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In a very influential yet anecdotal illustration, Yarbus
suggested that human eye-movement patterns are
modulated top down by different task demands. While
the hypothesis that it is possible to decode the
observer’s task from eye movements has received some
support (e.g., Henderson, Shinkareva, Wang, Luke, &
Olejarczyk, 2013; Iqbal & Bailey, 2004), Greene, Liu, and
Wolfe (2012) argued against it by reporting a failure. In
this study, we perform a more systematic investigation
of this problem, probing a larger number of
experimental factors than previously. Our main goal is
to determine the informativeness of eye movements
for task and mental state decoding. We perform two
experiments. In the first experiment, we reanalyze the
data from a previous study by Greene et al. (2012) and
contrary to their conclusion, we report that it is
possible to decode the observer’s task from aggregate
eye-movement features slightly but significantly above
chance, using a Boosting classifier (34.12% correct vs.
25% chance level; binomial test, p ¼ 1.0722e – 04). In
the second experiment, we repeat and extend Yarbus’s
original experiment by collecting eye movements of 21
observers viewing 15 natural scenes (including Yarbus’s
scene) under Yarbus’s seven questions. We show that
task decoding is possible, also moderately but
significantly above chance (24.21% vs. 14.29% chance-
level; binomial test, p ¼ 2.4535e – 06). We thus
conclude that Yarbus’s idea is supported by our data
and continues to be an inspiration for future
computational and experimental eye-movement
research. From a broader perspective, we discuss
techniques, features, limitations, societal and
technological impacts, and future directions in task
decoding from eye movements.

Introduction

Eyes are windows to perception and cognition. They
convey a wealth of information regarding our mental
processes. Indeed this has been elegantly demonstrated
by seminal works of Guy T. Buswell (1935) and Yarbus
(1967), who were the first to investigate the relationship
between eye-movement patterns and high-level cogni-
tive factors. Yarbus recorded observers’ eye movements
(with his homemade gaze tracking suction cap device)
while they viewed the I. E. Repin painting, The
Unexpected Visitor (1884).1 He illustrated fixations of
the observers as they viewed the painting under seven
different instructions: (a) free examination, (b) estimate
the material circumstances of the family, (c) give the
ages of the people, (d) surmise (guess) what family had
been doing before the arrival of the unexpected visitor,
(e) remember the clothes worn by the people, (f)
remember positions of people and objects in the room,
and (g) estimate how long the visitor had been away
from the family.

Yarbus’s results show striking differences in eye-
movement patterns across instructions over the same
visual stimulus. Early in the viewing period, fixations
were particularly directed to the faces of the individuals
in the painting and observers showed a strong
preference to look at the eyes more than any other
features of the face. Yarbus concluded that the eyes
fixate on those scene elements that carry useful
information, thus showing where we look depends
critically on our cognitive task. Further, Yarbus’s
experiments point towards the active nature of the
human visual system as opposed to passively or
randomly sampling the visual environment. This active
aspect of vision and attention has been extensively
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investigated by Dana Ballard, Mary Hayhoe, Michael
Land, and others who studied eye movements in the
context of natural behavior. Please see Ballard, Hay-
hoe, and Pelz (1995); Borji and Itti (2013); Hayhoe and
Ballard (2005); Itti and Koch (2001); Land (2006);
Land and Hayhoe (2001); Navalpakkam and Itti
(2005); Schütz, Braun, and Gegenfurtner (2011); Tatler,
Hayhoe, Land, and Ballard (2011); Tatler and Vincent
(2009) for recent reviews.

Two prominent yet contrasting hypotheses attempt
to explain eye movements and attention in natural
behavior. First, according to the cognitive relevance
hypothesis, eyes are driven by top-down factors that
intentionally direct fixations toward informative task-
driven locations (e.g., in driving). Second, in the
absence of such task demands (e.g., in scene-free
viewing), eyes are directed to low-level image discon-
tinuities such as bright regions, edges, colors, etc., so-
called salient regions. This is often referred to as the
saliency hypothesis (Itti, Koch, & Niebur, 1998; Koch
& Ullman, 1985; Parkhurst, Law, & Niebur, 2002;
Treisman & Gelade, 1980). Both hypotheses are likely
to be correct, yet the relative contribution of top-down
and bottom-up attentional components varies across
daily behaviors. Conversely, by looking at eye move-
ments, one could possibly infer the underlying factors
affecting fixations (i.e., task at hand or mental state) or
gain insights into what an observer is currently
thinking. Active research is undergoing to discover the
interplay between top-down task-driven factors and
bottom-up stimulus-driven factors in driving visual
attention and to assess the amount of information eye
movements convey regarding mental thoughts.

Yarbus showed a proof of concept with a single
observer but did not conduct a comprehensive quan-
titative analysis. Perhaps DeAngelus and Pelz (2009)
were the first to confirm Yarbus’s findings, with
multiple observers viewing Repin’s painting. Viewing
times in their study were self-paced (9–50 s), and were
significantly less than the enforced 3-min viewing time
of Yarbus’s observer. DeAngelus and Pelz showed that
observers’ eye-movement patterns were similar to those
reported by Yarbus, with faces invariably fixated and
the overall viewing pattern varying with task instruc-
tion. A few of their observers, especially those with
shorter viewing times, did not show dramatic shifts
with instruction. The task ‘‘Give the ages of the people’’
resulted in the smallest interobserver distance of all
tasks, indicating that for this task the eye-movement
patterns were most similar among the observers. The
‘‘Estimate how long the visitor had been away from the
family’’ task showed the most variability among
observers, suggesting that observers used different
viewing strategies to complete this task.

The general trend for fixations when viewing scenes
to fall preferentially on persons within the scene had

been shown previously by Buswell (1935). The
tendency of observers to fixate on faces has recently
been quantitatively confirmed by Cerf, Frady, and
Koch (2009) and further supported by large-scale eye-
tracking studies (e.g., Judd, Ehinger, Durand, &
Torralba, 2009; Subramanian, Sebe, Kankanhalli, &
Chua, 2010). Yarbus’s results (along with DeAngelus
& Pelz, 2009) indicate that, for extended viewing
times, observers show a clear tendency to make
repeated cycles of fixations between the key features of
a face or a scene (i.e., cyclic behavior). Both attention
and face perception communities have been largely
inspired by Yarbus’s early insights (see Kingstone,
2009).

Castelhano, Mack, and Henderson (2009) investi-
gated how task instruction influences specific param-
eters of eye-movement control. They asked 20
participants to view color photographs of natural
scenes under two instruction sets: searching a scene
for a particular item or remembering characteristics
of that same scene. They found that viewing task
biases aggregate eye-movement measures such as
average fixation duration and average saccade am-
plitude. Mills, Hollingworth, Van der Stigchel, Hoff-
man, and Dodd (2011) examined the influence of task
set on the spatial and temporal characteristics of eye
movements during scene perception. They found that
task affects both spatial (e.g., saccade amplitude) and
temporal characteristics of fixations (e.g., fixation
duration).

Tatler, Wade, Kwan, Findlay, and Velichkovsky
(2010) explored Yarbus’s biography, his scientific
legacy including his eye tracking apparatus, and his key
contributions. They recorded eye movements of ob-
servers when viewing Yarbus’s own portrait under the
task conditions resembling Yarbus’s questions with
mild modifications. For example Questions 4 and 7
were phrased as ‘‘Estimate what the person had been
doing just before this picture was taken’’ and ‘‘Try to
estimate how long this person had been away from
home when this picture was taken and why he had been
away,’’ respectively. They showed that: (a) Yarbus’s
findings generalize to a simpler visual stimulus and (b)
instructions influence where and which features an
observer inspects in face viewing.

