonder Pro). Monkey-relevant clips were collected at the
Queen’s University animal care facility with a consumer
grade digital video camera. Frames were acquired and
stored at 30 Hz in raw 640 � 480 RGB555 format and
compressed to MPEG-1 movies (640 � 480 pixels).
Stimuli were presented to human subjects, with head
stabilized by a chin rest, on a 101.6 � 57.2 cm LCD TV
(Sony Bravia) at a viewing distance of 97.8 cm. This
provided a usable field of view of 54.9- � 32.6-, which
was the largest the video-based human eye-tracker could
accommodate. Stimulus presentation was orchestrated
using a Linux computer running in house-programmed
presentation software (downloadable at http://iLab.usc.
edu/toolkit) under SCHED_FIFO scheduling to ensure
proper frame rate presentation (Finney, 2001; Itti, 2005).
Subjects were given minimal instructionsV“watch and
enjoy the video clips, try to pay attention, but don’t worry
about small details.” Each video presentation was pre-
ceded by a fixation point, and the next video began when
the subject pressed the space bar.
The exact same stimuli were also presented via the

same Linux system to head-restrained monkeys who were
seated 60 cm from a Mitsubishi XC2935C CRT monitor
(71.5 � 53.5 cm; 640 � 480 pixels). This provided a
usable field of view of 61.6- � 48.1-. Trial initiation was
self-paced. Each video presentation was preceded by a
fixation point and the next video was initiated when the
monkey’s eye position remained within a square elec-
tronic window with 5- radius of the central fixation point
for 300–500 ms. The monkey subjects were not rewarded
systematically for doing this task, but most monkey
subjects easily learned to fixate in order to initiate the
next clip.

Human eye-tracking procedure

Human eye movements were recorded using an infra-
red-video-based eye-tracker (ISCAN RK-464). Pupil and
corneal reflections of the right eye were used to calculate
gaze position with an accuracy 1-, sampled at 240 Hz. To
calibrate the system, subjects were asked to fixate on a
central point and then saccade to one of nine target
locations distributed across the screen on a 3 � 3 grid.
This procedure was repeated until each location was
visited twice. In subsequent offline analysis, the endpoints
of saccades to targets were used to perform an affine
transform followed by a thin-plate-spline interpolation
(Itti, 2005) on the eye position data obtained in the free-
viewing experiment in order to yield accurate estimate of
eye position given the geometry of the eye-tracker and
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display. Recalibration was performed every 13 movie
clips during the experiment.

Monkey eye-tracking procedure

A stainless steel head post was attached to the skull via
an acrylic implant anchored to the skull by stainless steel
screws. Eye coils were implanted between the conjunctiva
and the sclera of each eye (Judge, Richmond, & Chu,
1980) allowing for precision recording of eye position
using the magnetic search coil technique (Robinson,
1963). Surgical methods for preparing animals for head-
fixed eye movement recordings have been described
previously (Marino, Rodgers, Levy, & Munoz, 2008).
Monkeys were seated in a primate chair with their heads
restrained for the duration of an experiment (2–4 hours).

Eye position data were digitized at 1000 Hz using data
acquisition hardware by Plexon. Concurrently, timestamps
of the time of fixation point onset, acquisition of the
fixation target by the monkey, and initiation of the clip
were recorded.
To calibrate eye position, monkeys performed a step

saccade paradigm in which targets at three eccentricities
and eight radial orientations from the fixation point were
presented in random order. Monkeys were given a liquid
reward if they fixated a target within a square electronic
window of 4- radius within 800 ms. During calibration,
behavioral paradigms and visual displays were controlled
by two Dell 8100 computers running UNIX-based real-
time data control and presentation systems (Rex 6.1:
Hays, Richmond, & Optican, 1982). In order to control for
small non-linearities in the field coil, the weighted average
of several visits to each target endpoint was later used to

Figure 1. The six categories of scene types. Exemplars are shown from the six categories of scene types: (A) building and city, (B) natural,
(C) sports, (D) indoor, (E) non-natural (cartoons, random noise, space), and (F) monkey relevant (monkeys, experimenters, facilities).
Each group contains scenes with and without main actors (e.g., empty room vs. talk show). (G) An example of eye movement traces from
4 humans (blue) and 4 monkeys (green) superimposed on a video clip during a relatively stationary 3-s period. Notice that monkeys
looked around the screen while humans focused their gaze on the slowly moving car in the background (inset with yellow box).
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perform an affine transform and thin-plate-spline interpo-
lation on the eye position data collected during free
viewing of the video clips.

Quantifying eye movement behavior

In order to quantify viewing behavior, an algorithm was
used for both species, which parsed the analog eye position
data into saccadic, fixational, and smooth pursuit eye
movements. Traditional techniques to separate these various
eye movements did not work well with these data, because
many of the eye movement patterns elicited during free
viewing of dynamic stimuli were non-traditional (e.g.,
blends of smooth pursuit, optokinetic, and saccadic eye
movements). To deal with such idiosyncrasies, standard
velocity measurements were combined with a simple
windowed Principal Components Analysis (PCA). The eye
position data were first smoothed (63 Hz Lowpass Butter-
worth), and eye positions with velocities greater than 30 deg/s
were marked as possible saccades. Within a sliding window,
the PCA was computed and the ratio of explained variances
(minimum over maximum) for each of the two dimensions
was stored. A ratio near zero indicates a straight line, and
hence a likely saccade. The results of several different
window sizes were linearly combined to produce a robust
and smooth estimate. Eye positions with a ratio near zero but
with insufficient velocity to be marked as a saccade were
labeled as smooth pursuit. The remaining data were marked
as fixation. Saccades with short (G80 ms) intervening
fixations or smooth pursuits and small differences in
saccadic direction (G45-) were assumed to represent read-
justments of gaze en route to a target, and so were combined
into a single saccadic eye movement toward the final target,
rather than two or more separate saccades. Additionally,
saccades of G2- in amplitude and G20 ms in duration were
removed in order to decrease the false positive rate of
saccade parsing and to focus analysis on eye movements that
more likely reflected a shift of attention to a new target as
opposed to minor gaze adjustments on a current target (Itti,
2005). This saccade parsing algorithm is freely available as
part of the stimulus presentation software.
For each subject (human or monkey), clips that

