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Abstract

The brain’s ability to ignore repeating, often redundant, information while enhancing novel information processing is paramount to
survival. When stimuli are repeatedly presented, the response of visually sensitive neurons decreases in magnitude, that is, neurons
adapt or habituate, although the mechanism is not yet known. We monitored the activity of visual neurons in the superior colliculus
(SC) of rhesus monkeys who actively fixated while repeated visual events were presented. We dissociated adaptation from
habituation as mechanisms of the response decrement by using a Bayesian model of adaptation, and by employing a paradigm
including rare trials that included an oddball stimulus that was either brighter or dimmer. If the mechanism is adaptation, response
recovery should be seen only for the brighter stimulus; if the mechanism is habituation, response recovery (‘dishabituation’) should be
seen for both the brighter and dimmer stimuli. We observed a reduction in the magnitude of the initial transient response and an
increase in response onset latency with stimulus repetition for all visually responsive neurons in the SC. Response decrement was
successfully captured by the adaptation model, which also predicted the effects of presentation rate and rare luminance changes.
However, in a subset of neurons with sustained activity in response to visual stimuli, a novelty signal akin to dishabituation was
observed late in the visual response profile for both brighter and dimmer stimuli, and was not captured by the model. This suggests
that SC neurons integrate both rapidly discounted information about repeating stimuli and novelty information about oddball events,
to support efficient selection in a cluttered dynamic world.

Introduction

Efficient selection of important events among temporal clutter requires
the ignoring of repeating stimuli, thereby emphasizing novel and
potentially important ones. This simple form of non-associative
learning has been referred to as adaptation, habituation, and repetition
suppression, depending on the era and field of study (Grill-Spector
et al., 2006; Krekelberg et al., 2006; Clifford et al., 2007; Kohn,
2007). From an information processing perspective, adaptation serves
to adjust the operating point of a sensory system, to maximize the
efficiency of sensory coding and increase differential sensitivity to
novel events (Muller et al., 1999; Dragoi, 2002; Dragoi et al., 2002;
David et al., 2004; Dean et al., 2005). This can be achieved through
incremental updating over time of a Bayesian prior, which can then
bias the processing of incoming sensory data (Itti & Baldi, 2005;
Stocker & Simoncelli, 2006).

Electrophysiological evidence of response reduction with stimulus
repetition has been observed throughout the visual system, from the
retina (Smirnakis et al., 1997; Brown & Masland, 2001; Hosoya
et al., 2005) and thalamus (Solomon et al., 2004), to the visual cortex
(Maffei et al., 1973; Movshon & Lennie, 1979; Muller et al., 1999;
Motter, 2006) and frontal eye fields (Mayo & Sommer, 2008). These
studies usually focus on perception; however, stimulus repetition
effects also have profound, although less studied, consequences for
visual orientation: the latency and magnitude of the visual response
influences the timing of eye and head movements to foveate the
stimulus (Dorris et al., 2002; Fecteau et al., 2004; Corneil et al.,
2008).
The ideal place to study visual repetition effects is the superior

colliculus (SC) – the phylogenetically conserved hub of the visual
orienting system (Ingle, 1975; Huerta & Harting, 1983; Dean et al.,
1989; Munoz et al., 2000; May, 2006) – which is integrated with all
other visual areas in the brain. Many visually responsive neurons in
the SC also have movement responses that are time-locked to saccades
(Mohler & Wurtz, 1976). The superficial layers of the SC receive
visual input directly from the retina and from the early visual cortex,
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whereas the intermediate layers receive more complex visual and
cognitive input from various cortical areas, the basal ganglia and
cerebellum (May, 2006). Therefore, early (e.g. retinal) and late (e.g.
cortical) sources of visual adaptation can be compared directly by
examining repetition effects across all SC visually responsive neurons
located in different layers.

We explored how the magnitude and onset latency of SC visual
responses changed with repetition. We modeled these changes by using
a Bayesian approach to provide a quantitative definition of adaptation,
which was then used to predict the consequences of changes to stimulus
timing and intensity. To dissociate simple adaptation from higher-level
learning processes (e.g. habituation), we compared responses to rarely
presented brighter or dimmer oddball stimuli. Response decrement
resulting from adaptation should follow the adaptation model and
recover with a brighter but not a dimmer stimulus; however, response
decrement resulting from habituation should recover (dishabituation)
after any novel stimulus change (Sokolov, 1963; Baars, 1988).

Materials and methods

All procedures were approved by the Queen’s University Animal Care
Committee and were in full compliance with the Canadian Council on
Animal Care guidelines on the care and use of laboratory animals.
Experiments were performed with two male rhesus monkeys (Macaca
mulatta) weighing between 9 and 12 kg. The surgical techniques used
to prepare the animals for behavioral and physiological recordings
have been described previously in detail (Marino et al., 2008). Briefly,
monkeys were implanted with a head post for head fixation, a
recording chamber over the SC, and eye coils to measure eye position
with the search coil technique. On the evening prior to surgery, the
animal was placed under nil per os (water ad libitum), and prophylactic
treatment with antibiotics was initiated [5.0 mg ⁄ kg enrofloxacin
(Baytril)]. On the day of the surgery, anesthesia was induced with
intramuscular ketamine (6.7 mg ⁄ kg). A catheter was placed intrave-
nously to deliver fluids (lactated Ringer) at a rate of 10 mL ⁄ kg ⁄ h to a
maximum of 60 mL ⁄ kg throughout the duration of the surgical
procedure. Intramuscular glycopyrolate (0.013 mg ⁄ kg) was adminis-
tered to control salivation and bronchial secretions, and to optimize
heart rate. An initial dose was delivered at the start of surgery, followed
by a second dose 4 h into the surgery. General anesthesia was
maintained with gaseous isofluorene (2–2.5%) after an endotracheal
tube had been inserted (under sedation induced by an intravenous bolus
of propofol, 2.5 mg ⁄ kg). Heart rate, pulse, pulse oximetry saturation
(Spo2), respiration rate, fluid levels, circulation and temperature were
monitored throughout the surgical procedure. The analgesic buprenor-
phine (0.01–0.02 mg ⁄ kg intramuscular) was administered throughout
the surgery and during recovery (8–12 h). The anti-inflammatory agent
ketoprofen (2.0 mg ⁄ kg first dose, 1.0 mg ⁄ kg additional doses) was
administered at the end of surgery (prior to arousal), on the day after
the surgery, and every day thereafter (as required). Monkeys were
given 2 weeks to recover prior to onset of behavioral training.