Betz, Kietzmann, Wilming, and König (2010)
addressed how or whether at all high-level task
information interacts with the bottom-up processing of
stimulus-related information. They recorded viewing
behavior of 48 observers on web pages for three
different tasks: free viewing, content awareness, and
information search. They showed that task-dependent
differences in their setting were not mediated by a
reweighting of features in the bottom-up hierarchy,
ruling out the weak top-down hypothesis. Conse-
quently, they concluded that the strong top-down
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hypothesis, which proposes that top-down information
acts independently of the bottom-up process, is the
most viable explanation for their data. These results
support Yarbus’s findings in that top-down factors
influence where we look when viewing a scene.

Henderson, Shinkareva, Wang, Luke, and Olejarc-
zyk (2013) recorded eye movements of 12 participants
while they were engaged in four tasks over 196 scenes
and 140 texts: scene search, scene memorization,
reading, and pseudo reading. They showed that the
viewing tasks were highly distinguishable based on eye-
movement features in a four-way classification. They
reported a high task decoding accuracy above 80%
using multivariate pattern analysis (MVPA) methods
widely used in the neuroimaging literature. Their four
tasks, however, are much coarser than Yarbus’s
original questions, thus making the decoding problem
effectively easier. Further, natural scenes and text used
by Henderson et al. have dramatically different low-
level feature distributions, which causes major differ-
ences in eye-movement patterns (Harel, Moran, Huth,
Einhaeuser, & Koch, 2009; O’Connell & Walther,
2012), hence some of the decoding accuracy may be due
to stimulus rather than task.

The list of studies addressing task decoding from eye
movements and effects of tasks/instructions on fixations
is not limited to the above works. Indeed, a large variety
of studies has confirmed that eye movements contain
rich signatures of the observer’s mental task, including:
predicting search target (Haji-Abolhassani & Clark,
2013; Rajashekar, Bovik, & Cormack, 2006; Zelinsky,
Peng, & Samaras, 2013; Zelinsky, Zhang, & Samaras,
2008), predicting stimulus category (Borji, Tavakoli,
Sihite, & Itti, 2013; Harel et al., 2009; O’Connell &
Walther, 2012), predicting what number a person may
randomly pick (Loetscher, Bockisch, Nicholls, & Brug-
ger, 2010), predicting mental abstract tasks (Brandt &
Stark, 1997; Ferguson & Breheny, 2011; Mast &
Kosslyn, 2002; Meijering, van Rijn, Taatgen, & Ver-
brugge, 2012), predicting events (Bulling, Ward, Gel-
lersen, & Tröster, 2011; Jang, Lee, Mallipeddi, Kwak, &
Lee, 2011; Peters & Itti, 2007), classifying patients from
controls (Jones & Klin, 2013; Tseng et al., 2012), and
predicting driver’s intent (Cyganek & Gruszczynski,
2014; Lethaus, Baumann, Köster, & Lemme, 2013).
Several studies have investigated the role of eye
movements in natural vision including: reading (Clark &
O’Regan, 1998; Kaakinen & Hyönä, 2010; Rayner, 1979;
Reichle, Rayner, & Pollatsek, 2003), visual search
(Torralba, Oliva, Castelhano, & Henderson, 2006;
Zelinsky, 2008), driving (Land & Lee, 1994; Land &
Tatler, 2001), tea making (Land, Mennie, & Rusted,
1999), sandwich making (Hayhoe, Shrivastava, Mruc-
zek, & Pelz, 2003), arithmetic and geometric problem
solving (Cagli et al., 2009; Epelboim & Suppes, 2001),
mental imagery (Kosslyn, 1994; Mast & Kosslyn, 2002),

cricket (Land & McLeod, 2000), fencing (Hagemann,
Schorer, Canal-Bruland, Lotz, & Strauss, 2010), billiard
(Crespi, Robino, Silva, & deSperati, 2012), drawing
(Coen-Cagli et al., 2009), magic (Kuhn, Tatler, Findlay,
& Cole, 2008; Macknik et al., 2008), shape recognition
(Renninger, Coughlan, Verghese, & Malik, 2004), and
walking and obstacle avoidance (Mennie, Hayhoe, &
Sullivan, 2007).

Departing from the above studies arguing that it is
possible to decode observers’ task from fixations (e.g.,
Henderson et al., 2013; Iqbal & Bailey, 2004), Greene,
Liu, and Wolfe (2012) recently cast a shadow on task or
mind state decoding by bringing counter examples.
They conducted an experiment in which they recorded
eye movements of observers when viewing scenes under
four highly overlapped questions. Using three pattern
classification techniques they were not able to decode
the task significantly above chance using aggregate eye-
movement features (see figure 4 in Greene et al.’s, 2012,
paper). They were, however, able to decode image and
observer’s identity from eye movements above chance
level. Task classification failure along with their finding
that human judges could not tell the category of scan
path, led Greene et al. to conclude ‘‘We have sadly failed
to find support for the most straight-forward version of
this compelling claim (Yarbus’ claim). Over the range of
observers, images and tasks, static eye movement
patterns did not permit human observers or pattern
classifiers to predict the task of an observer’’ (p. 7).

In summary, the effect of task on eye-movement
patterns has been confirmed by several studies.
Despite the volume of attempts at studying task
influences on eye movements and attention, fewer
attempts have been made to decode observer’s task,
especially on complex natural scenes using pattern
classification techniques (i.e., the reverse process of
task-based fixation prediction). However, there is of
course a large body of work examining top-down
attentional control and eye movements using simple
stimuli and tasks such as visual search arrays and
cueing tasks (e.g., Bundesen, Habekost, & Kyllings-
bœk, 2005; Duncan & Humphreys, 1989; Egeth &
Yantis, 1997; Folk & Remington, 1998; Folk, Rem-
ington, & Johnston, 1992; Sperling, 1960; Sperling &
Dosher, 1986; Yantis, 2000). We attempt to thor-
oughly investigate the task decoding problem by
analyzing previous data and findings of Greene et al.
(2012) as well as our own collected data. We focus on
Greene et al.’s study because we believe that their
experimental design was best suited for task decoding
and well in line with Yarbus’s original idea, yet they
reported that decoding failed. Further, we study
limitations and important factors in task decoding
including features and methods used for this purpose.
Finally, we discuss potential technological and socie-
tal impacts of task and mental state decoding.
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Experiment 1

Due to important implications of Greene et al.’s
(2012) results, here we first reanalyze their data and
then summarize learned lessons. They shared data of
their third experiment with us, which includes fixations
of 17 observers viewing 20 grayscale images, each for
60 s.2 They asked observers to view images under four
questions: (a) Memorize the picture (memory), (b)
determine the decade in which the picture was taken
(decade), (c) determine how well the people in the
picture know each other (people), and (d) determine the
wealth of the people in the picture (wealth). Table 1
shows the arrangement of observers over these tasks.
Each observer did all four tasks but over different
images. This results in 17 · 20¼ 340 scan paths where
each scan path contains fixations of an observer over
one image. The design was intentional to prohibit one
observer seeing the same scene twice. Figure 1
demonstrates the stimuli used in this experiment.

Three factors may have caused task prediction failure
in Greene et al.’s (2012) study: First and foremost,
spatial image information is lost in the type of features
they exploited (i.e., using histograms). This is particu-
larly important since the first observation that strikes
the mind from Yarbus’s illustration is spatial patterns of
fixations.3 Second, the importance of the classification
technique may have been underestimated in Greene et
al.’s study. In fact, they only tried linear classifiers
(linear discriminant analysis, linear support vector
machine [SVM], and correlational methods) and con-
cluded that their failure in task decoding is independent
of the classification technique. They made similar
arguments for images and features. Third, in Greene et
al.’s study, observers were partitioned across images.
Thus image and observer idiosyncrasies might have
effects on task decoding (Chua, Boland, & Nisbett,
2005; Poynter, Barber, Inman, & Wiggins, 2013; Risko,
Anderson, Lanthier, & Kingstone, 2012). For example,
one observer might not have the necessary knowledge
regarding a task or an image may not convey sufficient
information for answering questions. In what follows,
we scrutinize these factors one by one.

