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Abstract

Bottom-up visual attention allows primates to quickly select
regions of an image that contain salient objects. In artificial
systems, restricting the task of object recognition to these
regions allows faster recognition and unsupervised learning
of multiple objects in cluttered scenes. A problem with this
approach is that objects superficially dissimilar to the target
are given the same consideration in recognition as similar
objects. In video, objects recognized in previous frames at
locations distant to the current fixation point are given the
same consideration in recognition as objects previously rec-
ognized in locations closer to the current target of attention.
Due to the continuity of smooth motion, objects recently rec-
ognized in previous frames at locations close to the current
focus of attention have a high probability of matching the
current target. Here we investigate rapid pruning of the fa-
cial recognition search space using the already-computed
low-level features that guide attention and spatial informa-
tion derived from previous video frames. For each video
frame, Itti & Koch’s bottom-up visual attention algorithm
is used to select salient locations based on low-level fea-
tures such as contrast, orientation, color, intensity, flicker
and motion. This algorithm has shown to be highly effec-
tive in selecting faces as salient objects. Lowe’s SIFT ob-
ject recognition algorithm then extracts a signature of the
attended object, for comparison with the facial database.
The database search is prioritized for faces which better
match the low-level features used to guide attention to the
current candidate for recognition or those that were previ-
ously recognized near the current candidate’s location. The
SIFT signatures of the prioritized faces are then checked
against the attended candidate for a match. By compar-
ing performance of Lowe’s recognition algorithm and Itti
& Koch’s bottom-up attention model with or without search
space pruning we demonstrate that our pruning approach
improves the speed of facial recognition in video footage.

1. Introduction

Bottom-up visual attention is the process by which pri-
mates quickly select regions of an image that contain salient
or conspicuous objects. In artificial systems, restricting
the task of object recognition to these regions allows faster
recognition and unsupervised learning of multiple objects
in cluttered scenes [13, 10, 12]. It has been shown that the
saliency of target objects can be increased by biasing at-
tention to the target’s known low-level features, allowing
them to be quickly and reliably detected [9]. This biasing
typically consists of modulating the relative weights of dif-
ferent features like color, orientation and intensity in guid-
ing attention. Attention biasing allows animals to restrict
their search space to only candidate locations which resem-
ble the desired target. For example, a stop sign might be
found quicker by restricting the search to only red objects
[15].

Previous work with attention-guided object recognition
utilizes bottom-up visual attention models that only com-
pute static features such as color, orientation, and intensity
[13, 10, 12]. These experiments explore the use of features
such as flicker and motion in computing visual saliency.
This technique is intended to focus attention on temporally
dynamic objects in video.

Dynamic pruning of complex search spaces has been
proved to improve processing rate without a corresponding
loss in accuracy in speech recognition [14]. In the visual
domain, however, the value of rapidly pruning the facial
recognition search space using the already-computed low-
level features that guide attention has been under-explored.
We also investigate whether information about a previously
identified face’s location can aide in recognition. From
frame to frame, a person’s location typically varies by a
small amount. In the matching process, faces recently iden-
tified in a location close to the current target face’s location
should be ranked ahead of those recently seen at distal lo-
cations.
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2. Approach
2.1. Attention

Itti & Koch’s saliency-based attention system is used to
select highly salient points and pre-attentive, low-level fea-
ture descriptors for these points for each video frame [4, 3].
Salient points are identified by computation of seven center-
surround features: image intensity contrast, red/green and
blue/yellow double opponent channels, and four orientation
contrasts. Center-surround operations (denoted ”	” below)
are implemented as a difference between the image at two
scales: the image is first interpolated to the finer scale, then
subtracted point-by-point from the image at the previous
scale.