contained excessive durations (930% of clip length) of
tracking loss (blinks, loss of signal from search coil, or
video-based tracker) or off-screen eye movements (sleep-
ing, inattentive behavior) were excluded from the analy-
sis. The majority of monkey clips was rejected for
excessive off-screen eye position (18.6% of the monkey
data, 0.7% for humans); 11.8% of the monkey data (1.4%
for humans) were discarded for loss of tracking. In
monkeys, the implanted search coil still produces a signal
when a subject is in a blink, however, strain on the coil
due its implanted position (along with other noise factors)
will cause some loss of tracking. Due to technical errors,
data were not recorded for 17 clips for 1 monkey and
2 clips for another, accounting for 3.3% of the monkey

data. In total, 1.9% of human and 27.3% of monkey eye
traces were rejected. Note that the individual rejection
percentages do not add to the total percentage rejected due
to overlap between clips containing tracking loss and off-
screen data. Analysis was consequently performed on
different subsets of clips for each observer with the
limitation that at least three observers from each species
had to have successfully viewed each clip for it to be
retained in the analysis.

Implementation of computational models

To assess the visually guided behavior of humans and
monkeys, two validated computational models of visual
attention (contrast and saliency) and an interobserver con-
sistency metric were used to predict individual eye move-
ments (Figure 2). Models were created and run under Linux
using the iLab C++ Neuromorphic Vision Toolkit (Itti,
2004). First, a luminance contrast model (Reinagel & Zador,
1999), defined as the variance of pixel values in 16 � 16
pixel patches tiling the input image frame (Figure 2, left), is
a simple but non-trivial model of attention and serves as a
control for the performance of the saliency model. Second,
we used the saliency model of visual attention framework
(Figure 2, center; Itti & Koch, 2000; Itti et al., 1998). The
Itti and Koch model computes salient locations by filtering
the movie frames along several feature dimensions (color,
intensity, orientation, flicker, and motion). Center–surround
operations in each feature channel highlight locations that
are different from their surroundings. Finally, the channels
are normalized and linearly combined to produce a saliency
map, which highlights screen locations likely to attract the
attention of human or monkey observers. To process our
video clips, we used the latest variant of the saliency model,
which uses Bayesian learners to detect locations that are not
only salient in space but are also salient (or so-called
“surprising”) over time (Itti & Baldi, 2006). This model
hence substantially differs from and generalizes other
models of stimulus-driven attention (Itti et al., 1998; Le
Meur et al., 2007; Privitera & Stark, 2000; Tatler et al.,
2005) in that both spatial and temporal events within each
feature map that violate locally accumulated “beliefs” about
the input cause high output for that location.
The contrast model contains no temporal dynamics and,

consequently, would not be expected to outperform the
saliency model. Since many simple models would perform
significantly above chance, we use the contrast model as a
lower bound of performance for any non-trivial model of
attention. Additionally, luminance contrast is correlated
with many features used in the saliency computation.
Comparing the static luminance contrast model with the
saliency model gives some insight into the contribution of
the dynamic features irrespective of luminance contrast.
To compute a measure of gaze agreement among and

between species, an interobserver metric was created
separately for each species using a leave-one-out approach

Journal of Vision (2009) 9(5):19, 1–15 Berg et al. 4



(Figure 2, right). A master map is created by placing
Gaussian blobs (A = 48 pixels) centered at the instantaneous
eye positions of a subset of human or monkey observers. For
each subject, a map is created from the eye positions of the
2–4 other subjects in the same species who viewed the clip.
A maximum output for this map is achieved when all
subjects look at the same item simultaneously. This map
represents a combination of stimulus-driven and goal-
directed eye movements and has been used as an upper
bound for human gaze prediction (Itti & Baldi, 2006).

Comparing eye movements to model and
metric output

To compute the performance of each model or metric, the
maximum map values in a circular window (3.6- humans,

4.7- monkeys: A 48-pixel window but different viewing
distances and screen sizes for each species) around human or
monkey saccadic endpoints were compared to 100 map
values collected from locations randomly chosen from the
distribution of saccadic endpoints from all saccades (in the
same species) except those generated in the same clip by
the same subject as the sample. This approach is similar to
the image-shuffled analysis method used by others for static
images (Parkhurst & Niebur, 2003; Reinagel & Zador,
1999; Tatler et al., 2005) and allows for an unbiased
measure of model performance despite any accidental
correlation between a particular species saccadic endpoint
distribution and model output. For a particular subject, at
the onset of a saccade we measured the value in each
model map at the endpoint of the saccade, i.e., the activity
in the map just before the saccade. For the interobserver
model, the map value was measured at the time of the

Figure 2. Architecture of the contrast and saliency models, and interobserver agreement metric. (Left) A simple luminance contrast model
computed as the variance of luminance values in 16� 16 pixel image patches. (Center) The latest implementation of the saliency model (Itti &
Baldi, 2006). (Right) An interobserver agreement metric (see Methods section) created by making a heat map from the pooled eye
movements of all observers, except the one under test, on a given movie clip (leave-one-out analysis). The yellow circle indicates the
endpoint of a saccadic eye movement. At the start of the saccade, the maximum value within a 48-pixel radius circular aperture was stored
along with 100 values chosen randomly from the saccadic endpoint distribution of all clips and subjects except for the one under test. To test
for agreement between or among species, the interobserver agreement metric was sampled at the time when the eye landed at its target.
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endpoint of the saccade to assess the congruency of gaze
locations, either within or between species.
Differences between saliency at human or monkey gaze