Regarding the first factor, we use a simple feature
that is the smoothed fixation map, down sampled to
100 · 100 and linearized to a 1 · 10,000 D vector

(Feature Type 1). Figure 2A shows fixation maps for an
example image. The fixation map reflects pure eye-
movement patterns. Additionally, we use histograms of
normalized scan path saliency (NSS) proposed by
proposed by Peters, Iyer, Itti, and Koch (2005), using
nine saliency models.4 This feature reflects the stimulus
þ behavior effect and basically indicates which visual
attributes may be important when an observer is
viewing an image under a task. NSS values are
activations at fixated locations from a saliency map
that is normalized to have zero mean and unit standard
deviation. For each image, NSS values are calculated
and then the histogram of these values (using 70 bins) is
considered as features. Thus for nine models, this leads
to a 9 · 70¼ 630 dimensional vector (Feature Type 2).
Although our features are aggregates and histograms
like Greene et al.’s (2012), one critical difference is that
the values that are aggregated reflect a spatial
correlation between eye movements and spatial saliency
features in each image. Thus, our features capture
whether a task may lead an observer to allocate gaze
differently over different types of salient image regions.

We also consider the first four features used in
Greene et al. (2012) including the number of fixations,
the mean fixation duration, the mean saccade ampli-
tude, and the percent of the image area covered by
fixations assuming a 18 fovea (Feature Type 3;
dimensionality of four). In addition, because it has been
argued that the first few fixations over a scene may
convey more information (Parkhurst et al., 2002), we
form a fourth feature type that includes , x, y .
locations of the first five fixations (i.e., a 10D vector).
Note that, in addition to these features, one could think
of more complex features (e.g., scan path sequence,
NSS histograms on learned top-down task relevance
maps, dwell times on faces, text, and human bodies,
and temporal characteristics of fixations, Mills et al.,
2011) to obtain better accuracies. But as we show here,
these simple features suffice to decode the task in this
particular problem.

Regarding the second factor, we investigate other
classification methods such as k-nearest-neighbor;
kNN (Fix & Hodges, 1951) and boosting (Freund &
Schapire, 1997; Schapire, 1990) techniques that have
been proven to be successful on different problems in
machine learning, computer vision, and cognitive
sciences.5 The intuition is that for different problems,
different classification methods may perform better.
kNN is a classic nonparametric method for classifica-
tion and regression problems. Given a distance metric
(e.g., Euclidean distance), the kNN classifier predicts
class label of a test sample as the majority vote of its k
closest training examples in the feature space (i.e., the
most common output among the neighbors). If k ¼ 1,
then the class label of the test sample is the same as its
nearest neighbor. We also tried boosting algorithms

Images 1–5 6–10 11–15 16–20

4 O · T 1 4 O · T 2 4 O · T 3 4 O · T 4

4 O · T 2 4 O · T 3 4 O · T 4 . . .
5 O · T 3 5 O · T 4 . . .
4 O · T 4 4 O · T 1

Table 1. Arrangement of observers over tasks in Greene et al.
(2012). O and T stand for observer and task, respectively.
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Figure 1. Stimuli used in Experiment 1. Easy and difficult scenes for task decoding are marked with blue and red boxes, respectively.

Please see Appendix 1 for performances of individual runs of the RUSBoost classifier. Average decoding accuracies (numbers after

dash lines) are using Feature Type 3 over 50 RUSBoost runs. Numbers in brackets are classification accuracy using Feature Type 1

(over 50 RUSBoost runs). Original images are 800 · 600 pixels.
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that are popular and powerful machine learning tools
nowadays. The basic idea underlying boosting algo-
rithms is learning several weak classifiers (i.e., a
classifier that works slightly better than chance) and
combing their outputs to form a strong classifier (i.e., a
meta-algorithm). The learning is done in an iterative
manner. After adding a weak learner, the data is
reweighted to emphasize mistakes. Misclassified exem-
plars gain higher weight while correctly classified
exemplars lose weight. Here, we employ the RUSBoost
(random undersampling boost) algorithm (Seiffert,
Khoshgoftaar, Van Hülse, & Napolitano, 2010), which
uses a hybrid sampling/boosting strategy to handle

class imbalance problem in data with discrete class
labels. To better model the minority class, this
algorithm randomly removes examples from the
majority class until all classes have balanced number of
examples (i.e., undersampling). Due to the random
sampling, different runs of this algorithm may yield
different results. While the class imbalance (only one
task has five subjects) is not a big issue in our data, we
believe it is the ensemble of weak classifiers (here
decision trees) that makes good prediction possible.6

With respect to the third factor, we conduct the
following two analyses: (a) pooling data from all
observers over all images and tasks (i.e., 17 · 20 scan
paths) and (b) treating each image separately. These
analyses help disentangle the effects of image and
observer parameters on task decoding.

Task decoding over all data

We trained multiclass classifiers to recover task (one
out of four possible) from eye-movement patterns. We
follow a leave-one-out cross validation procedure
similar to Greene et al. (2012). Each time we set one
data point aside and train a classifier over the rest of

Figure 2. Results of Experiment 1: (A) Top: A sample image along with saliency maps using ITTI98 and GBVS models and its

corresponding smoothed fixation maps (using Gaussian sigma 33 subtending about 0.858 · 0.858 of visual angle). Matlab code for

generating the smoothed fixation map: imresize(conv2(map, fspecial(‘gaussian’, 200, 33)), [100 100], ‘nearest’). Numbers on top of

fixation maps in the bottom panel show the observer’s number (see Table 1). (B) Top: Task decoding accuracy using individual features

and their combination over all data. Stars indicate statistical significance versus chance using binomial test. Bottom: Effect of number

of kNN neighbors on task decoding accuracy. (C) Top: Average decoding accuracies over 50 runs of the RUSBoost classifier over

individual images using Feature Type 3 (see Appendix 1). Error bars indicate standard deviations over 50 runs. Bottom: Average

confusion matrix (over 50 RUSBoost runs) averaged over all images.

Images 1–5 6–10 11–15

3 O · T 1 3 O · T 2 3 O · T 3

3 O · T 2 3 O · T 3 3 O · T 4

3 O · T 3 3 O · T 4 3 O · T 5

3 O · T 4 3 O · T 5 . . .
3 O · T 5 . . . . . .
3 O · T 6 . . . . . .
3 O · T 7 3 O · T 1 3 O · T 2

Table 2. Arrangement of observers over tasks in Experiment 2. O
and T stand for observer and task, respectively.
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data. The trained classifier is then applied to the set-
aside data point. We repeat the same procedure over all
340 data points and report the average accuracy (i.e.,
340 binary values). Decoding results are shown in
Figure 2B.

Using kNN and Feature Type 1 (i.e., fixation map),
we achieved average accuracy of 0.2412 (k ¼ 2;
binomial test, p ¼ 0.89). Feature Type 2 leads to
accuracy of 0.2353 (k ¼ 2; p ¼ 0.31). Using Feature
Type 3, we achieved accuracy of 0.3118, which is above
Greene et al.’s (2012) results and is significantly better
than chance (k ¼ 8; p ¼ 0.014). Classification with
Feature Type 4 leads to accuracy of 0.2441 (k ¼ 1).
Combination of features did not improve the results
significantly. Figure 2B (bottom panel) shows kNN
performance as a function of number of neighbors (k¼
2n, n¼ 0 . . . 6). kNN classification performance levels
here are for the best-performing value of k.