Monkeys were trained to perform a variety of oculomotor tasks for
liquid reward. Real-time control of the experimental task and visual
display was achieved with rex version 6.0 (National Eye Institute, NIH,
Bethesda, MD, USA). Monkeys were seated in a primate chair 60 cm
away from a CRT monitor (Mitsubishi XC2935C; 75-Hz refresh rate,
71.5 · 53.5 cm; usable field of view of 62� · 48�). Visual stimuli were
presented within a darkened environment. Dark adaptation was
prevented by dimly illuminating the monitor screen for 800 ms during
the inter-trial interval. Physiological activity was monitored from 109
single neurons, using tungsten electrodes (FrederickHaer; 0.5–5.0 mX),

with stimulus events and spike times being collected, and waveforms
digitized, through the Plexon MAP system (Plexon Inc., Dallas, TX,
USA). Further analysis was performed offline with custom Matlab-
based software (Mathworks, Natick, MA, USA).

Cell classification

When a neuron was first isolated, its visual receptive field was
established by use of a simple fixation task in which white light stimuli
(42.5 cd ⁄ m2, 100 ms in duration, 0.25� diameter spot) were presented
in pseudorandom order to 182 possible locations distributed across 60
(horizontal) · 50 (vertical) degrees of visual angle, the order of which
was designed so that no two subsequent stimuli appeared within the
typical response field of an SC neuron, in order to prevent adaptation
effects. The centroid of the receptive field was then determined by use
of a cubic spline function, and this location was used for all
subsequent studies on the neuron. Because we were interested in
adaptation of visual responses, we limited data collection to encoun-
tered cells that had a visual response.
We then collected further information to characterize the neuron

relative to known SC cell types. First, we made careful measurements
of microelectrode depth referred to the dorsal surface of the SC (as
determined by the electrode depth that first elicited multiunit visual-
only activity). Second, neural recordings taken during four interleaved
saccade tasks [step, gap, memory-delay, and visual-delay; described in
detail elsewhere (Munoz & Wurtz, 1993)] were used to classify visual
and motor responses; critically, the visual-delay task dissociated visual
and motor activity (Fig. 1A). In this task, the animal starts each trial by
fixating a central fixation point. A target was then presented randomly
in the center of the response field or at a location opposite to the
vertical and horizontal meridian. To receive a reward, the animal had
to maintain fixation until the fixation point disappeared (the delay
period: 500–800 ms randomized) and then make a saccade to the
target.
We refer to visual responses as ‘transient’ (a short visual burst) or

‘sustained’ (a visual burst followed by an extended period of low-
frequency activity), as described previously (White et al., 2009). This
terminology is in line with descriptions of visual neurons in the
geniculostriate pathway. We classified neurons as visual-transient
(VT), visual-sustained (VS), visuomotor-transient (VmT), and visuo-
motor-sustained (VmS) (see Fig. 1B for single-unit examples), using
two indices: a visual–motor index and a transient–sustained index. The
visual–motor index was constructed with information from the
saccade-aligned spike density function (Gaussian, r = 5 ms) from
the visual-delay task (Fig. 1A). The spike density function was first
low-pass filtered by iterative convolution with a five-tap binomial
kernel: 100 iterations in the forward direction and 100 in the backward
direction. The result had no phase shift and approximated convolution
with a Gaussian of r = 14.12 ms. The timing and magnitude of the
peaks and troughs of the waveform were then estimated by finding the
zero crossings of the numerical gradient. A strong peak in activity
from 25-ms pre-saccadic to 5-ms post-saccadic initiation was taken as
evidence for a visuomotor neuron, and we quantified this feature with
a simple probability measure:

P ¼ 1
2

1þ erf
h� T

d
ffiffiffi
2
p

� �� �
ð1Þ

whereT and d were the mean and standard deviation of
non-perisaccadic peaks, h was the value of the perisaccadic peak,
and erf(x) was the Gauss error function. Large probabilities indicated
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the presence of motor activity, and if no peak was found, a
probability of 0.0 was assigned. To confirm that the peak activity was
related to a robust motor response and not to residual sustained visual
activity or noise, the smallest trough was measured in a small
window (±25 ms) around saccade onset. We computed the proba-
bility that activity at the trough (or at saccade initiation if no trough
existed) was higher than the average pre-saccadic baseline activity
()900 ms to )50 ms pre-saccade) using Eqn 1, but where T and d
were the mean and standard deviation of the baseline, and h was the
value at the trough. Finally, the visual–motor index was computed as
1 ) PpPt, where Pp was the probability from the peak measurement,
and Pt was the probability from the trough measurement. We
considered cells with a visual–motor index < 0.025 to be visuomotor
cells.

To compute the transient–sustained index, we aligned spike density
functions to target appearance in the visual-delay task (Fig. 1A) and
divided the post-stimulus visual response into early (transient) and
later (sustained) components. Each time point in the first 400 ms of
post-stimulus activity was compared with a baseline (700 ms pre-
target) using Eqn 1, where T and d were the mean and standard
deviation of the baseline, and h was the value of the time point.
Intervals of post-stimulus activity where each point in the interval had
a high probability (P ‡ 0.99) were identified, and if the first region had
raised activity for > 10 ms, its start and end (maximum of 400 ms)
identified the early component; otherwise, the whole post-stimulus
interval from 0 to 400 ms was taken as the early component. The later
component was then identified as the remaining interval until 550 ms
after stimulus appearance (minimal delay interval). The VT index was
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Fig. 1. (A) Raster plots and spike density waveforms (r = 5 ms) recorded from representative VT, VS, VmT and VmS neurons for a delayed saccade task, which
was used to facilitate neural classification. Data are aligned on target appearance (left column) and saccade onset (right column) in the delayed saccade task when the
target appeared in the neuron’s response field. (B) The response of the same single neurons to the seven stimuli in the standard repetition paradigm. The black bars
across the bottom of the abscissa represent the stimulus timing. Spikes for individual trials are presented in raster format (only a subset of trials are shown for display
purposes) and overlaid with a mean spike density function (r = 5 ms). (C) Scatter plots and histograms of the metrics used to classify cells. The transient–sustained
index is plotted against the visual–motor index for each cell (color indicates cell class), with smaller numbers indicating more motor and more transient responses,
respectively, as measured from responses in the visual delay task shown above. The histograms show the number of cells with each parameter value, using a bin
width of 0.025 units. The dashed lines show the cutoff values that were used to separate classes of neurons into the four categories. (D) The mean depth for each cell
class. The cell classes had significantly unequal variances (Bartlett’s test, T3 = 15.50, P = 0.0014), and a Kruskal–Wallis test was therefore conducted to evaluate
differences in depth among the four cell classes. Cell classes significantly differed in depth (C2

3;108 = 20.10, P = 0.0002), and pairwise Wilcoxon rank-sum tests
(Bonferroni-corrected) indicated that VT cells differed significantly from both VmT and VmS cells (z = 3.78, P < 0.001, and z = 3.79, P < 0.001, respectively).
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then calculated as S ⁄ (T + S), where S was the mean activity in the
later (sustained) component, and T was the mean activity in the early
(transient) component. The distribution of index values for each metric
is shown in Fig. 1C. To divide the cells into transient and sustained
classes, we chose a value of 0.2625, which was a natural division in
the distribution of index values.