targets and at the randomly selected locations were
quantified using ordinal dominance analysis (Bamber,
1975). Model or metric map values at observers’ saccadic
endpoints and random locations were first normalized by
the maximum value in the map when the saccade occurred
(i.e., when the map was sampled). For each model,
histograms of values at eye positions and random
locations were created. To non-parametrically measure
differences between observer and random histograms, a
threshold was incremented from 0 to 1, and at each
threshold value we tallied the percentage of eye positions
and random locations that contained a value greater than
the threshold (“hits”). A rotated ordinal dominance curve
(similar to a receiver operating characteristic graph) was
created with “observer hits” on one axis and “random
hits” on the other (Figure 5, inset). The curve summarizes
how well a binary decision rule based on thresholding the
map values could discriminate signal (map values at
observer eye positions) from noise (random map values).
The overall performance can be summarized by the area
under this curve. This value is calculated and stored for
each of the 100 randomly sampled sets. The mean of the
100 ordinal dominance values is taken as the final ordinal
dominance estimate. A model that is no more predictive
than chance would have equal random and model hits for
each threshold, creating a straight line with an ordinal
dominance of 0.5. The interobserver metric is assumed to
provide the upper bound of predictability, between 0.5 and
1.0 (see Results section), which the best computational
models might be expected to approach. Note that an
ordinal dominance of 1.0 is not achievable by any model,
because there is imperfect agreement among observers,
hence it is impossible for a single model to exactly
pinpoint the gaze location of each observer.

“High-interest” gaze targets

For some analyses, we defined a subset of saccadic
endpoints as “high-interest” gaze targets. These were
locations separated by less than 48 pixels (3.6- humans,
4.7-monkeys) that two or more observers of a given species
looked at within 150 ms of one another. For monkeys,
filtering the 12,826 saccades used for the overall analysis by
these criteria resulted in a subset of 1,812 saccades; for
humans, filtering the original 12,148 saccades resulted in a
subset of 4,142 saccades.

Statistical analysis

Distributions of model and metric output at gaze targets
were statistically compared using the permutation

framework (Monte Carlo simulation, 10,000 repetitions).
Confidence intervals for model and metric scores were
estimated by repeating the ordinal dominance measurement
on a randomly selected half of the data, to form a sampling
interval. Tests between species or models were carried out
using a permutation test, computed by taking all saccades
from both groups under test and randomly assigning each
saccade to one of the two groups, irrespective of the actual
group membership of the saccades. The difference between
mean ordinal dominance values for the two randomly
assigned groups was computed and stored. The process
was repeated to form a sampling interval. The p value
represents the probability of observing a value more
extreme than the original group assignment (Good,
1994). Statistical analysis of the saccadic endpoint
distributions was also carried out in the permutation
framework, but the symmetric Kullback–Leibler distance
function was used in place of ordinal dominance.

Results

Saccade metrics

Several differences in the saccade metrics of humans
and monkeys were observed. Figures 3A and 3B show the
smoothed distribution of saccadic endpoints used for
analysis. “Hotter” colors represent a higher likelihood
that a subject made a gaze shift to that location. Human
and monkey saccadic endpoint distributions were signifi-
cantly different (permutation test, p e 0.0001), but both
species showed the characteristic center bias reported in
human experiments using natural photographs (Reinagel
& Zador, 1999; Tatler, 2007). This may reflect a
physiological bias to return the eyes to the center of the
orbits (Paré & Munoz, 2001). Monkeys seemed to explore
the spatial extent of the display more thoroughly than
humans, who were very center-biased. This difference
may be due to a variety of factors including motor
differences, cognitive awareness of the main actors and
actions that were often near the center of the video, or a
general search strategy. The TV channel logo that often
appeared in the lower right-hand corner (Figure 1G) also
attracted a high number of gaze shifts for both species.
Figures 3C and 3D show the saccadic main sequence for

humans and monkeys. The main sequence plots the
relationship between saccadic peak velocity and ampli-
tude and is well known to be an exponential function
(Bahill, Clark, & Stark, 1975). The shape of this function
is thought to reflect the brainstem circuitry controlling
saccades and is altered when there is damage in the
brainstem circuits or muscles controlling saccades (Ramat,
Leigh, Zee, & Optican, 2007). The main sequence data
combined across the 5 monkeys were noticeably more
variable than the human main sequence. When analyzed
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on a log–log scale, a linear regression revealed an R2 of
0.77 (ANOVA test, F(1, 15168) = 52002, p G 0.0001) for
monkeys compared to an R2 of 0.96 (ANOVA test, F(1,
14835) = 342150, p G 0.0001) for humans. Monkeys were
much faster for a given amplitude, and regression lines
showed monkeys had significantly higher velocity offset
(Figure 3). The slope of the line was significantly higher

(Figure 3, although a small magnitude difference) in
humans, indicating a steeper relationship between ampli-
tude and peak velocity.
Figure 4 compares saccadic amplitude, fixation dura-

tion, and intersaccadic interval distributions for monkeys
(green bars) and humans (blue bars). The probability
distribution of saccadic amplitudes differed significantly,

Figure 3. Saccade Metrics: Endpoint distributions and main sequences. (A–B) Saccadic endpoint distributions for the 12,138 human and
12,832 monkey saccades (computed after removing noisy data and clips with fewer than three observers, resulting in less data for
monkeys) used for comparison with the contrast and saliency models and the interobserver agreement metric. Points were smoothed by
convolving each map with a Gaussian kernel (A = 1.5-). “Hotter” colors represent a higher likelihood that a human or monkey gaze shift
landed at that screen location. Distributions were significantly different at p e 0.0001, using the Kullback–Leibler distance function
between distributions in a permutation test (see Methods section). (C–D) Main sequence for all saccades (14,837 from humans and
15,170 frommonkeys, before removing clips with fewer than three observers) recorded from humans (blue) and monkeys (green). The main
sequence was computed before combining multi-step saccadic eye movements into a single saccade, yielding separate entries for each
component of the multi-step saccade. Main sequences for humans and monkeys were significantly different (ANOVA test, F(2,30003) =
58024.55, p G 0.0001), testing for coincident regression lines on a log–log scale. Significant differences were observed for both the slope
(ANOVA test, F(1,30003) = 1703.29, p G 0.0001) and velocity offset (ANOVA test, F(1,30003) = 21805.25, p G 0.0001) components of the
main sequence. Black lines fitted to the data were computed by minimizing V = a (1 j ejA/s), where V and A are saccadic velocities and
amplitudes, respectively; a and s are the model parameters representing maximum amplitude and slope of the lines.
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in that monkeys had a broader distribution and a greater
median (Figure 4A). This could in part have been because
monkey subjects had a slightly wider field of view;
however, when amplitudes were replotted on a normalized
axis, the same qualitative results were obtained (not
shown). The probability distributions for fixation dura-
tions and intersaccadic intervals also significantly differed
between species with humans having slightly longer