Using RUSBoost classifier with 50 boosting itera-
tions and Feature Type 1, we achieved accuracy of 0.25
(nonsignificant vs. chance; binomial test, p ¼ 0.6193).
We achieved accuracy of 0.2294 using Feature Type 2.
Feature Type 3 leads to accuracy of 0.3412 (p¼1.0722e
– 04). Finally, Feature Type 4 results in accuracy of
0.2176. Combination of all features did not increase the
results significantly (accuracy of 0.3412 using all
features).

Bonferroni correction for multiple comparisons
(Shaffer, 1995): Here, we used two classifiers, five
feature types (including combination of features), and
seven values of parameter k in kNN resulting in 5 · 7þ
5¼ 40 tries. We need to correct p values for these
comparisons. Thus, significance p is equal to 0.05/40¼
0.0013. Using kNN, the best p value is 0.014, which is
above the corrected significance level; therefore kNN
does not yield statistically significant decoding accuracy
that is strong enough given that we made 40 different
attempts at decoding. Hence, we discard using kNN for
the rest of the paper. Using the RUSBoost classifier
(with Feature Type 3), however, results remain
statistically significant after correction as p values are
smaller than 0.0013, which indicates that task is
decodable on this data significantly above the 25%
chance level.

Results of this analysis indicate that spatial fixation
patterns are not informative regarding the observer’s
task when pooling all data (on Greene et al.’s, 2012,
data). Further, our results show that classification
method is a key factor. For example, using the same
four features employed by Greene et al. (2012) (Feature
Type 3), we achieved better accuracies with kNN and
boosting classifiers. Note that here we did not conduct
an exhaustive search to find the best features or feature
combinations. It might be possible to reach even higher
accuracies with more elaborate feature selection strat-
egies.

Task decoding over single images

Task decoding accuracy highly depends on the
stimulus set. For example, if an image does not have
the necessary content that is called for by different
tasks (in an extreme case, a blank image and tasks
about age or wealth of people), it may not yield task-
dependent eye-movement patterns as strong as an
image that has such content. That is, we expect that
interaction between semantic image contents and task
may give rise to the strongest eye-movement signatures.
Failure to decode task might thus be more likely if the
stimuli do not support executing the task. This is
particularly important since both Yarbus and Greene et
al. (2012) did not probe observers’ responses to see
whether or not they were actually able to perform the
task.

We train a RUSBoost classifier (with 50 boosting
iterations) on 16 observers over each individual image
and apply the trained classifier to the remaining
observer over the same image (i.e., leave one observer
out). We repeat this process for all 20 images. Using
Feature Type 1, we achieve average accuracy of 0.3267
(over 50 runs and images). Feature Type 3 resulted in
accuracy of 0.3414 (see Appendix 1, for results of 50
runs). The maximum performance using this feature
over runs was 0.3719 and the minimum was 0.3156.
Using combination of all features (a feature vector of
size 10,000þ 9 · 70 þ 4 þ 10 ¼ 10,644 D) results in
average accuracy of 0.3294. Examination of confusion
matrices using RUSBoost and Feature Type 3 (Figure
2C) shows above chance performance on diagonal
elements with higher accuracies for memory and decade
tasks. There is high confusion between wealth and
other classes.

Average task decoding performance per image using
Feature Type 3 is illustrated in Figure 2C as well as in
Figure 1. Using this feature, decoding accuracy is
significantly above chance level for majority of the
images, is nonsignificant versus chance for one image,
and is significantly below chance for three images
(using t test over 50 runs; see Appendix 1). The easiest
and most difficult stimuli using Feature Type 1 along
with their scan paths and confusion matrices (using a
sample run of RUSBoost) are shown in Figure 3.

Results of the second analysis support our argument
that image content is an important factor in task
decoding. Task decoding becomes very difficult if an
image lacks diagnostic information relevant to the task
(see Figure 3 for such an example). Further, when
treating each image separately, scan paths turn to
become informative regarding the task for some
images. Overall, results from this experiment suggest
that it is possible to decode the task above chance from
the same type of features used by Greene et al. (2012).
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Experiment 2

The questions in the task set of Greene et al. (2012)
are very similar to each other. For decade, memory,
and wealth tasks, observers have to look over the entire
image to gain useful information. This causes very
similar fixation patterns such that these patterns are not
really differentiable to the naked eye (see Figure 3) or
to classifiers, while, to some extent, clearly different
patterns may have contributed to making Yarbus’s
illustration so compelling. Here we aim to decode
observer’s task from eye movements with particular
emphasis on spatial fixation patterns (i.e., Feature Type
1) rather than aggregate features (Type 3). While mean
values of eye-movement measures (i.e., Feature Type 3)
can change as a function of task, the distributions of
these values highly overlap across tasks (Henderson et
al., 2013).

In our view an important limitation of Greene et al.’s
study is that they did not use Yarbus’s original seven
tasks, as Yarbus might have reached different conclu-
sions had he used different tasks. In this experiment, we
thus seek to test the accuracy of Yarbus’s exact idea by
replicating his tasks.

Methods

Participants

A total of 21 students (10 male, 11 female) from the
University of Southern California (USC) participated.
Students’ majors were computer sciences, neuroscience,
psychology, mathematics, cognitive sciences, commu-
nication, health, biology, sociology, business, and
public relations. The experimental methods were
approved by the USC’s Institutional Review Board
(IRB). Observers had normal or corrected-to-normal
vision and were compensated by course credits.

Figure 3. Easiest and hardest stimuli for task decoding in Experiment 1 using Feature Type 1 over 50 RUSBoost runs. Confusion

matrices are for a sample run of RUSBoost on each image using leave-one-out procedure.
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Observers were in the age range of 19–24 (mean¼ 22.2,
SD¼ 2.6). They were naı̈ve with respect to the purpose
of the experiment.

Apparatus

Participants sat 130 cm away from a 42-in. monitor
screen so that scenes subtended approximately 438 · 258

of visual angle. A chin/head rest was used to minimize
head movements. Stimuli were presented at 60 Hz at
resolution of 1920 · 1080 pixels. Eye movements were
recorded via an SR Research Eyelink eye tracker
(spatial resolution 0.58) sampling at 1000 Hz.

Materials

Stimuli consisted of 15 paintings (13 are oil on
canvas, some are by I. E. Repin). Figure 4 shows
stimuli including Repin’s painting used by Yarbus. We
chose images such that a person7 who could be

construed as an unexpected visitor exists in all of them.
Thus Yarbus’s questions are applicable to these images
(e.g., more so on Images 2, 3, and 11 and less so on
Images 4, 6, and 15).

Procedure

We followed a partitioned experimental procedure
similar to Greene et al. (2012), where observers
answered questions on three sets of images (Table 2).
Each set consists of five images corresponding to one
row of Figure 4. In other words, no participant saw the
same stimulus twice. Each image was shown for 30 s
followed by a 5-s delay (gray screen). At the beginning
of each session (five images), the eye tracker was
recalibrated. Each observer viewed each set of five
images only under one question. We used the seven
questions of Yarbus’s study mentioned in the Intro-
duction. Figure 5 illustrates eye movements of observ-
ers on seven images.