The intensity channel for frame n, In, is obtained by av-
eraging the red, green, and blue color channels as In =
(rn + gn + bn)/3. A Gaussian pyramid, In(σ), is created
from In with σ ∈ [0..8] as the scale. Four color channels
are computed for each frame: red Rn = rn − (gn + bn)/2,
green Gn = gn−(rn+bn)/2, blue Bn = bn−(rn +gn)/2,
and yellow Yn = (rn + gn)/2 − |rn − gn|/2 − bn. These
channels are used to create four Gaussian pyramids Rn(σ),
Gn(σ), Bn(σ), and Yn(σ). The orientation channels are
obtained from In using oriented Gabor pyramids On(σ, θ),
where σ ∈ [0..8] is the scale, and θ ∈ {0o, 45o, 90o, 135o}
is the preferred orientation.

The feature maps are computed using center-surround
differences (	) between a fine (center) scale c and a coarser
(surround) scale s. Six different pairs of center and sur-
round spatial scales are used to compute the intensity fea-
ture maps In(c, s), with c ∈ {2, 3, 4} and s = c + δ, δ ∈
{3, 4}:

In(c, s) = |In(c) 	 In(s)| (1)

The color channels are used to construct double-
opponent color feature maps. The maps RGn(c, s) ac-
count for red/green and green/red double opponency and
BYn(c, s) for blue/yellow and yellow/blue opponency:

RGn(c, s) = |(Rn(c) − Gn(c)) 	 (Gn(s) − Rn(s))| (2)

BYn(c, s) = |(Bn(c) − Yn(c)) 	 (Yn(s) − Bn(s))| (3)

Orientation feature maps, On(c, s, θ), represent local
orientation contrast between the center and surround scales:

On(c, s, θ) = |On(c, θ) 	 On(s, θ)| (4)

A total of 42 feature maps are computed: six for inten-
sity, 12 for color, and 24 for orientation.

For experiments using attention with flicker and motion,
additional temporal flicker (onset and offset of light inten-
sity, combined) and four oriented motion (up, down, left,
right) feature maps are computed using center-surround dif-
ferences at six different spatial scales to total 72 feature

maps [5]. A flicker pyramid Fn(σ) is computed using the
absolute difference between the intensity In of the current
frame and that In−1 of the previous frame. The motion
pyramids are computed using spatially-shifted differences
between Gabor pyramids from the previous and current
frame. The same four Gabor orientations as in the orien-
tation channel and only shifts of one pixel orthogonal to the
Gabor orientation are used to create one shifted pyramid
Sn(σ, θ) for each Gabor pyramid On(σ, θ). These are then
used to compute the motion pyramid Rn(σ, θ):

Rn(σ, θ) = |On(σ, θ)∗Sn−1(σ, θ)−On−1(σ, θ)∗Sn(σ, θ)|
(5)

The flicker and motion feature maps are then created us-
ing the same center-surround operation as the other feature
maps:

Fn(c, s) = |Fn(c) 	 Fn(s)| (6)

Rn(c, s, θ) = |Rn(c, θ) 	 Rn(s, θ)| (7)

A map normalization operator, N (.), is used to promote
maps in with a small number of strong activity peaks, while
suppressing maps with numerous similar activity peaks.
The operator N (.) consists of three steps:

1. normalize the map values to a fixed range [0..M ];

2. find the location of the map’s global maximum M and
compute the average m̄ of all other local maxima; and

3. globally multiply the map by (M − m̄)2.

The feature maps are then combined into three conspicu-
ity maps, intensity Īn, color C̄n, and orientation Ōn, at the
saliency map’s scale (σ = 4). These maps are computed
through across-scale addition, ”

⊕

”, where each map is re-
duced to scale four and added point-by-point:

Īn =

4
⊕

c=2

c+4
⊕

s=c+3

N (In(c, s)) (8)

C̄n =

4
⊕

c=2

c+4
⊕

s=c+3

[N (RGn(c, s)) + N (BYn(c, s))] (9)

To compute the orientation conspicuity map, four in-
termediary maps are created by combining the six feature
maps for a given θ. These intermediary maps are then com-
bined into a single orientation conspicuity map:

Ōn =
∑

θ∈{0o,45o,90o,135o}

N (
4

⊕

c=2

c+4
⊕

s=c+3

N (On(c, s, θ)))

(10)
The flicker conspicuity map is computed in the same

manner as the intensity conspicuity map [5]:

F̄n =
4

⊕

c=2

c+4
⊕

s=c+3

N (Fn(c, s)) (11)
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The motion conspicuity map is computed via the cre-
ation of four intermediary maps for a given θ in a manner
similar to the orientation conspicuity maps [5]:

R̄n =
∑

θ∈{0o,45o,90o,135o}

N (

4
⊕

c=2

c+4
⊕

s=c+3

N (Rn(c, s, θ)))

(12)
The three conspicuity maps are then normalized and

summed into the input Sn to the saliency map:

Sn =
1

3
(N (Īn) + N (C̄n) + N (Ōn)) (13)

The method of attention utilizing flicker and motion simi-
larly normalizes, sums, and inputs the five conspicuity maps
in this case, into the saliency map [5]:

Sn =
1

3
(N (Īn) + N (C̄n) + N (Ōn) + N (F̄n) + N (R̄n))

(14)
The saliency map maximum defines the most salient im-

age location, to which attention should be directed to, at
any point in time. The saliency map is modeled as a two-
dimensional layer of leaky integrator neurons, consisting
of a single capacitance which integrates the synaptic input
charge, a leakage conductance, and a voltage threshold. The
saliency map is input into a two-dimensional winner-take-
all (WTA) network, where lateral inhibition ensures that all
units are silenced except for the most active one. This most
active unit guides attention by providing the fixation point
for recognition. Local inhibition is also transiently triggered
in the saliency map at the current fixation point, allowing
the next most salient point to become the winner in the next
attention shift.

The low-level feature descriptors are 42-dimensional
vectors obtained from sampling the already computed fea-
ture maps at the currently attended point [9]. These fea-
ture descriptors serve to provide a representative descrip-
tion (red/green, blue/yellow, intensity, and four orientations
at six center-surround scales) of a highly salient region of
an object.

Walther et al.’s shape estimator then extracts the image
from the region surrounding the attended point [13]. The
feature map with the highest contribution to the saliency of
the currently attended location is segmented using a flood-
ing algorithm with adaptive thresholding. The segmented
map is used generate a binary mask to select the region
around the fixation point most likely to encompass the at-
tended object (Fig. 1). This region may or may not actually
contain a face. Future work might bias attention by mod-
ulating the relative weights of the feature maps as they are
linearly combined into the saliency map to preferentially
fixate on regions whose low-level features match those of
faces.

2.2. Facial Recognition
2.2.1 Feature Encoding

Some previous approaches to facial recognition have in-
volved the identification and characterization of prominent
facial landmarks or key points [1, 2, 11]. We investigated
the effectiveness of a keypoint-based, general object recog-
nition algorithm in facial recognition by using a reimple-
mentation in our laboratories of that of Lowe’s. It identi-
fies local, scale-invariant features (SIFT keypoints) and at-
tempts to match these keypoints to those of known objects
[7, 8, 6].

To identify candidate keypoint locations, the scale space
extrema are found in the difference-of-Gaussian function
convolved with each frame n of the video clip, Dn(x, y, σ),
which is computed from the difference of scales separated
by a constant factor k:

Dn(x, y, σ) = (Gn(x, y, kσ) − Gn(x, y, σ)) ∗ In(x, y)
(15)

The extrema of Dn(x, y, σ) are found by comparing
each point with its neighbors in the current image and ad-
jacent scales. A point is selected as a candidate keypoint
location if it is the maximum or minimum value in its neigh-
borhood.

The image gradients and orientations at each pixel of
the Gaussian convolved video frame at each scale are then
found. The gradient magnitude, Mn,i,j , and orientation,
Rn,i,j , are computed for each pixel, An,i,j :

Mn,i,j =
√

(An,i,j − An,i+1,j)2 + (An,i,j − An,i,j+1)2

(16)
Rn,i,j = atan2(An,i,j−An,i+1,j, An,i,j+1−An,i,j) (17)

Each key location is assigned an orientation determined
by the peak of a histogram of previously computed neigh-
borhood orientations.