SC neurons have well-characterized responses ranging from purely
visual to purely motor (Mohler & Wurtz, 1976; Mays & Sparks, 1980;
Munoz & Wurtz, 1995; McPeek & Keller, 2002). Visual-only cells
with transient visual responses and no saccade-related activity (VT)
tended to be located more superficially than the other classes of
visually responsive cells (Fig. 1D). Thus VT cells were typically
found in the upper superficial gray layer (e.g. superficial layers of the
SC), where retinal Y-type cells terminate directly and indirectly
through the magnocellular lateral geniculate nucleus and V1 (May,
2006). Visual-only cells that had sustained visual responses (VS)
typically paused during saccadic eye movements (Fig. 1A). Previ-
ously, we showed that VS neurons were sensitive to color signals,
whereas VT cells were not (White et al., 2009), suggesting parvocel-
lular input. These features, along with a mean depth of about 900 lm
(Fig. 1D), suggest that they were located in the lower superficial
layers. This area receives visual input from higher occipital and
parietal areas (Graham et al., 1979; Tigges & Tigges, 1981). The VS
neurons that we identified were probably the same as the ‘visual-tonic’
neurons described previously (McPeek & Keller, 2002; Li & Basso,
2008). Finally, visuomotor cells with transient or sustained activity –
VmT or VmS – were easily characterized, because of their bursts of
activity being time-locked to saccades and their bursts of visual
activity being time-locked to stimulus onset (Fig. 1A). Our sample of
visuomotor neurons was, by necessity, biased towards those with
robust visual responses, and were always found more than 1 mm
below the dorsal surface (Fig. 1D).

Behavioral task

Monkeys actively fixated a central fixation spot (grayscale circle of
0.25� diameter presented at 1.1 cd ⁄ m2) while a series of seven light
flashes (i.e. stimuli, 0.25� in diameter, 55 ms in duration; Figs 1B and
2A) were presented in the receptive field of the monitored neuron. In
the main paradigm, these seven stimuli were separated by intervals
200 ms in duration [i.e. 255-ms interstimulus interval (ISI)]. Monkeys
received a small liquid reward for maintaining fixation within a small
computer-controlled window (1–3� square window) for the duration of
each trial. If fixation was broken prior to the end of the trial, the trial
was aborted, eliminated from further analysis, and recycled back into
the trial sequence. In the main paradigm, 70% of the trials (control
trials) consisted of seven equiluminant stimuli (1.1 cd ⁄ m2), and 30%
of the trials (oddball trials) were identical except that the fourth
stimulus could be brighter (10%, 5 cd ⁄ m2), dimmer (10%,
0.1 cd ⁄ m2), or absent (10% of trials). These trial types were randomly
interleaved. Trains of seven stimuli were chosen because they allowed
for examination of responses before and after presentation of the
oddball, and they constituted a comfortable trial duration for the
monkey to maintain steady fixation. The ISI of 255 ms was chosen
because maximal inhibition of return was observed in monkeys at a
cue–target onset asynchrony of that interval (Fecteau et al., 2004).

For a subset of neurons (19 tested and 17 analyzed, two removed for
having no response to some stimuli), the ISI was varied systematically
between 155, 255 and 455 ms in the control condition only, to
investigate the effects of ISI on the repetition effect. Typically, the
255-ms ISI block was collected first, because that was part of the main

paradigm used with the oddball trials. If neuronal isolation remained
strong after that paradigm, additional files were obtained at other ISIs
collected in pseudorandom order.

Neural analysis

Single neurons or pairs of single neurons were recorded from a single
electrode, isolated online with the window discriminator in plexon,
and verified and optimized offline with the plexon offline sorter

(Plexon Inc., Dallas, TX, USA). The timing of events in the trial
sequence was then calculated automatically with custom Matlab

(Matlab 6.5; Mathworks, Natick, MA, USA) software during offline
analysis. We recorded from a total of 109 neurons in the control task
with oddball trials. Of these, recordings from 98 neurons (60 from
monkey Q; 38 from monkey Y) had sufficiently good spike isolation
throughout recording, a mean visual response > 40 spikes ⁄ s, responses
to all seven stimuli during the control trials, and at least six trials of
each oddball condition. Typically, there were 10–20 repetitions of each
oddball condition and 70–140 repetitions for the control condition.
Two spike density functions were created for each trial of each
condition by convolving the trains of action potentials with a Gaussian
kernal (r = 5) or by convolving with a combination of growth and
decay functions that resemble a postsynaptic potential given by:

RðtÞ ¼ ð1� e�t=sgÞðe�t=sd Þ ð2Þ

where R is the firing rate as a function of time t, sg is a time constant for
the growth phase, and sd is a time constant for the decay phase. Time
constants of 1 and 20 for the growth and decay phases, respectively,were
chosen, following the practice of others (Thompson et al., 1996). Spike
density functions were aligned on the first stimulus onset, and activity
from repeated trials were averaged to generate a mean spike density
function (for both functions separately) for each neuron for each
condition. The magnitude of the first peak response to each visual
stimulus was calculated off the Gaussian spike density function, and the
onset of that response was calculated from the spike density function
created by rate functionR, which provides amore accuratemeasurement
of onset time. This was performed for the responses to each of the seven
stimuli in every condition, for each neuron. To find the first peak in the
visual response and its onset, a custom computer algorithm written in
Matlab looked for all peaks in the spike density function in the epoch
from 50 ms after stimulus onset until the end of the ISI. It then marked
the highest peak (usually the first one) on a visual display. Each first-
peak calculation wasmanually examined and changed if it was incorrect
(e.g. if a late noisy peak was incorrectly chosen as the first main peak by
the algorithm). Once the peak had been determined, the onset latency of
that visual response was calculated by an algorithm that looked
backwards in time (maximum of 40 ms back) along the descending
slope from the first peak, in order to find the point at which the response
became significantly greater than the mean neural activity in an epoch
spanning 25 ms before to 25 ms after the onset of the visual stimulus that
generated that response.Again, each of thesewas examined on the visual
display, and manually adjusted if necessary (e.g. if unusual noise levels
or sustained activity from the preceding response unduly lengthened the
response onset latency (ROL) calculation of the algorithm).

Receiver operating characteristic (ROC) analysis

The ROC was used to quantify the time course of differences between
control and oddball conditions after the presentation of the fourth
stimulus in the sequence. For each cell, we computed the area under the
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ROC curve between the control condition and each oddball condition in
a 50-ms sliding window centered on the time point of interest (gray box,
bottom left of Fig. 6A). Thewindow’s left edge started at the onset of the
visual response and advanced 1 ms in time (depicted by the solid line)
until the right edge reached the onset of the next (fifth) stimulus. This
resulted in one ROC area measurement for each cell and each time point
on the interval shown (which started at half the window size, 25 ms after
the onset of the visual response). To control for variation in timing of
each cell’s response to the fourth stimulus, it was necessary to first align
each spike density function to the onset of visual activity in response to
the fourth stimulus. As a result of this realignment, the waveforms from
different neurons and conditions had slightly different lengths, as the
time of the visual onset varied with cell type and condition, and
consequently, theROCanalysiswas performed over a different length of
time for each cell and condition. As a result, fewer cells entered the ROC
area calculation near the end of the analysis interval. The length of the
analysis interval shown in Fig. 6 (below the VT spike density function)
was the maximum interval that could be chosen that still contained more
than 50%of the cells for all classes and conditions (all butVmT cells had
more than 80%at the endof this interval). All cells in all conditions had at
least 122 ms from the onset of the visual response to the onset of the next
stimulus, and the median was 152 ms.