Figure 4. Stimuli used in Experiment 2. Images resemble Repin’s painting (Image 5) in that in all of the images exists a somewhat

unexpected visitor. (source: courtesy of http://www.ilyarepin.org). Three easiest and three most difficult stimuli are marked with blue

and red boxes, respectively. Average decoding accuracies (numbers after dash lines) are using combination of Feature Types 1 and 2

over all RUSBoost runs. See Appendix 2 for decoding results on individual RUSBoost runs. Numbers in brackets are classification

accuracy using Feature Type 1.
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Decoding results

We employ the RUSBoost classifier with 50 boosting
iterations as in the first experiment. Features consist of
saliency maps of nine models used in Experiment 1
(Footnote 4) plus additional 14 feature channels from
the ITTI model including: ITTI-C, ITTI-CIO, ITTI-
CIOLTXE, ITTI-E, ITTI-Entropy, ITTI-I, ITTI,
ITTI-L, ITTI-O, ITTI-OLTXE, ITTI-Scorr, ITTI-T,
ITTI-Variance, and ITTI-X. These feature channels
extract different types of features that range from
intensity (I), color (C), orientation (O), entropy (E),
variance, t-junctions (T), x-junctions (X), l-junctions
(L), and spatial correlation (Scorr). Please see Itti et al.

(1998) and Tseng et al. (2012) (and its supplement) for
more details on these features and implementation
details. ITTI and ITTI98 are different versions of the
Itti et al. model, corresponding to different normali-
zation schemes. In ITTI98, each feature map’s contri-
bution to the saliency map is weighted by the squared
difference between the globally most active location
and the average activity of all other local maxima in the
feature map (Itti et al., 1998). This gives rise to smooth
saliency maps, which tend to correlate better with noisy
human eye-movement data. In the ITTI model (Itti &
Koch, 2000), the spatial competition for saliency is
much stronger, which gives rise to much sparser

Figure 5. Eye movements of observers over stimuli in Experiment 2 for seven images. Note that each image was shown to a observer

only under one question. Tasks are: (1) free examination, (2) give material circumstances (wealth), (3) estimate ages of the people, (4)

estimate the activity before the arrival of the visitor, (5) remember clothes, (6) remember positions of people and objects, and (7)

estimate how long the visitor had been away.
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saliency maps. Figure 6A shows 23 saliency maps for a
sample image.
Task decoding over all data: Following Experiment 1,
we first pool all data and perform task decoding over
all images and observers. We report results using a
leave-one-out procedure. We have 21 observers, each
viewing 15 images (each five images under a different
question; three questions per observer) thus resulting in
315 scan paths. Using Feature Type 1, we achieved
average accuracy of 0.2421, which is significantly above
chance8 (binomial test, p¼2.4535e – 06). Using Feature
Type 2 (i.e., NSS histogram of nine saliency models as
in Experiment 1) results in accuracy of 0.2254 (p ¼
5.6044e – 05). Increasing the number of saliency models
to 23 results in the same performance as when using
nine models. Combination of all features did not
improve the results in this analysis. To evaluate the
importance of saliency maps as features, we performed
task decoding over all data using individual saliency
features (i.e., NSS values; Feature Type 2) and
RUSBoost classification (see the section Task decoding
over all data). Results are shown in Figure 6B.
Majority of the saliency models lead to above chance
accuracy indicating informativeness of NSS histograms
and low-level image features for task decoding.

Bonferroni correction for multiple comparisons:
With the RUSBoost classifier, correcting for three
features and their combination, p values have to be
smaller than 0.05/4 ¼ 0.0125, which is the case here
using all feature types. Thus, we can safely conclude
that task is decodable from eye movements on our data
using spatial fixation patterns and NSS histograms (as
opposed to Experiment 1).

Task decoding over single images: Three observers
viewed each image under one question thus resulting in
21 data points per image (i.e., 3 Observers · 7
Questions). Note that each set of three observers were
assigned the same question (Table 2). RUSBoost
classifier and Feature Type 1 results in average accuracy
of 0.2724 over 50 runs and 15 images. Using first two
feature types (a 10,000 þ 23 · 70¼ 11610D vector)
results in average performance of 0.2743. Over all runs
(i.e., table rows), the minimum accuracy (average over
all 15 images) is 0.2540 and maximum accuracy is
0.3079. Note that our accuracies are almost two times
higher than the 14.29% chance level (i.e., 1/7). Easy and
difficult stimuli for task decoding are shown in Figure
4. See Appendix 2 for results of individual runs of the
RUSBoost classifier over individual images.

To measure the degree to which tasks differ from
each other, we show in Figure 7A the distribution of
fixations over all images with the same task. Each
element shows the amount of overlap in two questions.
To generate this plot, we first normalize each map to
[0 1] and then subtract maps from each other. Hence
brighter blue and red regions mean higher difference
between two tasks. It shows profound differences
among Tasks 3 (estimating ages), 4 (estimating
activity), and 7 (estimating away time) to other tasks.
Task 1 (free examination) is more similar to other
tasks. The reason might be because people look
everywhere in images including faces and people, which
are also informative objects for other tasks. Task 2
(estimating wealth) and Task 6 (remembering posi-
tions) show smaller difference to other tasks probably
because observers inspect the entire image in two tasks.
Figure 7B shows the confusion matrix averaged over 15

Figure 6. (A) Saliency maps for a sample image used in the second experiment. Acronyms are: intensity (I), color (C), orientation (O),

entropy (E), variance, t-junctions (T), x-junctions (X), l-junctions (L), and spatial correlation (Scorr). (B) Importance of saliency maps

(Feature Type 2 using 70D NSS histograms) for task decoding. Here, a RUSBoost classifier (50 runs) was used over all data according to

the analysis in the section Task decoding over all data).
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images and 50 RUSBoost runs using Feature Type 1.
We observe high accuracies for Task 3 (estimating age),
Task 5 (remembering cloths), and Task 7 (estimating
how long the visitor has been away) but low accuracy
for the free-viewing task. There is a high confusion
between Task 2 and Tasks 6 and 1 and also between
Task 1 and Task 7. The easiest and hardest stimuli
using Feature Type 1 along with their scan paths and
confusion matrices are shown in Figure 8.

Results of the two analyses in second experiment, in
alignment with DeAngelus and Pelz (2009), confirm
that eye movements are modulated top down by task
demands in a way that task can be predicted from eye-
movement patterns. We found that spatial fixation
patterns, which were not much informative over

Greene et al.’s (2012) data, suffice to decode the task on
our data. We expect to gain even higher task decoding
accuracies by using other eye-movement statistics, such
as fixation durations or amplitudes, that have been
shown to be different across Yarbus’s questions
(DeAngelus & Pelz, 2009).

Discussion and conclusion

What do we learn from the two experiments in this
study? Successful task decoding results provide further
evidence that fixations convey diagnostic information
regarding the observer’s mental state and task,9

Figure 7. (A) Similarity/difference of tasks from human fixation maps in Experiment 2. Brighter red or blue regions mean higher

difference. Values close to zero mean less difference. The numbers on top of each image show the sum of the absolute differences

between two fixation maps. (B) Confusion matrix of the RUSBoost classifier averaged over 50 RUSBoost runs each on a single image

using Feature Type 1.
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consistent with the cognitive relevance theory of
attention (see Hayhoe & Ballard, 2005). This means
that top-down factors in complex tasks systematically
influence the viewer’s cognitive state and his thought
processes. Our results support previous decoding
findings mentioned in the introduction section (e.g.,
some over more controlled stimuli such as predicting
search target, Rajashekar et al., 2006).

We demonstrated that it is possible to reliably infer
the observer’s task from Greene et al.’s (2012) data
using stronger classifiers. Classification was better when
we treated images individually. Although we were able
to decode the task from Greene et al.’s data, making
strong arguments regarding feasibility of task decoding
on this data is difficult mainly due to the small size of
this dataset. We think to gain better insights, larger
datasets for task decoding are necessary. Such datasets
allow break down of data into (larger) separate train
and test sets. Parameters of a classifier can be optimized
using the train set and the resultant classifier can be
evaluated on the test set. Performing the analysis in this
manner eliminates the need for correction for multiple
comparisons, hence allowing one to try possibly
thousands of possible classifiers and parameters.