Once the orientation, scale, and location of the keypoints
have been computed, invariance to these values is achieved
by computing the keypoint local feature descriptors relative
to them. The local feature descriptors are 128-dimensional
vectors obtained from the precomputed image gradients and
orientations around the keypoints. For each keypoint, the
orientation values (relative to the keypoint’s orientation) of
all pixels within circle of radius 8 pixels around the key-
point’s location are inserted into 8 orientation planes. These
planes are sampled over a 4x4 grid of orientations, with lin-
ear interpolation for intermediate orientations. This gives a
total of 8 ∗ 4 ∗ 4 or 128 samples to form the keypoint’s local
feature descriptor.

2.2.2 Matching

The model then attempts to match a new face with a face
already existing in the database (Figure 2). Lowe’s algo-
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Figure 1: System diagram. The image is split into channels computing color, intensity, orientation, flicker, and motion at
several spatial scales. These are combined into a saliency map, and used to extract feature vectors characterizing salient
locations. The shape estimator creates an object mask at each attended region which is used to crop the image. The cropped
image is then processed to extract keypoints. The face’s representation in the database consists of the image, the keypoints
extracted from the image, and the feature vector for the face’s most salient location. The black dots on the face images denote
the location of the face’s keypoints. The face database is sorted according to the new face’s feature vector or location, and
matching is attempted. The white lines in the facial match image show where keypoint matches were found between the two
faces.

rithm does not specify an order in which various stored ob-
ject representations should be checked against a new im-
age. In our study, the pruning of search space is achieved at
this stage, by prioritizing faces in the database in two ways.
Each method of prioritization determines the order in which
faces in the database are compared to the target object. Face
prioritization by feature orders faces by their similarity to
the low-level features of the current candidate for recogni-
tion. Each face in the database is ranked in ascending order
according the the Euclidean distance of its 42-dimensional
pre-attentive feature vector to that of the target object. This
serves to ensure that the most superficially similar faces in
the database are checked first. Face prioritization by loca-
tion sorts faces in ascending order by the distance from the
location they were last recognized at to the location of the
current target face. By checking the faces recently identi-

fied at the locations closest to the current recognition candi-
date’s location, the most likely faces can first be checked for
a match. To evaluate the effectiveness of these two sorting
strategies, we compare them with a control condition that
uses a random sorting order.

We use a simple keypoint matching scheme where for
each keypoint,the two keypoints with the smallest Eu-
clidean distance between their feature vectors are found. If
the smallest keypoint distance is less than 60% of the sec-
ond smallest, a keypoint match is declared.

As the size of the face representation database grows,
it may become infeasible to compare every database entry
with the new image to find the best match. Systems re-
quiring rapid responses to stimuli may benefit from termi-
nating the search process once a ”good enough” match has
been found. In such a system, the order in which object
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Figure 2: Examples of correct matches. Face images in each pair were extracted from different frames. The top row contains
faces from the database. The bottom row contains attended regions of video clip frames from the test set that the system
identified as salient. White lines connecting the the two images in each pair show where keypoints from each face where
successfully matched.

database entries are processed has a great impact on recog-
nition speed by affecting the search space size. Our sys-
tem implements this match fitness threshold by terminating
the search once a face with enough keypoint matches can
be found. In additional, unpublished experiments we have
found that the optimal range for the keypoint match thresh-
old for facial recognition in this system is 5-7. This value
is for attention-guided recognition. The optimal keypoint
match threshold for facial recognition without attention was
found to be about twice this value. While we do not analyze
these results here, we feel that this is further evidence that
the use of attention facilitates the speed of object recogni-
tion. In the experiments below, we require eight keypoint
matches for a successful match in conditions with and with-
out attention.

A more complex matching scheme could be used where
a model of the object transform could be constructed from
a subset of keypoint matches based on the probability of a
correct match and the other matches could be checked for
consistency with this model. This method would decrease
the occurrence of incorrect face matches, but it would not
benefit the time it takes for a successful match. Keypoint
matches must first be found in order to construct the ob-
ject model and check the consistency of the matches. Here
we attempt to increase the speed of keypoint matching by
pruning the keypoint search space. A method to enforce
consistency on these matches would therefore be beneficial
in an implemented system, but is not necessary to conduct
our experiments.