Implementation of the computational model

The Bayesian model of adaptation is summarized in Fig. 3A. The
model is based on surprise theory using a Poisson-gamma model,
which is described in detail elsewhere (Itti & Baldi, 2005; Baldi &
Itti, 2010), but is summarized here with the differences in our
implementation being noted. The model consists of two stages of
Bayesian learning, which are identical except for their input sources
(Fig. 3A), so for clarity the equation subscripts are omitted from the
following discussion. We consider that each Bayesian learner
receives one-dimensional Poisson-distributed spike trains (from the
retina and visual cortex or from the previous stage of learning),
represented internally as a family of models, M(k), which are all the
possible one-dimensional Poisson distributions of firing rates
(k > 0). Each learner builds probability distributions (hypotheses
or beliefs) P(M(k)), concerning which of these models best
represents the current state of the stimulus. As is typical in
iterative Bayesian learning, the prior and posterior distributions are
chosen from the same functional form (conjugate priors), so that the
posterior distribution at one time step is used as the prior
distribution for the next. When the data are Poisson-distributed
(D = k), the gamma probability density function is the conjugate
prior, P(M(k)):

P ðMðkÞÞ ¼ cðk; a; bÞ ¼ baka�1e�ba

CðaÞ ð3Þ

with shape a > 0 and inverse scale b > 0, and where C(a) is the Euler
gamma function of a. Given an input sample D = k, the posterior
distribution of beliefs over the possible input firing rates is also a
gamma distribution characterized by:

a0 ¼ faþ kþ e and b0 ¼ fbþ 1 ð4Þ

where a¢ and b¢ are the shape and inverse scale of the posterior
distribution, f is a temporal parameter (forgetting factor, 0 < f < 1),
which determines the rate of learning, and e is a constant representing
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(n = 16) and VmS (n = 18) neurons in response to seven repeated stimuli
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neuron’s response field. (B) Color coding of intensity of neural activity in
response to the seven stimuli (time of the response to a given stimulus on the
horizontal axis, response to each stimulus descending vertically, color-coded
for normalized spike rate). Note the shift in onset latency with each stimulus
repetition. (C) Changes in mean response onset latency across stimulus number
for each neural type. (D) Changes in peak response magnitude across stimulus
number for each neural type, normalized to the response on the first stimulus.
(E) Population spike density waveforms in response to the first target stimulus,
aligned on response onset to show the early (transient) and later (sustained)
components of the visual response. (F) Normalized mean sustained activity
(50–100 ms after onset of visual response) is plotted for the seven stimuli for
the VS and VmS neuron populations. (G and H) Scatter plots showing the
relationship between the responses to the first and second stimulus for the
transient peak (G) and sustained portion (H) of the neural response.
Standardized major axis regression analysis revealed that this relationship
had a slope greater than unity for the peak activity (F-test; F1,96 = 72.32,
P < 0.01), but not for the sustained activity (F-test; F1,48 = 0.99, P = 0.32).
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noise. The second stage of Bayesian learning takes as input the
expected value of the first stage’s posterior distribution:

E½PðMðkÞjDÞ� ¼ E½cðk; a; bÞ� ¼ a
b

ð5Þ

The output of the system is then calculated from the final Bayesian
learner as the Kullback–Leibler (KL) divergence (Kullback, 1959)
between prior and posterior distributions over all possible firing rates,
which summarizes the amount of learning or adaptation that just
resulted from observing the data D:

KLðPðMðkÞÞ; P ðMðkÞjDÞÞ ¼ KLðcðk; a; bÞ; cðk; a0; b0ÞÞ

¼ a0 log
b

b0
þ log

Cða0Þ
CðaÞ þ b0

a
b
þ ða� a0ÞWðaÞ ð6Þ

where W(a) is the digamma function of a. This differs from the Itti and
Baldi implementation (Itti & Baldi, 2005; Baldi & Itti, 2010), where
the KL divergence is computed at each learning stage, and the system
output is the product of the outputs at each stage. Figure 3B shows the
time dynamics of the system for each stage in response to a control
trial.

The Itti and Baldi implementation uses five learning stages, each
having the same temporal parameter. In this experiment, we found that
only two stages, but with the temporal parameter of each stage allowed
to be different, adequately predicted the peak firing rates of the
neurons. Additionally, in their implementation of Eqn 4, the temporal
parameter is applied to the prior distribution’s a and b parameters
before computation of the Bayesian update. As a result, there is always
a baseline output. We computed the update so that, if the posterior and
prior distributions are the same, the output of the system is 0.

Model fitting

Model parameters were estimated for each neuron individually by
fitting the peaks in the model’s output to the seven peak magnitudes in
each neuron’s response profile from the 255-ms ISI condition. Each
model neuron consisted of three parameters: two time constants
(f, Eqn 4) that controlled the speed of learning in the two Bayesian
learners, and the baseline noise parameter (e, Eqn 4), which was
globally set for all model neurons. The data were fitted initially with
all three parameters free for each cell. After fitting, a probability
density function of the baseline parameter was estimated by kernel
density estimation with automatic bandwidth selection (Sheather &
Jones, 1991), which was implemented in the r statistical package
(www.r-project.org). A quadratic function was fitted (least squares
method) to three points centered on the maximum of this curve, and
the analytic maximum of the quadratic function was used as an
estimate of the most likely value of the baseline parameter. Fitting was
then performed again with the baseline parameter fixed for all cells to
the most likely value, reducing the model to the two temporal
parameters. The best parameters were determined by using the
Nelder–Mead simplex method (Lagarias et al., 1998) built into
Matlab to minimize the error of the following process. First the
input signal (seven stimuli) was simulated as a square wave with unit
amplitude, and the adaptation model’s response was computed for a
given parameter set. Parameters were encoded such that the second
stage’s learning rate was guaranteed to be slower than the first stage’s.
Model and cell responses were normalized by the response to the first
stimulus. Normalization eliminated the need for scaling parameters in
the model without affecting the morphology of the adaptation. The

error was then computed as the median absolute difference between
the model’s peak response to each stimulus and the cell’s peak
responses (disregarding the first stimulus, which always had zero
error). Several alternative error functions were explored, and median
absolute error was chosen because it gave highly significant, and
qualitatively the best, overall fits and predictions. Several other error
functions also gave significant results. Additionally, a single-param-
eter model significantly fitted the data; however, the two-parameter
model produced less total error for all conditions combined, and less
median error for all but the 155-ms ISI condition. Qualitatively, the
mean population responses of the neural data were in agreement with
the mean population responses of the two-parameter model.
To account for the relationship between stimulus brightness and a