median durations (Figures 4B and 4C). Monkey fixation
and intersaccadic interval distributions were narrower,
which possibly indicates a stereotyped fixation pattern (e.g.,
fixate for 250 ms and then saccade to new place). In
contrast, human fixation durations and intersaccadic inter-
vals were spread over a wide range of values.

Model predictions of gaze shift endpoints

To further quantify species differences, we used a
computational model of saliency-based visual attention.
In previous human experiments, this model has revealed
that observers gaze more frequently toward the salient
“hot-spots” computed by the model in both static images
and dynamic scenes (Itti, 2005; Itti, 2006; Itti & Baldi,
2006; Parkhurst et al., 2002; Peters et al., 2005). The
model takes as input an image or video clip frame and
outputs a salience map that gives a prediction of the
screen locations likely to attract attention. The specific
implementation details of this model have been described
previously (Itti & Baldi, 2006; Itti et al., 1998).
We measured the amount of computed saliency for each

video frame at the endpoints of saccadic eye movements in
both species (see Methods section), to assess the extent to
which humans and monkeys exhibited similar computations
of salience (perhaps represented in monkey LIP, Goldberg,
Bisley, Powell, & Gottlieb, 2006) and strategies for
deploying gaze toward salient locations. To quantify the
chance-corrected performance of the saliency model,
values at gaze targets were compared to values at gaze
targets taken at random from other video clips, giving an
ordinal dominance score (see Methods section). Measure-
ments from the contrast model and interobserver agreement
metric were similarly chance-adjusted. Figure 5A shows
the comparison of human and monkey ordinal dominance
scores for different models and metrics, and Figure 5B
shows a summary of the statistical analysis. All models and
metrics predicted human and monkey gaze targets signifi-
cantly better than chance (permutation test, p e 0.0001),
and saliency predicted human and monkey gaze behavior
significantly better than the baseline-control contrast model
(permutation test, p e 0.0001). This finding validated the
use of the saliency model as a good predictor of visually
guided attentive behavior in both humans and monkeys.
Interestingly, we found that saliency correlated with

human behavior significantly better than monkey behav-
ior, over all clips combined (permutation test, p e 0.0001).
Differences in the likelihood to deploy attention to salient
items should be minimized when using monkeys as a
model for human attention during free viewing. The
saliency differences were, however, small in magnitude
compared to the difference in interobserver agreement
(Figure 5). Comparing saliency scores with interobserver
agreement may provide insight into a way to reconcile such
differences. Although saliency was a strong predictor of
human visually guided behavior, the stimulus-driven nature

Figure 4. Saccade Metrics: Distributions of saccade amplitude,
fixation durations, and intersaccadic intervals. Probability histograms
for (A) saccadic amplitude, (B) fixation duration after a saccade, and
(C) intersaccadic interval (which may include smooth pursuit) for
humans (blue) and monkeys (green) calculated before combining
multi-step saccades into a single saccade. For display purposes
only, the green bars are half the width of the blue bars, which
represent the actual interval for both. The time axes are truncated
at 1000 ms. Amplitude (Two-tailed Kolmogorov–Smirnov, D = 0.34,
n1 = 14837, n2 = 15170, p G 0.0001), fixation duration (Two-tailed
Kolmogorov–Smirnov, D = 0.12, n1 = 14837, n2 = 15170,
p G 0.0001), and intersaccadic interval (Two-tailed Kolmogorov–
Smirnov, D = 0.13, n1 = 14837, n2 = 15170, p G 0.0001) histograms
were significantly different. Green and blue circles represent the
median scores for each species.
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of the model limited its predictive power. The interobserver
agreement metric captured aspects of stimulus-driven
(saliency) and top-down (context specific) attentional
allocation, the latter of which has also been shown to be a
significant factor in guiding human gaze shifts in natural
scenes (De Graef, De Troy, & Dydewalle, 1992; Neider &
Zelinski, 2006; Noton & Stark, 1971; Oliva, Torralba,
Castelhano, & Henderson, 2003; Yarbus, 1967). The
interobserver agreement metric was the best predictor of
human saccadic targets (permutation test, p e 0.0001).
Interestingly, this trend did not hold for monkeys and the
interobserver agreement metric was significantly less
correlated with monkey gaze shifts than the saliency model
(permutation test, p = 0.0027). That is, the computational
saliency model better predicted where one monkey might
look than was predicted from the gaze patterns of two to
four other monkeys. Any top-down information present in
the monkey interobserver agreement metric was insufficient
to increase predictability of gaze patterns over a purely
stimulus-driven model. Monkey top-down attentional allo-
cation may be completely inconsistent among observers
(e.g., Figure 1G), leaving saliency to be the best predictor
of visually guided attentive behavior.
Figure 6 shows a scatter plot of median normalized (not

