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Abstract

Modeling how visual saliency guides the deployment of atbenover visual scenes
has attracted much interest recently — among both compis@nvand experimen-
tal/computational researchers — since visual attenti@kisy function of both machine
and biological vision systems. Research efforts in contpuitgon have mostly been
focused on modeling bottom-up saliency. Strong influenceattention and eye move-
ments, however, come from instantaneous task demands., Weneropose models of
top-down visual guidance considering task influences. Ewemodels estimate the state
of a human subject performing a task (here, playing videoegrand map that state to
an eye position. Factors influencing state come from scestepgiysical actions, events,
and bottom-up saliency. Proposed models fall into two aateg. In the first category,
we use classical discriminative classifiers, including fiRegion, kNN and SVM. In the
second category, we use Bayesian Networks to combine aththiig-modal factors in
a unified framework. Our approaches significantly outpenféb competing bottom-up
and top-down attention models in predicting future eye i on 18,000 and 75,00
video frames and eye movement samples from a driving andra 8ambat video game,
respectively. We further test and validate our approacheis4M video frames and 11M
fixations samples and in all cases obtain higher predictiones that reference models.

1 Introduction

The human visual system is highly efficient in dealing witlghwamounts of visual infor-
mation. This is due to a mechanism called visual attentiat ¢juides eye gaze toward
objects/locations of interest in the scene. Two differgpes of attention processing are:
bottom-up mechanisms (involuntary and very sensitive t@sastimuli) and top-down
mechanisms (voluntary, knowledge- and goal-orient&d])[[20].

Bottom-up saliency mechanisms are based on within-imaggettions in which some
items stand out from their surrounding regions. They cateebest with fixations during
free viewing [L1] [34]. Example applications of bottom-up saliency modeling: aoé-
ject/person detection, segmentation and recogni®@h fobotics localization 37], image
re-targeting 3], thumbnailing 2], image and video compressiohy], non-photo-realistic
rendering §] and seam carving3y].
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Figure 1: Left: Sample frames along with correspondingesaly maps of models. Right:
AUC scores (chance level is 0.5, higher scores indicateebetbdels) and NSS scores
(chance level is 0.0, higher is better; see Se@) of 14 saliency models over 3D Driv-
ing School and Top Gun games. Some models are able to detetiaffic light sign as
salient, which happens to be task-related in the samplersimage. Overall performance
of models is very poor compared to the inter-observer (ME&)@h

In complex real world tasks, top-down factors often predwate bottom-up factors. In
Fig. 1, some major bottom-up saliency models were applied foesaji prediction in two
tasks: urban driving and a target shooting game. As reshtiw/,sperformance of these
bottom-up models was poor compared to simple predictorighndre the mean eye position
map of other subjects (called MEP model, cf. S&d) and a Gaussian blob at the center
of the image B9). The best bottom-up model over these data (GBVS) achiev@t NSS
score (i.e., saliency at human fixated locations was 1.Xdatandeviations above the mean
at all image locations) for the driving game (3DDS), and 96ér the flight combat game
(TG). In contrast, the simple MEP model scored NSS of 2.032a8dver 3DDS and TG,
respectively. These results highlight the poor predicpower of saliency models, when
humans are actively engaged in a task and thus stronglydap-drivent.

How do humans decide where to look or what to attend to in wdiffesituations when
performing a complex task? This is a hard question sincaltypn attention engages many
different high level brain and body structures and funcjomhich have been long studied
but not yet fully elucidated by cognitive science and Al @sbers. In the lack of a general
answer, for some tasks, however, mechanisms have beewnelisdon controlled laboratory
setups €.g., 'block copying’ [4], ‘'making tea’ [L7], 'driving’ [ 18], and 'reading’ R9]). De-
spite task-based differences, some task-independemtaep-mechanisms have been enu-
merated. For instance, Land and Hayhod [ classified eye fixations into four categories:
Locating (searching for) a needed objezg(, milk in the fridge), Directing the hand (grab-
bing something from shelf), Guiding (lid onto kettle), ant&cking (water depth, spout).
Then, they proposed a schema for how to compose these sa-object-related actions
(ORA) to perform a task. In a behavior-based realm, thisesponds to breaking down a
complex task into a series of basis functions (micro behayig., grasping), and using
arbitration on top to choose one of these behaviors at a timeesach a macro behavior (see

1To compare bottom-up saliency models over our data, we aiedauthors for the implementation code,
including: Torralba et. al40], SUN [44], Walther 42], Juddet al. [38], Bian et al, P7], AWS [3], SDSR B5],
GBVS [12], AIM [ 25], Global Rarity (GR) R1], Local Rarity (LR) 1], Hou [43], PQFT ], and iNVT [11].
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[23] for an application of this approach in attention modeling)

While most modeling studies have had limited scope and lmmrséd on a specific task,
in this paper, we elaborate on general influences of multtahmformation onto top-down
spatial attention. We learn models that generate a liketihover locations to be fixated in
each situation. Eye movements of human subjects were gathdrile they played different
types of video games. Our models output an attention guaamep, similar to bottom-
up saliency maps, but with the difference that top-down @rftes determine interesting
hotspots in our maps (regions of predicted high probabdftypeing fixated) as opposed
to bottom-up saliency cues. Modeling top-down attenti@sitbes helping interpret experi-
mental studies, has applications including interactivajgoter graphics environments (video
game playing and virtual reality), flight and driving simtdes, and visual prosthetic devices.