cell’s peak firing rate, the adaptation model used a gain function
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Fig. 3. A. Schematic of the Bayesian adaptation model. Light stimulating the
retina was modeled as a square wave of unity amplitude (Dr; 1.1 and 0.9 for the
brighter oddball conditions) and passed through a static gain function that was
constant for all model neurons (see Materials and methods). Two stages of
Bayesian learning supply the adaptation dynamics. In each stage (subscripts
omitted), the learning process builds hypotheses or beliefs (probability
distribution) over a class of internal models M that represent all possible
values of its input. As new sensory data Dr are collected, the Bayes theorem
provides the mechanics to turn a prior set of hypotheses P(M) about which
model best characterizes the input data into a posterior set of hypotheses
P(M|D), given the likelihood of the data P(D|M) under the assumptions of
model M. The fast Bayesian stage quickly adapts to the input, and passes the
expectation of its posterior beliefs Df as input to the second Bayesian stage.
A posterior set of beliefs is computed in the same fashion as for the fast learner,
but with a slower learning dynamic. The adaptation response is then calculated
for every data observation as the KL divergence (Kullback, 1959) between the
slow learner’s prior and posterior hypotheses, signaling the amount of shift in
the model’s beliefs caused by each new observation. (B) Detailed view of the
model dynamics across each stage during a control trial (see Materials and
methods for a detailed description of the model). The top trace represents the
input stimulus from control trials. The two central images show, for each
Bayesian learner, the distribution of beliefs about which of the possible Poisson
firing rates (y-axis) best characterizes the input over the course of a single trial
(x-axis). Hotter colors indicate that, at a given point in time, there is a higher
belief (probability) in a particular firing rate. The bottom panel shows the final
output of the system. (C) Population mean and standard error of the model
(filled symbols) and neural (open symbols) normalized peak responses to the
seven stimuli in the control condition.
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(Fig. 3A). Because only three intensity levels were considered, this
amounted to finding two gain factors to represent the 10% brighter and
10% dimmer stimuli. After finding of the best temporal parameters
during control trials, a single set of gain parameters was chosen that
minimized the error between all model neurons and all real neurons
simultaneously, considering only the brighter and dimmer conditions.
For this dataset, the gain factors were �1.1 and �0.9, respectively.
Because the gain factors were very close to the 10% brighter and 10%
dimmer inputs, the gain function could have been omitted with little
loss of model fit quality.

Model evaluation

To evaluate the model fits without assumptions about the distribution
of data or errors, several statistics were computed in the permutation
(randomization) framework. Goodness-of-fit was assessed by using
the median of the absolute error between all neuron and model
responses, for all conditions, as a test statistic in a repeated measures
permutation design (stimuli 2–7 for each condition). To assess
whether cell and model responses came from the same underlying
distribution, the permutation equivalent of a two-factor repeated
measures anova was performed. The final test (paired-error or
reliability test) indicated whether, overall, the model was able to
predict neuronal responses better than other cells from the same class
(which might be thought of as an upper bound). First, for each
condition separately, all pairwise combinations of neurons (restricted
to within neuron class) were evaluated with the error function. This
distribution of values represents the errors that occurred when each
cell was used to predict other cell responses, and served as a summary
of the variability (reliability) of the repetition effect within a class of
neurons. Higher values indicated that neurons responded very
differently from one another. By use of the permutation equivalent
of a two-factor repeated measures anova, this distribution was
compared with the distribution of errors generated by model
predictions. Figures 4D and 5C show the distribution of model errors
for the ISI, and oddball manipulations, respectively. This test
compared directly the quality of our model fits to the variability of
the repetition effect. We reason that a well-performing model should
be, on average, as, or more, consistent with the neurons’ response than
neurons of the same class are with each other. All permutation tests
were carried out with the Monte Carlo method, with 30 000 iterations.

Results

Effects of stimulus repetition

Figure 2 illustrates the main effect of this study – the large response
decrement that occurred with repeated stimulation (seven stimuli) of
the receptive field of visually responsive neurons in the SC. Response
decrement was observed for all four types of visual neuron classified:
VT (n = 32), VS (n = 32), VmT (n = 16), and VmS (n = 18) (see
Fig. 1B for examples of individual neuron responses). Following the
appearance of the first stimulus, neurons of each cell type discharged a
robust phasic response (Fig. 2A and E). The early transient part of this
response was dramatically affected by repeated stimulation: the peak
response magnitude decreased (Fig. 2A, B and D) and ROL increased
(Fig. 2B and C). A mixed analysis of variance (anova) with a
between-subjects factor (four cell classes) and a within-subjects factor
(seven stimuli) was conducted, and revealed significant main effects of
cell class (peak, F3,94 = 9.15, P < 0.01; ROL, F3,94 = 8.8, P < 0.01)
and stimulus repetition (peak, F6,94 = 378.1, P < 0.01; ROL,

F6,94 = 89.9, P < 0.01), and an interaction (peak, F18,564 = 5.8,
P < 0.01; ROL, F18,564 = 3.3, P < 0.01).
All cell types decreased their peak response magnitude with

repetition (VT, F6,186 = 143.06, P < 0.001; VS, F6,186 = 71.69,
P < 0.001; VmT, F6,90 = 114, P < 0.001; VmS, F6,102 = 71.5,
P < 0.001), and the majority of the decrease occurred on the second
stimulation. This was verified statistically: the ratio of peak magnitude
between the first and second stimuli (mean = 0.36) was greater than
the ratio of peak magnitude between the second and seventh stimuli
(mean = 0.15) (t97 = 7.9, P < 0.001; paired t-test). This relationship
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was confirmed for all cell types independently (P = 0.04 or less). ROL
increased in a mostly linear fashion, with repetition for all cell types
(VT, F6,186 = 18.1, P < 0.001; VS, F6,186 = 42.5, P < 0.001; VmT,
F6,90 = 15.9, P < 0.001; VmS, F6,102 = 17.5, P < 0.001).

In summary, VT neurons, which are likely to be found in the most
superficial retino-recipient SC layers (May, 2006), had strong
adaptation (�50%) but the smallest ROL increase (�10 ms) of all
cell types. VS neurons, which are most likely to be found in the lower
superficial layers (Tigges & Tigges, 1981) showed the least adaptation
(�35%) but a large increase in ROL with repetition (�15 ms). Finally,
visuomotor neurons of the intermediate SC layers showed both strong
adaptation (> 50%) and a large increase in ROL (> 15 ms), partic-
ularly the VmT cells. Indeed, some VmT cells (not described here)
completely lost their visual response after only a few trials (Goldberg
& Wurtz, 1972) and thus could not be studied in our paradigms.