chance corrected) monkey vs. human saliency values at all
saccadic endpoints that occurred during each entire clip.
This clip-by-clip analysis revealed that saliency values
from monkeys and humans were significantly correlated
(Figure 6). The best fitting line (solid black) had
significantly lower slope than the unity line (dashed
black), indicating that monkeys’ saliency scores varied
less than those of humans from clip to clip, and clips that
contained higher saliency values for humans contained on
average slightly lower saliency values for monkeys. The
y-offset, however, was not different from 0 (Figure 6),
indicating that there was no systematic bias, or baseline
shift, in human or monkey raw saliency scores. The
majority of the regression line falls below the unity line;
hence, on average the saliency scores were lower for
monkeys, as was already the case with our aggregate
analysis (Figure 5). Individual clip content affected
deployment of gaze to salient locations for humans and
monkeys in a comparable way; however, monkeys may
have had a tendency to be less modulated by clip content.
This likely reflects differences in semantic understanding
of the clips between the two species.
We defined a subset of clips (Figure 1F) as monkey

relevant. These clips contained scenes from the monkeys’
daily environment (e.g., their housing, familiar monkeys
and humans, facilities) and represented a contextual
control to ensure monkeys attended to familiar natural
scenes similarly to novel ones. The points in the scatter
plot for monkey-relevant clips (Figure 6, green triangles)
were in the same distribution as those for other clips. Only
considering these monkey-relevant clips, a significant
linear correlation was found (Pearson correlation, r(13) =
0.72, p = 0.005). This line was not significantly different

Figure 5. Model and metric scores at human and monkey saccadic
endpoints. (A) Comparison of the contrast and saliency model, and
interobserver agreement metric values at human (blue) and monkey
(green) saccadic endpoint locations with values at randomly
selected eye positions. Overall, human and monkey gaze shifts
were predicted (permutation test, p e 0.0001) by all models and
metrics greater than chance levels (ordinal dominance of 0.5). Error
bars show the 95% confidence interval on the ordinal dominance
estimate (see Methods section). (B) This figure summarizes the
statistical differences between species and models as obtained
through permutation tests (see Methods section). Blue (human),
green (monkey), and white (human–monkey) bars show the
magnitude of the test statistic (mean ordinal dominance difference)
obtained between pairs labeled on the x-axis. Values greater than 0
indicate that the first model or species in the pair had a larger
ordinal dominance score. Black bars represent the 95% confidence
interval of the test statistics sampling distribution. (Left) Saliency
performed better than the baseline-control contrast model for both
humans and monkeys (permutation test, p e 0.0001). (Center)
Interobserver agreement was more predictive than saliency for
humans (permutation test, p e 0.0001), however, interobserver
agreement was less predictive than saliency for monkeys (permu-
tation test, p = 0.0027). (Right) The human saliency ordinal
dominance score was significantly higher than the monkey score
(permutation test, p e 0.0001).
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from that calculated for all other clips (Figure 6). Taken
together, this analysis indicates that monkeys were
visually attentive to the video clips in a similar fashion
to humans, at least as far as saliency is concerned,
although from this analysis we cannot know if they
looked at similar spatial locations at the same time, only
that they looked at similarly salient items.

“High-interest” gaze locations

We wondered if the relatively poor predictability of
monkey behavior by the saliency model and interobserver

agreement metric might be due to idiosyncratic search
strategies and/or cognitive systems by monkeys, which
may or may not have been related to the video content. To
remove idiosyncratic gaze shifts from the analysis, we
determined a subset of “high-interest” gaze targetsVthose
locations that attracted the attention of two or more
observers toward the same location at the same time (see
Methods section). Saliency and interobserver agreement
metrics were then reanalyzed based on this subset for each
species. Figure 7A shows the effect of filtering by high-
interest gaze targets on an “interspecies agreement”
metric. This metric represents the correlation between
monkey saccadic target locations and those target loca-
tions selected by humans. This metric was computed by
testing monkey saccadic endpoints against the same
human-derived interobserver metric that was used for
human interobserver agreement analysis. The interspecies
agreement metric allowed us to directly measure the
extent to which monkey gaze target locations were also
looked at by humans. The lowest score the interobserver
agreement metric obtained for humans was when all
human saccades were analyzed together (Figures 5A and
7A, lower black line). This can serve as a lower bound for
our interspecies agreement metric; as to be a good model
of human visual behavior, monkeys should be as con-
sistent with human gaze targets as humans are with one
another. A useful upper bound for this metric is obtained
by recalculating the interobserver agreement metric for
saccadic target locations where at least two humans
agreed to look (Figure 7A, upper black line). We expect
the best models of human visual behavior (animal or
computational) to approach this level of correlation with
humans, as it means the model is often selecting the
strong attractors of attentionVthose scene locations that
on average attracted the attention of multiple human
observers.
When all monkey saccades were considered, the

interspecies ordinal dominance score was lower than the
score obtained from the human interobserver agreement
metric (permutation test, p e 0.0001). That is, monkey
saccadic target selection was less consistent with human
target selection than humans were with one another.
However, the interspecies ordinal dominance score dra-
matically increased (permutation test, p e 0.0001) when
analysis was limited to monkey saccades made toward
monkey high-interest targets. In fact, the interspecies
score for these high-interest monkey saccades fell above
our human-derived lower bound (permutation test,
p e 0.0001) but below our human-derived upper bound
(permutation test, p e 0.0001). This demonstrates a high
correlation between locations where humans and monkeys
looked when analysis of monkey saccades was restricted
to high-interest locations.
Figure 7B compares human and monkey saliency

ordinal dominance scores for all gaze targets and high-
interest gaze targets. As was shown in Figure 5, when all
saccades were considered the monkey saliency ordinal