In the second experiment, we showed that it is possible
to decode the task using Yarbus’s original tasks, almost
twice above chance, much better than using Greene et
al.’s (2012) tasks. These results are in line with findings of
DeAngelus and Pelz (2009). While our results are
significantly above chance, it might be still possible to
obtain better accuracies by exploiting even more infor-
mative features and other types of classification tech-
niques. Our investigation on task decoding using 5-s time
slots (i.e., first 5 s, second 5 s, . . .) suggest that accuracies
might be higher for early fixations but this needs further
investigation. We also found that decoding accuracy
critically depends on three factors: (a) task set (how
separable they are), (b) stimulus set (whether a scene has
sufficient information or not), and (c) observer’s knowl-
edge (whether observers understand questions).

Just recently, we noticed that another group (Kanan
et al., 2014) has been working on this problem in
parallel. Using support vector machines (SVM) with
radial-basis kernel function and C-SVC training
algorithm and summary statistics features (a 2D vector
comprised of mean fixation duration and the number of
fixations in each trial), Kanan et al. achieved accuracy
of 26.3% (95% CI¼ 21.4–31.1%, p¼ 0.61) which is not

Figure 8. Easiest and hardest stimuli for task decoding in Experiment 2 using Feature Type 1 over 50 RUSBoost runs. Confusion

matrices are for a sample run of RUSBoost on each image using leave-one-out procedure.
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significantly better than chance. However, using a SVM
classifier with a Fisher Kernel Learning (FKL)
algorithm with only motor information (i.e., fixation
duration and location of each fixation; thus a variable
number of 3D vectors in each trial) they were able to
exceed chance level (33.1% correct, 95% CI ¼ 27.9–
38.3%). This analysis suggests that summary statistics
alone are not enough for task decoding and it is
necessary to add spatial information with the tasks and
images of Greene et al. Further, they conducted a
within-subjects analysis (i.e., training a classifier on
each subject individually) following a leave one out
procedure (thus repeating this procedure 20 times per
subject). SVM (with summary statistics features) and
SVM-FKL classifiers resulted in 38.8% accuracy (95%
CI ¼ 33.4–44.1%; chance¼ 25%) and 52.9% accuracy
(95% CI¼ 46.4–57.4%), respectively. Overall, Kanan et
al.’s result further support our findings here regarding
availability of sufficient information diagnostic of task
in Greene et al.’s data.

Is it always possible to decode task from eye
movements? We argue that there is no general answer to
this type of pattern recognition questions. Answers
depend on the used stimuli, observers, and questions.
One could choose tasks such that decoding becomes very
hard even with sophisticated features and classifiers; we
found that this is the case on Greene et al.’s (2012) data.
In particular, on the type of tasks and scenes used here
majority of fixations are attracted to faces and people,
which causes a huge overlap across tasks. In some easier
scenarios, where tasks are more different, very simple
features might suffice to decode the task accurately (e.g.,
Henderson et al., 2013). In the extreme simplest case,
one can imagine a task like this: a person on the left side
of the screen and a dog on the right side with observers’
tasks being: (a) How old is the person? and (b) what
breed is the dog? Obviously answering these tasks
demands looking at the person for the first question and
looking at the dog for the second question, which results
in 100% task decoding accuracy (for a rational observer)
just from eye-movement locations. One can also choose
images from which task decoding is very difficult
because they contain little information that is directly
relevant to the task. This was also found in our results,
as some images yield more accurate task decoding than
others. One could also recruit observers who don’t
understand the question. So far none of the works
mentioned in the present study have analyzed the
observers’ answers on tasks. So, the failure in task
decoding might be simply due to the observer’s disability
to extract useful information from the scene.

Since the parameter space is large, making strong
arguments regarding impossibility of task decoding (see,
e.g., Greene et al.’s, 2012, claim ‘‘static scan paths alone
do not appear to be adequate to infer complex mental
states of an observer’’ in their abstract) seems to be very

difficult and needs a systematic probing of the whole
parameter space (or a theoretical proof). On the other
hand, to prove that task decoding on a particular setting
is feasible, one only needs to find a working set of
parameters (and it suffices; after accounting for multiple
comparisons and following a cross-validation procedure,
Salzberg, 1997). The latter is the common practice in
pattern recognition community. Please note that our
results also do not imply that it is always possible to
decode the task. The counter example proposed by
Greene et al. (2012) was found to not hold in our analysis.

As a control analysis, Greene et al. (2012) asked
some human participants to look at eye movements of
their observers and guess which task the observers have
been doing. They showed that similar to classifiers,
participants also failed in task decoding. Failure of
humans to decode the task by looking at eye-movement
patterns (experiment 4 in Greene et al., 2012) does not
necessarily mean that fixations lack task-relevant
information. Indeed, there are some cases in vision
sciences where machine learning techniques outperform
humans, in particular over large datasets (e.g., frontal
face recognition, defect detection, cell type differenti-
ation, DNA microarray analysis, etc.).

Several concerns exist that need to be carefully
thought about before conducting a task decoding
experiment using eye movements. Here we followed the
procedure by Greene et al. (2012) in which: (a) no
observer viewed the same image twice and (b) the same
scene was shown under multiple questions. The first rule
aims to eliminate memory biases. The second rule
ensures that the final result is not due to differences in
stimuli. DeAngelus and Pelz (2009) and Yarbus (1967)
violated the first rule where the same observers viewed
the images under the same questions. Henderson et al.
(2013) violated the second rule in which different
questions were asked over different images (which might
be the reason why they obtained such high accuracies
above 80%). Another possibly important factor affecting
task decoding results is eye-tracking accuracy. This is
particularly important when tasks are very similar to
each other. One other concern regards selection of the
stimulus set. If the stimulus set includes many images
containing people, faces, and text, which capture a large
portion of fixations in a task-independent manner, then
there is basically not much information left helping task
decoding. The last concern is about the suitability of
features. In some scenarios, especially in dynamic
environments (e.g., watching a video, driving a car, etc.)
the type of features employed here may not be suitable
for task decoding. In particular, spatial information is
reduced to one fixation per frame. This requires
temporal processing of features to see which places (or in
what order) observers have visited the locations.

Here, we showed that task is decodable on static
images by a more systematic and exhaustive exploration
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of the parameter space including features, classifiers, and
new data. Pushing deeper into real-time scenarios, using
joint online analysis of video and eye movements, we
have recently been able to predict—more than one
second in advance—when a player is about to pull the
trigger in a flight combat game, or to shift gears in a car
racing game (Peters & Itti, 2007). We have been also able
to predict next fixation of a video game player for such
games as running a hot-dog stand (Borji, Sihite, & Itti,
2014) and Super Mario Cart (Borji, Sihite, & Itti,
2012a). In a similar approach where our computational
models provide a normative gold standard against one
particular individual’s gaze behavior, we have demon-
strated a system that can predict, by recording an
observer’s gaze for 15 min while one watches TV,
whether one has ADHD (Tseng et al., 2012). These
preliminary results clearly demonstrate how computa-
tional attention models can be used jointly with
behavioral recordings to infer some internal state of a
person, from a short-term intention (e.g., pull the
trigger) to long-term characteristics (e.g., like ADHD).