To determine whether the later components of the visual response in
cells with a significant sustained component (VS and VmS as defined
by our cell classes) were also affected by repetition, we calculated the
average activity from 50 to 100 ms after the response onset (Fig. 2E).
The sustained activity was less affected by repetition (Fig. 2F and H)
than the early transient component (Fig. 2D and G). An anova on the
sustained activity of VS and VmS neurons showed a far smaller main
effect of repetition (F6,48 = 6.75, P < 0.01) than that seen in the
transient component, and no main effect of cell class, or an interaction
(F-values < 1).

Modeling the response decrement with a Bayesian framework

The effect of stimulus repetition on response magnitude was modeled
by use of a simple Bayesian model of stimulus adaptation that
monitored the temporal dynamics of streams of stimuli (see Fig 3A
and B, and Materials and methods). The model relies on a recently
developed Bayes-optimal theory of novelty, which has been shown to
provide a quantitative account of adaptation in early visual neurons
(Itti & Baldi, 2005; Baldi & Itti, 2010) This model provided a
principled theoretical foundation for quantifying the effects of
adaptation in terms of a hypothetical optimal Bayesian learner:
stimuli that, over time, gave rise to no significant learning caused a
rapid decrease in response (adaptation); in contrast, stimuli that caused
a shift in the model’s current estimates gave rise to significant learning
and to vigorous model responses. Each neuron was modeled
individually as three stages consisting of a static gain function and
two Bayesian learners (Fig. 3A). Parameters were estimated by fitting
each model neuron’s peak responses to a real neuron’s peak responses
to all seven stimuli (see Materials and methods). The model was able
to significantly fit the repetition effect on response magnitude
(goodness-of-fit test, P < 0.01), and the population responses for
model and real neurons overlapped (Fig. 3C).

The effect of stimulus presentation rate

We generated predictions for the repetition effect’s dependence on the
rate of stimulus presentation by altering the ISI of inputs to
the population of model neurons. If the response decrement followed
the adaptation model predictions, then decreasing the ISI to 100 ms
would cause a stronger repetition effect, whereas increasing the ISI to
400 ms would allow recovery of the effect of previous stimulation.
We tested these predictions in a subset of 17 neurons (three VT, seven
VS, three VmT, and four VmS) by repeating control trials (seven
identical stimuli of 55-ms duration) with these different ISIs (onset to
onset times of 155, 255 and 455 ms). Figure 4A shows the combined

spike density functions from this subpopulation. There was a clear
effect of ISI on both peak response magnitude (F2,32 = 29.14,
P < 0.01) and ROL (F2,32 = 28.5, P < 0.01). That is, the shorter the
ISI, the more dramatic the repetition effect. This was confirmed by an
interaction between ISI and repetition (peak, F12,192 = 8.44, P < 0.01;
ROL, F12,192 = 6.9, P < 0.01). Reducing the ISI led to an increase in
ROL (Fig. 4B), and a reduction in response magnitude (Fig. 4C). The
main effect of repetition, as expected, was significant (peak,
F6,96 = 46.29, P < 0.01; ROL, F6,96 = 32.27, P < 0.01). Remarkably,
we found that our simple model was able to predict the pattern of
response magnitudes observed in these other ISI conditions (Fig. 4C)
without a change in parameters (goodness-of-fit test, P < 0.01) and
was a better predictor of neural activity than other neurons (see
Fig. 4D).

The effect of rare changes in stimulus luminance

We also modeled the effect of inserting rarely presented luminance
oddball stimuli (brighter, dimmer, and absent) into the stimulus
sequences. If the pattern of changes was caused purely by adaptation,
the neural response to the oddball should follow the predictions of the
adaptation model and recover somewhat with a brighter, but not a
dimmer oddball stimulus. The response to the subsequent (5th) normal
luminance stimulus should show the opposite pattern – an increased
response after a previous dimmer stimulus and a decreased response
after a previous brighter stimulus. Alternatively, neurons could show
response recovery with all of the rare stimuli, akin to ‘dishabituation’.
To test these predictions, we examined the visual response of SC
neurons to sequences of seven stimuli where the fourth stimulus was
of higher intensity (10% of trials), was of lower intensity (10% of
trials), was absent (10% of trials), or had no change (70%). Figure 5A
illustrates the population responses recorded from each type of neuron
for the third, fourth and fifth stimuli. We found that the peak
magnitude of the neural data conformed to the predictions of the
adaptation model, using the same parameters as in the control
condition (see Fig. 5B to contrast physiological data with model fits).
The model fitted the data significantly (goodness-of-fit test, P < 0.01),
and was a better predictor of neural activity than other neurons in the
same class (Fig. 5C).
Figure 5D and E shows the normalized difference [(oddball ) con-

trol) ⁄ (oddball + control)] between the oddball and control trials for
ROL and the peak magnitude, respectively (all cell types were
collapsed, because the changes in the early part of the visual response
were qualitatively the same in all cell types). Significance was tested
with a Bonferroni-corrected t-test (critical t = 2.49, P < 0.05). As
expected, there was no difference between control and oddball trials
on the third stimulus for any condition (all t-values < 2.49). Presen-
tation of the brighter stimulus in the fourth position led to a larger-
magnitude response (t97 = 5.67) at a shorter latency (t97 = )6.36),
whereas presentation of the dimmer stimulus showed the opposite
effect – a smaller peak response (t97 = )3.7) with a longer latency
(t97 = 8.79). Furthermore, the changes in the latency and magnitude of
the fourth response had predictable effects on the earliest part of the
response to the fifth stimulus. If the fourth stimulus was brighter, the
response to the fifth stimulus was reduced (t97 = )6.22) and arrived
later in time (t97 = 6.72) than in the control condition. In contrast,
when the fourth stimulus was dimmer, the response to the fifth
stimulus was larger in magnitude (t97 = 7.6) but not significantly
earlier in time (t97 = )2.36). In the absent fourth stimulus condition,
the response to the fifth stimulus was much larger in magnitude
(t97 = 11.24) and occurred earlier in time (t97 = )6.02). These
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analyses indicate that the pattern of changes observed in the timing
and magnitude of the early transient component of the response to
oddball stimuli is consistent with predictions of Bayesian adaptation to
stimulus intensity.