Figure 6. Correlation between saliency values at human and
monkey eye positions. The scatter plot shows median saliency
values considering all saccadic endpoints in a given video clip for
monkeys vs. humans. Each point represents the median of raw
(not chance corrected) saliency values for each video clip, with
green triangles indicating clips that would be relevant to a monkey
as described in the Methods section. Human and monkey scores
were well correlated (Pearson correlation, r(98) = 0.80, p G 0.0001).
Analysis of coefficients obtained by major axis regression (Sokal &
Rohlf, 1995) revealed that the best fitting line (y = 0.82x + 0.032,
solid black) was significantly different from unity (dotted black)
in slope (F-test, F(1,98) = 7.26, p = 0.0083) but not y-offset (t-test,
t(98) = 0.089, p = 0.38). The regression line for monkey-relevant
clips (y = 0.91x j 0.00021, solid green) was not significantly
different from the regression line for all other clips (chi-square test,
c2(1, N = 100) = 0.2, p = 0.65), computed by testing for coincident
lines. Hypothesis testing was performed according to Warton,
Wright, Falster, and Westoby (2006). The sample frames in the
upper left and lower right corners are from videos where one
species had a considerably higher saliency score than the other.
The two adjacent frames are from the two videos where human and
monkey scores were most similar.
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dominance score was significantly lower than the human
score, indicating that the saliency model predicted human
saccades better than monkey saccades. However, at high-
interest gaze targets, the ordinal dominance scores were
significantly higher for humans and monkeys (permutation
test, p e 0.0001), indicating that the saliency model was a

better predictor of high-interest gaze targets than of low-
interest ones (e.g., when the five observers looked at five
different locations) for both species. Note that increasing
the number of humans who agreed on a saccadic target to
three did not significantly increase the saliency ordinal
dominance score (not shown). Thus, in our analysis, gaze
locations where two human observers agreed can serve as
an upper bound for human gaze predictability. Increasing
the number of agreeing monkeys beyond two seemed to
increase the ordinal dominance scores linearly (not
shown), but more data would be required for hypothesis
testing. Interestingly, the saliency ordinal dominance
score for monkey high-interest saccadic targets was
greater than the human score for all saccades (permutation
test, p e 0.0001) and was indistinguishable from the
score for human high-interest gaze targets (permutation
test, p = 0.16). That is, scene items that drew the attention
of multiple monkeys (high-interest gaze targets) contained
similar chance-corrected saliency values than those loca-
tions that attracted the gaze of multiple humans.

Discussion

The present study objectively compared, for the first
time, human and monkey visually attentive behaviors
during free viewing of natural dynamic (video) stimuli. In
addition to examining saccadic eye movement metrics,
several models of visual attention were employed to
provide objective metrics by which to compare human
and monkey viewing behaviors. We found significant
differences between human and monkey gaze shifts during
free viewing. In summary, monkeys generated faster
saccades, which spanned a greater range of the screen
and were separated by shorter fixation durations. Although
both species shifted gaze to locations that were deemed
salient by the saliency model, humans were more likely to
do so. The gaze locations of other humans were the best
predictors of human behavior, but this was not true of
monkeys. The saliency model predicted monkey gaze
shifts better than the combined gaze behavior of other
monkeys. These differences, however, could be mini-
mized if we only examined high-interest gaze locationsV
those that at least two monkeys jointly attended. When the
saccades were filtered in this way, monkey behavior
became more human like, almost indistinguishable in
terms of gaze location and saliency values. This filtering
technique focuses analysis on common attractors of
attention between species, possibly by emphasizing the
role of the shared low-level saccadic selection processes
over the more idiosyncratic cognitive processes. High-
interest targets minimize differences between the species,
providing a method to make the best use of monkeys as a
model of human visual behavior under free-viewing
conditions.

Figure 7. Analysis at high-interest gaze locations. To test the
agreement in saccadic target selection between humans and
monkeys, the human interobserver metric was used to predict the
gaze locations of monkeys (interspecies agreement metric).
(A) Ordinal dominance scores for the interspecies agreement metric
for all monkey saccadic endpoints, and a subset of “high-interest”
saccadic targets, that multiple monkeys looked at simultaneously.
When only high-interest targets were considered, monkey saccadic
endpoints were closer to human gaze locations (permutation test,
p e 0.0001). To serve as a reference, the lower black line is themean
ordinal dominance score of the human interobserver agreement
metric. The upper black line is the mean ordinal dominance score of
the human interobserver agreement metric when only locations
where two or more humans agreed to lookwere considered. Shaded
regions represent the 95% confidence intervals of these estimates.
When all monkey gaze targets were considered, the interspecies
agreement metric scored lower than the human interobserver
agreement metric (permutation test, p e 0.0001). However, when
only high-interest gaze targets were considered, the interspecies
ordinal dominance score fell between the lower and upper bounds
derived from our human interobserver metric (permutation test,
p e 0.0001). (B) Saliency ordinal dominance scores for all gaze
endpoints and a subset of high-interest gaze locations for humans
and monkeys. The ordinal dominance scores for all saccades
(Figure 5) are replotted as a reference. When all monkey gaze
targets were considered, the monkey saliency ordinal dominance
score was lower than the human score (permutation test, p e 0.0001).
For the subset of high-interest gaze targets, where two or more
monkeys agreed, the ordinal dominance score was increased
(permutation test, p e 0.0001) and indistinguishable from the human
high-interest gaze targets (permutation test, p = 0.16), putting the
monkeys in the range of human predictability.
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Monkey–human differences in eye movement
metrics

Eye movement metrics under free viewing of video
stimuli were found to be quite different between monkeys
and humans. Monkeys were less center-biased and made
saccades with larger amplitudes on average. This may
suggest that monkeys were less interested in the video
actions and actors, which tended to be filmed near the
center. Monkeys may have had less cognitive under-
standing of the scenes, and/or they were more interested in
exploring the screen, possibly in search of actions/
locations that could have resulted in reward.
At a more mechanical level, monkeys differed from

humans in features of their saccadicmain sequence (saccadic
velocity vs. amplitude). Monkeys made much faster sac-
cades for a given amplitude compared to humans, confirm-
ing what has been found by Harris, Wallman, and Scudder
(1990). The main sequences under free-viewing conditions
were comparable to those obtained in previous studies using
laboratory stimuli with humans (Bahill, Brockenbrough, &
Troost, 1981; Bahill et al., 1975; Becker & Fuchs, 1969;
Boghen, Troost, Daroff, Dell’Osso, & Birkett, 1974) and
monkeys (Quaia, Paré, Wurtz, & Optican, 2000; Van
Gisbergen, Robinson, & Gielen, 1981) separately. Our data
tended to have slower peak velocities, particularly in
humans; however, velocities still fell within the normal
range defined by Boghen et al. (1974). Differences in our
data may be a feature of free viewing, or idiosyncratic to
our subjects and methodology.
Discrepancies between species could be partly accounted

for by differences in neural connectivity from the retina
through the oculomotor system to the eye muscles, and
possibly by differences in the motor plant, e.g., smaller
viscous reactive forces in monkeys because they have a
smaller eyeball. These plant differences probably reflect
little on the processes involved in the deployment of visual
attention. However, some discrepancies (e.g., intersaccadic
intervals, saccadic endpoint distributions) may stem from
different scanning strategies employed and should be
accounted for when comparing species.