Beyond scientific value, decoding task from eye
movements has practical applications. Potential tech-
nological applications include: wearable visual tech-
nologies (smart glasses like Google Glass), smart
displays, adaptive web search, marketing, activity
recognition (Albert, Toledo, Shapiro, & Kording, 2012;
Fathi, Farhadi, & Rehg, 2011; Pirsiavash & Ramanan,
2012), human–computer interaction, and biometrics.
Portable electronic devices such as smartphones,
tablets, and smart glasses with cameras are becoming
increasingly popular (see Windau & Itti, 2013, for an
example study). Enabling eye tracking on these devices
could be used to predict the user’s intent one step ahead
and provide him necessary information in a more
efficient and adaptive manner. This could be aug-
mented with approaches that use nonvisual informa-
tion on cell phones such as accelerometer data or global
positioning systems (e.g., Albert et al., 2012). Another
area of applicability is assistant systems especially for
elderly and disabled users (e.g., in driving or other daily
life activities (Bulling et al., 2011; Doshi & Trivedi,
2009, 2012). Here, we focused on predicting observer’s
task. Some studies have utilized eye movements to tap
into mental states such as confusion and concentration
(Griffiths, Marshall, & Richens, 1984; Victor, Harbluk,
& Engström, 2005), arousal (Subramanian et al., 2010;
Woods, Beecher, & Ris, 1978), or deception (Kuhn &
Tatler, 2005). Eye movements can also be utilized as a
measure of learning capacity in category learning and
feature learning (e.g., Chen, Meier, Blair, Watson, &
Wood, 2013; Rehder & Hoffman, 2005) and expertise
(e.g., Bertram, Helle, Kaakinen, & Svedström, 2013;
Jarodzka, Scheiter, Gerjets, & Van Gog, 2010; Vogt &
Magnussen, 2007).

From a societal point of view, reliable fixation-based
task decoding methods could be very rewarding. One
area of application is patient diagnosis. Several high-
prevalence neurological disorders involve dysfunctions
of oculomotor control and attention, including Autism
Spectrum Disorder (ASD), Attention Deficit Hyperac-
tivity Disorder (ADHD), Fetal Alcohol Spectrum
Disorder (FASD), Parkinson’s disease (PD), and
Alzheimer’s.10 Diagnosis and treatment of these
disorders are becoming a pressing issue in today’s
society (see Jones & Klin, 2013; Klin, Lin, Gorrindo,
Ramsay, & Jones, 2009). For example, about one in six
children in the United States had a developmental
disability, such as intellectual disabilities, cerebral
palsy, and autism, in 2006–2008. Reliable and early
diagnosis of these disorders boils down to accessing
observers’ internal thought processes and their cogni-
tive states. This is where our task decoding framework
becomes relevant and could potentially replace or
complement existing clinical neurological evaluation,
structured behavioral tasks, and neuroimaging tech-
niques that are currently expensive and time consum-
ing. We believe that the type of methods discussed here,
along with low-cost, noninvasive, eye-tracking facili-
ties, offer considerable promise for patient screening.
However, to make it happen in the future, high-
throughput and robust task-decoding methods need to
be devised. One direction could be augmenting eye
movements with purely biological cues such as pupils,
sweating, heart rate, and breathing for this purpose.

Keywords: visual attention, eye movements, bottom-up
saliency, top-down attention, free viewing, visual search,
mind reading, task decoding, Yarbus
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Footnotes

1See Figure 4, Image 5.
2Please see the original paper for more details on the

experimental setup. Greene et al. (2012) reported 16
observers on their paper (experiment 3) but shared 17
with us and on their website http://stanford.edu/
;mrgreene/Publications.html. Our results and conclu-
sions are valid over selection of 16 subjects distributed
equally across tasks.

3Greene et al. (2012) were able to decode the
stimulus from the aggregate features. We suspect that
using spatial patterns will lead to much higher
accuracies as scan paths on images are often quite
different (e.g., Harel et al., 2009; O’Connell & Walther,
2012).

4Selected saliency models include: attention for
information maximization (AIM) (Bruce & Tsotsos,
2009), adaptive whitening saliency (AWS) (Garcia-
Diaz, Fdez-Vidal, Pardo, & Dosil, 2012), graph based
visual saliency (GBVS) (Harel, Koch, & Perona, 2006),
HouCVPR (Hou & Zhang, 2007), HouNIPS (Hou &
Zhang, 2008), ITTI98 (Itti et al., 1998), phase spectrum
of Quaternion Fourier transform (PQFT) (Guo &
Zhang, 2010), SEO (Seo & Milanfar, 2009), and
saliency using natural statistics (SUN) (Zhang, Tong,
Marks, Shan, & Cottrell, 2008). For more details on
these models, the interested reader is referred to Borji
and Itti (2012) and Borji, Sihite, & Itti (2012b). Note
that saliency is not a unique measurement and may
change from one model to another. That is why here we
employ several models instead of one.

5Boosting classifiers have been used for fixation
prediction in free viewing tasks (e.g., Borji, 2012; Zhao
& Koch, 2012).

6Please see Matlab documentation for fitensemble
function.

7Or the dog in Image 8 in Figure 4.
8We obtained accuracy of 0.2399 6 0.0016 (mean 6

SD) over 60 runs of the RUSBoost classifier.
9Note that here we used task and cognitive state

interchangeably. There are however subtle differences.
Cognitive state refers to the state of a person’s
psychological condition (e.g., confusion, preoccupa-
tion, wonder, etc.). By task here referred to a well-
defined question that observers should try to answer
(e.g., estimating age, search for an object, reading, etc.).

10For prevalence statistics, visit http://www.cdc.gov/
ncbddd/.
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Appendix 1

Task decoding accuracies over single images in
Experiment 1 using RUSBoost classifier. Please see
Table 3.

Appendix 2

Task decoding accuracies over single images in
Experiment 2 using RUSBoost classifier. Please see
Table 4.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 0.1905 0.3333 0.3333 0.2381 0.2381 0.3333 0.1429 0.1905 0.2857 0.4286 0.1905 0.3810 0.2381 0.2857 0.2857

R2 0.1905 0.3333 0.2381 0.3333 0.1905 0.2857 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R3 0.1905 0.3333 0.3810 0.2381 0.2381 0.2857 0.0952 0.2381 0.3333 0.3810 0.1429 0.4286 0.2381 0.3333 0.2381

R4 0.0952 0.2857 0.3333 0.1905 0.2381 0.1905 0.0952 0.2381 0.2381 0.4286 0.1429 0.3333 0.3810 0.3810 0.2381

R5 0.1905 0.3810 0.3810 0.2381 0.1905 0.2381 0.1429 0.2381 0.2857 0.4762 0.2381 0.3810 0.3333 0.2857 0.2381

R6 0.1429 0.4762 0.3333 0.2381 0.2381 0.1905 0.0952 0.1905 0.2857 0.3810 0.0952 0.3810 0.2857 0.3333 0.3333

R7 0.0952 0.3333 0.3333 0.2381 0.3333 0.2381 0.0952 0.2381 0.2857 0.3810 0.2381 0.4286 0.2857 0.3333 0.2381

R8 0.1905 0.3333 0.3333 0.2381 0.2381 0.3333 0.1905 0.3333 0.2381 0.4286 0.2857 0.3810 0.2857 0.3810 0.2857

R9 0.1429 0.3333 0.2857 0.2857 0.2381 0.2857 0.1429 0.2857 0.2857 0.4286 0.1429 0.3333 0.2857 0.3810 0.2381

R10 0.0952 0.4286 0.3333 0.1905 0.2857 0.2381 0.0952 0.2381 0.2857 0.3810 0.1429 0.4286 0.2381 0.4286 0.2381

R11 0.1905 0.3810 0.2857 0.2381 0.2381 0.2381 0.1429 0.2381 0.2381 0.4286 0.1905 0.4286 0.2381 0.3810 0.1905

R12 0.0952 0.3333 0.3333 0.1429 0.2857 0.3333 0 0.2857 0.2857 0.4286 0.1429 0.3810 0.2381 0.2857 0.2381

R13 0.1429 0.3810 0.3810 0.2381 0.2381 0.2857 0.1429 0.3333 0.2381 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R14 0.2381 0.4762 0.3810 0.2381 0.2381 0.2381 0.0476 0.2857 0.2381 0.4286 0.0952 0.3333 0.2381 0.3810 0.2857