Sustained responses to novel events

The best-fitting adaptation models often did not produce any output
during the inter-trial interval (sustained response), but a sustained

response that showed some modulation with repeated stimuli was
observed in sustained cell classes (Fig. 2E and F). To investigate
whether the sustained activity could possibly reflect something other
than simple adaptation, we analyzed the later part of the visual
response to oddball trials (Fig. 6). First, we realigned the visual
responses in control and oddball conditions to the onset of the
response to the fourth stimulus (see traces on the left side of each
panel in Fig. 6), correcting for the ROL difference between brighter
and dimmer stimuli and between cells (Fig. 5D). We then performed
an ROC analysis on the response, spanning from 25 to 120 ms after
response onset (right side of each panel in Fig. 6), to determine when
the responses to the control and oddball trials became significantly
different (see Materials and methods). This analysis interval started
earlier than that used in Fig. 2, to show the effect of the first visual
volley in the ROC plots. For all cell types except VmT, immediately
after the onset of the visual response there was a significant difference
in the transient response in the brighter condition that became
insignificant approximately 30 ms after ROL. That is, the peak
transient activity faithfully reflected stimulus intensity – the brighter
stimulus elicited the strongest response, and the dimmer stimulus the
weakest. However, later in the response of the VS and VmS cells
(bottom panels), there was a significant increase in activity for both the
brighter and dimmer oddball conditions, possibly representing a
dishabituation signal reflecting the novelty of the oddball stimuli. The
time points after ROL when the brighter and dimmer stimulus
responses diverged from control responses were 73 and 68 ms,
respectively, for VS neurons, and 95 and 81 ms, respectively, for VmS
neurons (Fig. 6; see vertical dotted lines and P-values plotted below
the ROC area curves). To demonstrate how consistent this was across
individual neurons, in Fig. 6E and F the mean sustained firing rate
after the fourth stimulus for control trials is plotted against that for
oddball trials for VS and VmS neurons, respectively. Points falling
above the unity line show neurons whose rate was higher after the
oddball stimulus than after the control stimulus (sustained epochs of
80–110 and 90–120 ms for VS and VmS neurons, respectively). In the
inset graphs, we show the grand mean firing rate with standard error
bars for the control and oddball stimuli. The rate for oddball stimuli
was signficantly greater than for control for each comparison (paired
t-tests, one-tailed; all P-values < 0.002) There was no change in the
later portion of the visual response for VT and VmT neurons (Fig. 6A
and B).
In sum, the oddball manipulation shows that the pattern of effects

seen in the peak of the transient response was consistent with the
adaptation to light intensity computed by our model; however, a
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significant dishabituation signal (enhanced responses to both brighter
and dimmer stimuli) not seen in the model response was present in the
later part of the visual response only in neurons with sustained
activity.

Discussion

The timing and magnitude of the visual response of SC neurons
underwent significant modification following stimulus repetition: the
earliest part of the visual response decreased in magnitude and
increased in latency with repetition (Fig. 2). The modulation of this

early response with repetition was successfully modeled with our
Bayesian adaptation model (Fig. 3), and predictions made about the
effect of changing the rate of stimulus presentation (Fig. 4) and the
intensity of rare stimuli (Fig. 5) were confirmed with neural data. The
repetition effect was strongly dependent on the rate of stimulus
presentation (Fig. 4), with the repetition effect increasing in magnitude
as the interval between stimuli was reduced. For brighter or dimmer
oddball stimuli, the main features of the repetition effect followed
simple adaptation to light – larger, earlier responses to the brighter
oddball stimulus, and smaller, later responses to the dimmer oddball
stimulus, and the opposite pattern in response to the next (non-
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oddball) stimulus. In contrast, the later, sustained component of the
visual response was modulated much less by repetition, as observed
previously in V4 (Motter, 2006), and was inconsistent with our
Bayesian adaptation model. Finally, in response to either brighter or
dimmer oddball stimuli, we observed an increase in response (e.g. a
dishabituation) in this later sustained firing, suggestive of a ‘novelty
response’.

Comparison with other studies

Reductions in response magnitude with repetition have been previ-
ously observed in cortical areas, including V1 (Muller et al., 1999),
V4 (Motter, 2006) and frontal eye fields (Mayo & Sommer, 2008), and
also in single neurons of the SC (Goldberg & Wurtz, 1972; Woods &
Frost, 1977) and multiunit activity of the superficial layers of the SC
(Mayo & Sommer, 2008). In the context of an attentional cueing task,
a repetition effect has been described in the SC (Robinson &
Kertzman, 1995; Dorris et al., 2002; Bell et al., 2004; Fecteau et al.,
2004) and lateral intraparietal area (Robinson et al., 1995). The
present study is the first to systematically explore the repetition effect
using long stimulus sequences studied across different cell types and
layers in the SC, the first to report the increase in response onset
latency with repetition in the SC, and the first to explore the
mechanism of this response decrement through modeling and
experimental manipulations (oddball stimuli).
We observed a significant increase in ROL with repetition and

with changes in stimulus intensity (oddball experiment). Modulation
of ROL with intensity is consistent with previous reports on intensity
modulations in the SC (Bell et al., 2006; Li & Basso, 2008).
Increases of ROL with stimulus repetition are evident in some results
obtained from V4 (Motter, 2006; Hudson et al., 2009), although they
have not been explicitly described in the SC. There is one study in
the SC which did not show an ROL increase with repetition (Mayo
& Sommer, 2008), and there were interesting stimulus differences
between their study and the present one that may explain why: the
two stimuli in their sequence were shifted spatially in order to
activate different retinal receptive fields but the same relatively large
receptive fields in the frontal eye fields or superficial layers of the
SC. Thus, their failure to see the ROL increases with repetition,
while observing the decrease in response magnitude, may suggest
that the ROL effect occurs very early in visual processing (e.g.
retina, lateral geniculate nucleus of the thalamus, or input to V1),
whereas the magnitude decrease occurs more centrally (e.g. V1 or
beyond), although the anatomical locus of these effects remain to be
explicitly tested. There are a few possible explanations for the ROL
increase: there could be complete elimination of the earliest spikes of
the response, owing to adaptation, which artificially shifts the ROL,
or there could be reduced numbers of cells converging to provide the
response, thus delaying generation of the first spikes by excitatory
postsynaptic potentials. The increase in ROL is reminiscent of the
increase in ROL as stimulus contrast is reduced (Bell et al., 2006; Li
& Basso, 2008), almost as though repetition was reducing the
contrast of subsequent stimuli.

Mechanisms of adaptation

Grill-Spector et al. (2006) recently proposed three models for the
mechanisms underlying adaptation. Adaptation may reflect a pro-
portional reduction in firing rate in response to repetition (i.e.
fatigue), a change in the tuning of neural responses for the repeated
stimulus (i.e. sharpening), or a reduction in processing time for

repeated stimuli (i.e. facilitation). On the basis of our data, the
facilitation model can be discarded, because it predicts that the
latency of the response (ROL) will be earlier with repetition, and we
uniformly found the opposite. The sharpening model is possible,
although it would predict that some neurons would have no response
with repetition, and some (the best tuned for that stimulus) would
show little response decrement. We found that, generally, SC
neurons showed a graded reduction in response. Some form of the
fatigue model is therefore most likely to account for the repetition
effect observed on the early transient part of the visual response, and
it is also the most closely related to our Bayesian model of
adaptation. An important addition, however, is that we found a two-
stage model with fast and slow dynamics to be necessary to best
explain our neural data, a refinement indicating that at least 2
mechanisms (but possibly still within a single neuron) with different
temporal sensitivities may be contributing to the adaptation effect.
Note, however, that none of these models can yet account for the
increase in ROL with repetition.
Alternatively, some portion of the response reduction may be