Monkey–human differences in model
correspondence and interobserver agreement

More relevant to understanding visual attention is an
examination of image properties at human and monkey
gaze positions. To objectively compare species, we
examined how computational models predicted saccadic
targets of humans and monkeys. We used a model that
measures static luminance contrast, which has been shown
to be an attractor of gaze in humans and monkeys
watching grayscale images (Einhäuser et al., 2006), and
a saliency model, which has been shown to capture
aspects of stimulus-driven eye movements in humans

viewing images (Peters et al., 2005) and videos (Itti, 2005;
Itti & Baldi, 2006). The contrast model, although it does
not contain temporal dynamics, serves as a baseline to
measure the performance of the saliency model, for even
simple models of attention will predict behavior signifi-
cantly above chance (random sampling). Both models
predicted gaze shifts of both species above chance, but the
saliency model performed better, as expected. Validation
of the saliency model with monkeys suggests that the
species may possess similar computations of saliency
during free viewing, and the model captures aspects of
these mechanisms shared among primates. This is encour-
aging as it validates investigation of the neural substrates
of such computations in monkeys.
Interestingly, the computational models predicted

human gaze shifts better than monkey gaze shifts. This
was surprising, as we had expected monkeys would be
more saliency-driven than humans, due to their impov-
erished knowledge of the clips content (e.g., one video
clip shows the earth viewed from space, likely a foreign
concept to our monkeys). Our finding was also in contrast
to results from Einhäuser et al. (2006) who found
monkeys and humans to be equally saliency-driven to
grayscale images. However, inconsistency in gaze target
selection among monkey observers relative to humans
provided some insight into these discrepancies.
Human attention has been described as a combination of

stimulus-driven (bottom-up) and contextually driven or
goal-directed (top-down) factors (Itti & Koch, 2001;
Treisman & Gelade, 1980), and monkey attention is likely
controlled by similar mechanisms (Fecteau & Munoz,
2006). The interobserver agreement metric contains
elements of both factors while the saliency algorithm
captures aspects of bottom-up processing only. As
expected, for humans, the interobserver agreement metric
provided the best prediction of gaze deployment. It has
been known since Henderson, Weeks, and Hollingworth
(1999) and Loftus and Mackworth (1978) that gaze
density among observers is increased over scene regions
containing semantically inconsistent or highly informative
objects. Hence, the gaze consistency among our humans
likely reflects their shared notion of semantically infor-
mative regions in the clips. Monkey gaze, however, was
best predicted by the saliency model. This suggests that
monkeys made many idiosyncratic eye movements,
possibly related to each monkey’s unique interpretation
of the scene, the goal of the experiment, or inattentiveness
to the stimuli. Monkeys may have been engaged by the
clips but shared less top-down knowledge of how to follow
the main actions compared with humans. Alternatively, it
may be that as a result of their training, monkeys were in
part examining the screen looking to “unlock the task” or
find a screen location or action that would lead to a
reward. Such a search strategy is supported by the
stereotyped fixational pattern (more narrow distribution
of intersaccadic intervals). In either case, since their top-
down interpretation seems inconsistent, saliency-based
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computations may serve as the lowest common denomi-
nator in deploying gaze in natural scenes for monkey
observers.

High-interest image locations minimizes
monkey–human differences

Perhaps the most relevant question to consider, given
the observed differences, is to what degree monkeys
looked at the same places that humans looked. To address
this, we focused analysis on high-interest targets, those
locations that were gazed at by two or more monkeys
simultaneously. This effectively forced consistency on our
monkey data by filtering out some idiosyncratic eye
movements that may have been due to differences in
top-down scene interpretation or general attentiveness to
the stimuli. An interspecies agreement metric revealed
that when all saccade data were used, monkey saccadic
targets were not as consistent with humans, as humans
were with each other. In other words, monkeys did not
often look where humans looked. This is not unexpected,
as monkeys were inconsistent with each other. However,
when the analysis was repeated using only the subset of
monkey high-interest saccadic targets, those targets were
dramatically closer to locations where, on average,
humans looked (Figure 7A). High-interest gaze targets
for monkeys became consistent with human visual
behavior and were within the expected range of human
interobserver agreement scores. These saccadic targets
may focus our monkey analysis on scene locations that
were of common interest to both species, narrowing the
gap between human and monkey visual behaviors during
free viewing of dynamic scenes.
Interestingly, those same high-interest targets that

correlated well with human behavior were also highly
salient; in fact, indistinguishable from human high-interest
gaze targets in terms of their chance-corrected saliency
scores. Highly salient items, as predicted by our model,
may have simultaneously attracted the attention of multi-
ple monkey observers. Since the monkey high-interest
targets are also close to human gaze targets, this may
indicate that saliency was the common factor in driving
human and monkey attention to those locations. Analysis
of monkey high-interest saccades minimized species
differences both in terms of specific saccadic targets and
saliency model agreement. This analysis may emphasize
the shared bottom-up attentional processes among humans
and monkeys, filtering out the more individualized
cognitive processes.
This result may be particularly relevant when using

monkeys in experiments requiring neural recording or
imaging during free viewing of dynamic or natural scenes.
Restricting analysis of neural responses to stimuli that
attracted the gaze of at least two monkeys would ensure
that the monkeys’ behavior would be as consistent as

possible with human behavior under such conditions.
While doing so eliminates a significant portion of the data,
more data can be collected more easily under free viewing
compared with traditional single-trial methods. This
technique may emphasize common attentional mecha-
nisms between species, thus making the best use of our
animal model to generate results meaningful to human
behavior and cognition.