2.3. Experimental Setup
We used 23 color video clips taken from television pro-

grams. For each of 31 individuals present in the video clips,
2-3 frames from various clips were cropped to include only
the individual’s face. This set of images was used as a train-
ing set. For each training image, keypoints were extracted,
and the database was trained on the face. This yielded a
database containing 77 faces.

The 23 video clips were used as a test set. The top salient
location of each frame in each video clip in the test set was
then identified. Recognition was attempted on each salient
location whose object mask had an area greater than zero.
A minimum of 8 keypoint matches were required to de-
clare a successful face match. This process was repeated
for 2 models (recognition with attention and recognition
with attention using flicker and motion) and 3 database sort-
ing methods (random, by feature, and by location). These
conditions were compared to a control model of recogni-
tion without attention using random database sorting to total
seven different model variations.

3. Results
3.1. Facial Detection Efficiency

The bottom-up visual attention model of Itti & Koch
proved very effective in finding faces as particularly salient.
Although regions of images that did not contain faces were
occasionally attended to, these instances were too small in
number to have any effect on the efficiency (averaging only
a few non-facial fixations per 50 frames actually containing
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Table 1: The number of successful face matches (obtained when any two faces shared eight successfully matched keypoints)
and the number of correct face matches (obtained when successful matches actually corresponded to the same individual),
for each method tested. Incorrect face matches (when eight keypoints were successfully matched but between two actually
different individual’s faces) is the difference between successful and correct matches.

Method Successful Correct

Matches Matches

No Attention - Random Sort 5643 162

Attention - Random Sort 138 58

Attention - Sort Faces by 138 54

Low-level Feature

Attention - Sort Faces by 138 58

Location

Attention with Flicker and Motion - 134 45

Random Sort

Attention with Flicker and Motion - 133 38

Sort Faces by Low-level Feature

Attention with Flicker and Motion - 134 39

Sort Faces by Location

faces). One trend that was evident was a slight increase in
non-facial fixations with attention using flicker and motion
channels (see discussion). Future models using attentional
biasing with the pre-attentive features of faces [9] may op-
timize the facial detection efficiency of this system.

3.2. Recognition Accuracy
Table 1 shows the number of successful and correct face

matches for each method tested. Successful face matches
were defined when any two faces shared eight success-
fully matched keypoints. Correct face matches were defined
when successful face matches actually corresponded to the
same individual. The accuracy ratio (Fig. 3) is the number
of correct face matches divided by the number of success-
ful face matches. This value represents the success of the
method in terms of returning only correct matches and pro-
ducing no false positive matches.

As expected, the use of attention to guide recognition
significantly reduced the number of incorrect face matches,
but also reduced the number of correct matches. Despite
this reduction in correct face matches, the use of attention-
guided recognition was able to improve the accuracy ratio.
Attention guided recognition utilizing flicker and motion
features resulted in a slight increase in successful matches,
but a reduction in the number of correct face matches, lead-
ing to a decrease in accuracy ratio compared to the same
method without flicker and motion.

Neither method of search space pruning by face prioriti-

zation had a significant impact on the number of successful
or correct matches, and consequently little effect on the ac-
curacy ratio compared to random database sorting. While
this may seem discouraging, it should be pointed out that
although neither method of prioritization improved recogni-
tion accuracy, one method of prioritization improved recog-
nition speed (section 3.3) and neither method caused a sig-
nificant loss of accuracy.

3.3. Recognition Speed
Recognition speed was analyzed in terms of the average

number of keypoint comparison operations in the matching
process (Fig. 4), since keypoint comparison is the atomic
operation of this process. The improvement in recogni-
tion accuracy gained by attention-guided recognition (sec-
tion 3.2) came at the cost of a large increase in the average
number of keypoint comparisons (p < 4.266 × 10−20, see
discussion). Attention guided recognition utilizing flicker
and motion features had no significant effect on recogni-
tion speed compared to the static feature attention model.
Face prioritization by low-level feature also had no signifi-
cant effect on recognition speed while face prioritization by
location drastically reduced the mean number of keypoint
comparisons needed for a successful match compared to
attention-guided recognition alone (p < 2.748 × 10−26 for
static feature attention and p < 2.829× 10−25 for attention
using flicker and motion features) without a corresponding
decrease in accuracy (section 3.2).
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Figure 3: The accuracy ratio for each method tested. The accuracy ratio is the number of correct face matches divided by
the number of successful face matches. All methods using attention without flicker and motion received the highest accuracy
ratios, while neither technique of face prioritization had an effect on this metric.