affected locally in the SC by an increase in global inhibition from
the basal ganglia. The intermediate layer of the SC projects the
transient visual response monosynaptically to the substantia nigra
compacta (Redgrave & Gurney, 2006), the response is then
processed through the basal ganglia, and the substantia nigra pars
reticulata (SNr) projects back to the intermediate layer of the SC
(Hikosaka & Wurtz, 1983; Jiang et al., 2003) to modulate neuronal
firing via GABAergic synapses (Isa et al., 1998; Kaneda et al.,
2008). A visual transient that is not accompanied by a response or
reward (as in our simple fixation task) could result in increased SNr
inhibition with each repetition (or less disinhibition), and thus
reduced subsequent responses. The same mechanism could also
account for our dishabituation effect following an intensity ‘oddball’
stimulus. VS and VmS neurons responded to oddball stimuli that
were either brighter or dimmer with an increase in late sustained
activity with a latency of approximately 140–160 ms after stimulus
onset. A transient reduction of the inhibition from the SNr after an
oddball stimulus is recognized by the basal ganglia as novel could
account for the later increase in the sustained component of VS and
VmS neuronal activity (i.e. disinhibition). This ‘novelty signal’
might then, in turn, be broadcast to the entire visual system from the
SC (Boehnke & Munoz, 2008).

Implications for learning theory

In this study, we designed a paradigm to study simple learning
phenomena in a behaving primate that have been studied previously in
exquisite detail in Aplysia (Castellucci et al., 1970; Carew et al.,
1971). Given the differences in the complexity of the organisms, it is
not clear that terminology and concepts are easily transferable, but
some discussion is at least warranted. The response decrement with
repetition that we observed on the initial transient part of the visual
response has been called ‘habituation’ in V4 (Motter, 2006) and
‘adaptation’ in the frontal eye fields (Mayo & Sommer, 2008). Given
how that transient response changed with our stimulus intensity
oddballs, we believe that this decrement in the transient component is
best described as adaptation. We have described the increased
sustained activity after the brighter or dimmer oddball stimuli as a
‘dishabituation-like’ or ‘novelty’ signal. It is also possible that this
increase represents a phenomenon called sensitization (Marcus et al.,
1988; Hawkins et al., 2006), which amplifies responses like the
dishabituation process. Sensitization has been shown to be an
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independent process from dishabituation because, at least in Aplysia, it
develops at a different time (Rankin & Carew, 1988). Our experiment
was not designed to differentiate these two processes, although
sensitization usually requires a noxious stimulus, which we did not
employ. We also did not objectively determine the discriminability of
our stimuli, although the neurons clearly differentiated them. The use
of brighter and dimmer stimuli as oddballs had the advantage of
simplicity, and allowed for the dissociation of habituation from
adaptation. However, as the stimuli were identical in shape, size, and
color, there may have been a counteracting generalization process that
prevented a larger recovery of response (dishabituation ⁄ sensitization)
than might have been possible with a more distinctly different
stimulus. These are questions for future studies. Importantly, this
study represents an initial step in extending to primates the detailed
understanding of these simple learning phenomenon achieved in
simpler animals such as Aplysia, and the oculomotor system is an
excellent candidate system with which to investigate these questions.

Implications for psychophysical studies

Our results are consistent with psychophysical findings on stimulus
duration perception (Eagleman, 2008), where repeating stimuli are
perceived as shorter in duration than an initial stimulus (Rose &
Summers, 1995; Pariyadath & Eagleman, 2008) and any novel
stimulus presented (Tse et al., 2004; Pariyadath & Eagleman, 2007).
In our sustained cell types, repetition reduced the size of visual
responses, and novelty (brighter or dimmer oddball stimuli) caused an
increased firing in the later sustained epoch. Thus, the first stimulus
and any novel stimuli caused a larger sustained response than repeated
stimuli, and may represent a neural correlate of the aforementioned
perceptual findings. The timing of the novelty response also matches
that of the N2 component of the human event-related potential in
response to visual oddball stimuli (Folstein & Van Petten, 2008), a
component that is thought to reflect detection of novelty or mismatch.
We did not observe any response, early or late, when the fourth
stimulus was absent (see Fig. 5A). A stimulus omission mismatch
response in audition occurs only when the onset to onset time of the
sequence of stimuli is < 150 ms (Yabe et al., 1997), so perhaps it is
not surprising that it was not observed with our longer ISI. Late event-
related potential responses such as the P300 are observed with omitted
visual stimuli (Tarkka & Stokic, 1998); however, the timing of such
a response would coincide with the time when our neurons were
responding to the fifth stimulus. The enhancement of the fifth stimulus
response after a missing stimulus might, in part, reflect a P300
response, although it is difficult to determine this.

A previous visual event (attentional cue) also has implications for
processing of a subsequent visual target for a manual or saccadic
response: at separation intervals similar to those used here, the
response to a subsequent target stimulus is slowed, a phenomenon
referred to as ‘‘inhibition of return’’ or IOR (Klein, 2000; Fecteau &
Munoz, 2006). We show that continued repetition of a visual stimulus
(akin to having multiple cues) during fixation further reduces and
delays the visual response. This presumably would lead to even slower
reaction times and greater IOR. Indeed, it was recently shown that IOR
for manual responses increased as the number of repeating cues is
increased (Dukewich & Boehnke, 2008).

Information processing in the SC

Our results demonstrate that SC neurons’ peak transient responses are
consistent with a model of adaptation in which there is output of an

information quantity related to the amount of learning caused by a new
stimulus based on recent stimulation history. This is quite different
from the most widely used quantitative definition of information
(Shannon, 1948), where the information content of a piece of data, or a
stimulus, is related to its probability (i.e. rare events are very
informative). Although useful for the high-fidelity transmission of
data, Shannon information does not quantify the subjective impact of
stimuli on an observer – an important quantity when temporally
changing signals are being processed.
Adaptation in the SC serves to rapidly decrease the early neural

representation of repeating visual events at a particular spatial location
(reducing the chance of reflexive orienting to that location), and to
increase the representation of temporal outliers. Visual events that are
not oriented upon first presentation, and are subsequently repeated, are
not likely to contain immediately relevant information, and there is
little to be learned. In this sense, adaptation acts as a simple and fast
heuristic process to bias selection away from behaviorally irrelevant
events in the absence of goal-directed orienting signals. Behaviorally
relevant events may also manifest as more subtle changes in a stream
of stimuli, and orienting to these novel events may require reinstate-
ment of a previously adapted response. The slower dishabituation
signal observed later in the response profile may serve as an additional
heuristic process to support orienting, albeit delayed, to temporally
adapted, yet novel, stimuli. Our data suggest that, by combining these
heuristic processes, the primate orienting system achieves an efficient
trade-off between fast selection of temporal outliers and slower
detection of novel events.
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