Acknowledgments

This work was supported by NSF (CRCNS), Canadian
Institutes of Health Research, Canada Research Chair
Program, NGA, DARPA, and ARO. The authors affirm
that the views expressed herein are solely their own and
do not represent the views of the United States govern-
ment or any agency thereof.

Commercial relationships: none.
Corresponding author: Laurent Itti.
Email: itti@usc.edu.
Address: 3641 Watt Way, HNB-30A, Los Angeles, CA
90089-2520, USA.

References

Bahill, A. T., Brockenbrough, A., & Troost, B. T. (1981).
Variability and development of a normative data base
for saccadic eye movements. Investigative Ophthal-
mology & Visual Science, 21, 116–125. [PubMed]
[Article]

Bahill, A. T., Clark, M. R., & Stark, L. (1975). The main
sequence, a tool for studying human eye movements.
Mathematical Biosciences, 24, 191.

Bamber, D. (1975). The area above the ordinal dominance
graph and the area below the receiver operating
characteristic graph. Journal of Mathematical Psy-
chology, 12, 387–415.

Becker, W., & Fuchs, A. F. (1969). Further properties of
the human saccadic system: Eye movements and
correction saccades with and without visual fixation
points. Vision Research, 9, 1247–1258. [PubMed]

Boghen, D., Troost, B. T., Daroff, R. B., Dell’Osso, L. F.,
& Birkett, J. E. (1974). Velocity characteristics of
normal human saccades. Investigative Ophthalmol-
ogy, 13, 619–623. [PubMed] [Article]

De Graef, P., De Troy, A., & Dydewalle, G. (1992). Local
and global contextual constraints on the identification
of objects in scenes. Canadian Journal of Psychol-
ogy, 46, 489–508. [PubMed]

Journal of Vision (2009) 9(5):19, 1–15 Berg et al. 13

http://www.ncbi.nlm.nih.gov/pubmed/7251295?ordinalpos=64&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.iovs.org/cgi/reprint/21/1/116
http://www.ncbi.nlm.nih.gov/pubmed/5360604?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/4841869?ordinalpos=28&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.iovs.org/cgi/reprint/13/8/619
http://www.ncbi.nlm.nih.gov/pubmed/1486555?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum


Dragoi, V., & Sur, M. (2006). Image structure at the
center of gaze during free viewing. Journal of
Cognitive Neuroscience, 18, 737–748. [PubMed]
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Quaia, C., Paré, M., Wurtz, R. H., & Optican, L. M.
(2000). Extent of compensation for variations in
monkey saccadic eye movements. Experimental
Brain Research, 132, 39–51. [PubMed]

Ramat, S., Leigh, R. J., Zee, D. S., & Optican, L. M.
(2007). What clinical disorders tell us about the
neural control of saccadic eye movements. Brain,
130, 10–35. [PubMed] [Article]

Reinagel, P. (2001). How do visual neurons respond in the
real world? Current Opinion in Neurobiology, 11,
437–442. [PubMed]

Reinagel, P., & Zador, A. M. (1999). Natural scene
statistics at the centre of gaze. Network, 10, 341–350.
[PubMed]

Robinson, D. A. (1963). A method of measuring eye
movement using a scleral search coil in a magnetic
field. IEEE Transactions on Biomedical Engineering,
10, 137–145. [PubMed]

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural
image statistics and neural representation. Annual
Review of Neuroscience, 24, 1193–1216. [PubMed]

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The
principles and practices of statistics in biological
research. New York: W. H. Freedman and Company.

Tatler, B. W. (2007). The central fixation bias in scene
viewing: Selecting an optimal viewing position
independently of motor biases and image feature
distributions. Journal of Vision, 7(14):4, 1–17, http://
journalofvision.org/7/14/4/, doi:10.1167/7.14.4.
[PubMed] [Article]

Tatler, B. W., Baddeley, R. J., & Gilchrist, I. D. (2005).
Visual correlates of fixation selection: Effects of scale
and time. Vision Research, 45, 643–659. [PubMed]

Treisman, A. M., & Gelade, G. (1980). A feature-
integration theory of attention. Cognitive Psychology,
12, 97–136. [PubMed]

Van Gisbergen, J. A., Robinson, D. A., & Gielen, S.
(1981). A quantitative analysis of generation of
saccadic eye movements by burst neurons. Journal
of Neurophysiology, 45, 417–442. [PubMed]

Vinje, W. E., & Gallant, J. L. (2000). Sparse coding and
decorrelation in primary visual cortex during natural
vision. Science, 287, 1273–1276. [PubMed]

Warton, D. I., Wright, I. J., Falster, D. S., & Westboy, M.
(2006). Bivariate line-fitting methods for allometry.
Biological Reviews of the Cambridge Philosophical
Society, 81, 259–291. [PubMed]

Yarbus, A. L. (1967). Eye movements and vision. New
York: Plenum Press.

Journal of Vision (2009) 9(5):19, 1–15 Berg et al. 15

http://www.ncbi.nlm.nih.gov/pubmed/12696858?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15935435?ordinalpos=33&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10836634?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/17121745?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://brain.oxfordjournals.org/cgi/content/full/130/1/10
http://www.ncbi.nlm.nih.gov/pubmed/11502389?ordinalpos=10&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10695763?ordinalpos=59&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/14121113?ordinalpos=118&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/11520932?ordinalpos=15&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18217799?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://journalofvision.org/7/14/4/
http://www.ncbi.nlm.nih.gov/pubmed/15621181?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7351125?ordinalpos=51&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7218009?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10678835?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/16573844?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