R15 0.2381 0.3810 0.2381 0.2857 0.2381 0.1905 0.1429 0.2857 0.2381 0.4286 0.1429 0.3333 0.3333 0.2381 0.2857

R16 0.1905 0.3810 0.2857 0.1905 0.3810 0.2381 0.0476 0.2381 0.2857 0.4762 0.1429 0.3333 0.1905 0.3333 0.2857

R17 0.1905 0.4286 0.2857 0.1905 0.2857 0.2381 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2381 0.4286 0.2857

R18 0.1429 0.3333 0.3333 0.1905 0.2857 0.2857 0.0952 0.3333 0.2857 0.4762 0.1429 0.3810 0.2381 0.4286 0.2381

R19 0.1429 0.4286 0.2381 0.2381 0.2381 0.2857 0.1429 0.2857 0.2857 0.3810 0.1429 0.4286 0.2857 0.3810 0.1905

R20 0.0952 0.3810 0.3810 0.2381 0.2381 0.3333 0.1429 0.2857 0.2857 0.4762 0.1429 0.4286 0.2857 0.2857 0.2381

R21 0.1429 0.3333 0.1905 0.1905 0.2857 0.2857 0.1429 0.3333 0.2857 0.4286 0.1429 0.3810 0.1905 0.3810 0.2381

R22 0.1905 0.3333 0.2857 0.1905 0.2381 0.3333 0.0952 0.2857 0.2381 0.3810 0.0952 0.4286 0.2381 0.3810 0.2381

R23 0.1429 0.3333 0.3810 0.2381 0.1905 0.3333 0.0952 0.3333 0.4286 0.4286 0.0476 0.4286 0.2857 0.2857 0.2381

R24 0.1905 0.4286 0.2857 0.2857 0.2381 0.2381 0.1429 0.2857 0.3333 0.4286 0.1905 0.3810 0.2381 0.2857 0.2857

R25 0.1429 0.4286 0.2857 0.2857 0.2857 0.2857 0.0476 0.2857 0.1905 0.3810 0.0952 0.3810 0.2857 0.3333 0.2381

R26 0.1429 0.3333 0.3333 0.2381 0.3333 0.3333 0.0952 0.2381 0.2857 0.4286 0.0952 0.3810 0.2381 0.3810 0.2381

R27 0.2857 0.3333 0.3333 0.2857 0.2857 0.3333 0.1905 0.2857 0.3333 0.4286 0.2381 0.3810 0.2381 0.3333 0.2857

R28 0.1429 0.3810 0.2381 0.1905 0.2857 0.3333 0.1905 0.2857 0.3333 0.3810 0.0952 0.3810 0.2857 0.3810 0.1905

R29 0.1429 0.3333 0.4286 0.2857 0.2381 0.3810 0.0476 0.1905 0.2857 0.4286 0.0476 0.4286 0.2857 0.4286 0.2381

R30 0.1429 0.4286 0.3333 0.2381 0.2857 0.2857 0.1429 0.2857 0.3810 0.4762 0.1905 0.3810 0.2857 0.4286 0.3333

R31 0.1429 0.4286 0.3810 0.1905 0.2381 0.1905 0.1429 0.2857 0.2381 0.3810 0.0952 0.3810 0.2857 0.3333 0.1905

R32 0.1429 0.3810 0.2857 0.2857 0.2857 0.1905 0.0952 0.2381 0.2857 0.3810 0.1905 0.4286 0.2381 0.3810 0.2857

R33 0.1429 0.3333 0.3333 0.3333 0.2381 0.3333 0.1429 0.2381 0.2857 0.4286 0.2857 0.4286 0.1905 0.3810 0.2381

R34 0.1429 0.4286 0.2857 0.2381 0.2857 0.2857 0.0476 0.1905 0.2857 0.4286 0.1429 0.4286 0.2381 0.3810 0.2381

R35 0.1905 0.3333 0.3810 0.2381 0.2381 0.2857 0.1429 0.2381 0.2857 0.4762 0.1905 0.3333 0.2381 0.4286 0.1905

R36 0.1429 0.3810 0.3333 0.2381 0.2857 0.3333 0.0952 0.2381 0.2857 0.4762 0.1905 0.3810 0.1905 0.4286 0.2381

R37 0.1429 0.3333 0.3333 0.1905 0.2857 0.2381 0.0476 0.3333 0.3333 0.4286 0.2381 0.3810 0.2381 0.3810 0.3333

R38 0.1905 0.3810 0.3810 0.2381 0.3333 0.2857 0.0476 0.2857 0.2381 0.3333 0.0952 0.4286 0.2857 0.4286 0.1905

R39 0.1429 0.3810 0.3333 0.1429 0.2381 0.3333 0.0952 0.2381 0.2857 0.3810 0.2381 0.3810 0.2381 0.3333 0.2381

R40 0.1905 0.2857 0.2381 0.1429 0.2857 0.3333 0.0476 0.2857 0.3333 0.3810 0.0952 0.4286 0.2381 0.4286 0.2857

R41 0.1429 0.3333 0.3333 0.2857 0.2381 0.3333 0.0476 0.2381 0.3333 0.3810 0.1429 0.3810 0.1905 0.4286 0.1905

R42 0.1905 0.3333 0.2381 0.3333 0.1905 0.2857 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R43 0.1429 0.3810 0.3810 0.2381 0.2381 0.2857 0.1429 0.3333 0.2381 0.3810 0.1429 0.3810 0.2857 0.3810 0.2381

R44 0.2381 0.4762 0.3810 0.2381 0.2381 0.2381 0.0476 0.2857 0.2381 0.4286 0.0952 0.3333 0.2381 0.3810 0.2857

R45 0.2381 0.3810 0.2381 0.2857 0.2381 0.1905 0.1429 0.2857 0.2381 0.4286 0.1429 0.3333 0.3333 0.2381 0.2857

R46 0.1905 0.3810 0.2857 0.1905 0.3810 0.2381 0.0476 0.2381 0.2857 0.4762 0.1429 0.3333 0.1905 0.3333 0.2857

R47 0.1905 0.4286 0.2857 0.1905 0.2857 0.2381 0.0476 0.2857 0.2857 0.3810 0.1429 0.3810 0.2381 0.4286 0.2857

R48 0.1429 0.3333 0.3333 0.1905 0.2857 0.2857 0.0952 0.3333 0.2857 0.4762 0.1429 0.3810 0.2381 0.4286 0.2381

R49 0.1429 0.4286 0.2381 0.2381 0.2381 0.2857 0.1429 0.2857 0.2857 0.3810 0.1429 0.4286 0.2857 0.3810 0.1905

R50 0.1905 0.3810 0.2381 0.2857 0.2857 0.2381 0.1429 0.3333 0.2381 0.4286 0.1429 0.3810 0.3333 0.2857 0.2857

Avg. 0.1648 0.3733 0.3152 0.2352 0.2619 0.2771 0.1019 0.2724 0.2828 0.4162 0.1514 0.3867 0.2600 0.3648 0.2505

p-val. 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2602 0.0000 0.0000 0.0000 0.0000

Table 4. Performance of the RUSBoost classifier for task decoding in Experiment 2 using one observer out procedure. Columns
represent Images 1 to 15 and each row corresponds to an individual run. Chance level is at 14.29%. Results are using the first two
feature types (i.e., an 11610D vector). Shown by the last row p values (across RUSBoost runs), decoding is significantly above chance
for some images, is significantly below chance for Image 7, and is nonsignificant versus chance for Image 11 (using t test).
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