Figure 4: The average number of keypoint comparisons (in millions) in a successful face match (correct and incorrect)
for each method tested. Unsuccessful match attempts are not included. Recognition without attention was much faster than
attention guided recognition because most matches this method found were incorrect and were among the first faces attempted
for recognition. Attention guided recognition was slower because more correct matches were found, but this required a longer
search through the database.

The method score (Fig. 5) is computed by the product
of the number of correct face matches and the accuracy
ratio divided by the sum of the mean number of keypoint
comparisons and the standard error. In this way, methods
are rewarded for fast, reliable, and correct object matches
and penalized for incorrect or slow matches. Attention-
guided recognition using face prioritization by location re-
ceived the greatest method score value by far. This is due to
the enormous speed increase afforded by this prioritization
technique and increased recognition accuracy provided by
attention-guided recognition.

4. Discussion
4.1. Improving Recognition Accuracy

Our results are consistent with the results of previous
studies showing that the use of attention improves the ac-
curacy of object recognition [13, 10, 12]. The reduction
in image area by filtering the surrounding regions from the
attended area reduces the number of spurious keypoints,
yielding a increased number of correct keypoint matches
and fewer incorrect matches. Recognition without attention
failed to find many correct face matches. This is because
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Figure 5: The method score for each method tested. The method score is the product of the number of correct face matches
and the accuracy ratio divided by the sum of the mean number of keypoint comparisons and the standard error. This score
rewards accuracy, speed, and consistency.

without attentional selection, a suitable number keypoint
matches were found for the first or second faces checked
in the database and the search was terminated. It is likely
that the correct face matches using this method are due to
the fact that each training image came from a frame in a
video in the test set. The use of flicker and motion in vi-
sual attention had a detrimental impact on facial recogni-
tion accuracy. This could be attributed to the fact that while
the motion feature analysis would bias attention towards a
moving mouth, movements such as gestures would tend to
distract attention away from the face. Because faces are al-
ready found salient by the static visual attention model, the
additional information from flicker and motion channels did
not have any benefit.

The methods of face prioritization by pre-attentive fea-
ture and by location did not improve recognition accuracy
compared to random database sorting, but did not have a
detrimental effect on it.

4.2. Improving Recognition Speed

By reducing the number of incorrect keypoint matches,
attention guided recognition found more correct face
matches, but these were found after attempting to match a
large number of faces in the database - a lengthy process.
Although recognition without attention failed to find many
correct face matches, the matches it did find were found
much faster than those using attention guided recognition.
Because these matches were mostly incorrect, an incorrect
face match was found, but found quickly.

Face prioritization by feature did not have any significant
effect on recognition speed. This appears to be because all
faces may have similar pre-attentional features, invalidat-

ing any speed gains that prioritization by these features may
provide. This method may be better suited for general ob-
ject recognition were different objects in the database can be
expected to have sufficiently distinctive low-level features.

The method of face prioritization by location, however,
caused a significant decrease in the average number of key-
point comparisons needed to find a face match, reducing
the number of incorrect face match attempts before a cor-
rect match could be found. This method reduced search
space by taking advantage of motion continuity and prefer-
entially comparing faces in the database that have recently
been identified in locations close to the target face’s loca-
tion.

5. Conclusion
In sum, we have shown that the use of bottom-up vi-

sual attention increases the accuracy of facial recognition,
but this gain is offset by increased computation time with a
large database of faces. However, the technique of bottom-
up visual attention coupled with face prioritization by lo-
cation improves facial recognition speed without negatively
impacting recognition accuracy.
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