Related Work: The conventional features used to extract bottom-up sajierclude
intensity, orientation, color and motion informatiohl] [10]. In addition, saliency mod-
els have been proposed based on following concepts: 3eilfasity in visual informa-
tion [35], Rarity [21], Surprise 6], Information maximization (AIM) 5], Symmetry [7],
Bayesian44], Spectral residual saliency (Fourief)d, and many others. Some models train
a classifier to distinguish fixated patches from random mtchVhen facing a scene, they
assign to each patch the probability of that patch to be fikpt#] [38] [6]. The concept of
saliency detectors operating in spatiotemporal neighdomith has recently begun to be used
for spatiotemporal analysis with emerging applicationsitieo classification, event detec-
tion and activity recognitionl4]. Examples are the extension of the Harris corner detectc
to 3D by Laptev 19, spatiotemporal extension of the salient point detectdfadir and
Brady by Oikonomopoulost al. [26]. Willems et al. proposed a computationally efficient
space-time detector based on the determinant of the 3D &fesstrix B]. Some saliency
models have incorporated these ideag.([14]).

Some architectures for modeling top-down attention hawnhetroduced. Peters and
Itti [ 13] introduced a model that maps a signature of a scene (“Gsatiupyramid features of
basic saliency modelfl] or Fourier features) to the eye position using a regresdassifier.

A combined map of the pointwise product of the learned toprdonap and bottom-up
saliency map scored higher prediction accuracy. Proposettls here are in-line with this
study, with the contributions that we use stronger classiiead richer information indicative
of state at each time. Navalpakkam and 2] proposed a cognitive model of task-driven
attention but it has not been fully implemented to genemapedown maps. Sprague and
Ballard [23] defined some basic visual behaviors (routines) such as tdittllection, obstacle
avoidance, sideway walking, for an avatar and proposechéoreement learning approach
for how to coordinate these behaviors to perform a simpleitaa virtual environment.

2 Top-down Attention Modeling

To fulfill task demands, humans have to perform actions wdtilending to different items

based on an internal model that changes state over time.sHitestransition is influenced
by environmental variables and subjective factors. Siheeetis a high correlation among
subjects in performing the same task, we estimate the statedata of other subjects in a
similar situation. Formally, we calculate the probabilifyimage locationX to be attended

in stateS (p(X|S)). Since we don’t have direct accesspwe estimate it from observable
variables. In the first class of proposed models, we followsar@minative approach, where
we directly calculate the above probability from data. ot 3.3 we propose a generative
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model using Bayesian Networks to model interaction of intguarvariables in a task.

2.1 Features

Employed features are from vision and action modalities.description of the scene we use
light-weight yet highly discriminant features. For drigigames, we have collected action
data which we combine with annotated scene evests 6top sign) for state determination.

Mean eye position(MEP). MEP (mean of the distribution of all human fixated loca-
tions) is an oracle prediction derived from the human dalfias opposed to computed
by an algorithm). One difference between MEP map in dynamigrenments and static
images (also called inter-observer model) is that MEP iticsit@mages outperforms all other
models. The same statement applies over movies when fisadio@ frame could be used
to build an inter-observer map. However, in dynamic envinents used in this paper, since
frames are generated dynamically under each player'sapatigning frames across sub-
jects is not possible. Therefore if a method could dynarigakdict eye movements on a
frame by frame basis then achieving a higher accuracy thaR MdRossible.

Gist (G). Gist (scene context) is a very rough representation of aesead does not
contain much details about individual objects or semartigscan provide sufficient infor-
mation for coarse scene discriminatiaxy, indoor vs. outdoor or category of the scene).
The pyramid-based feature vector (pfRy], relies on 34 feature pyramids from the bottom-
up saliency model: 6 intensity channels, 12 color chanrfetst @ red/green and next 6
blue/yellow color opponency), and 16 orientations. Fotheaature map, there are 21 val-
ues that encompass average values of various spatial mgawuailue O is the average value
of the entire feature map, values 1 to 4 are the average vafuesch 2< 2 quadrant of the
feature map and values 5 to 20 are the average value for edoh 4% 4 grids of the feature
map leading to overall of 34 21= 714 elements. Itis possible to reduce dimensionality of
this vector while maintaining discriminability.

Bottom-up saliency map B8U). This model includes 12 feature channels sensitive to
color contrast (red/green and blue/yellow), temporal hanice flicker, luminance contrast,
four orientations(0°,45°,90°,135), and four oriented motion energies (up, down, left,
right). After center-surround difference operations aobas scale competitions, a unique
saliency map is created and subsampled to a 26 feature map which is linearized to a
vector of 1x 300 [L1]. We used the original bottom-up saliency map both as a tige®f
the scene and a saliency predictor.

Physical actions £). In the driving experiment, action is a 22D feature vectartaming
wheel positions, pedals (brake and gas), left and rightadsgmmirrors and left and right
views, gear change, etc which are wheel buttons that sghjeed for driving. Note that in
general, physical actions recorded in this way are diffetlesn actions that happen in the
game but they convey some knowledge about them.

Labeled events E). Each frame of games was manually labeled as belonging tofone
different events such as {left turn, right turn, going sifi red light, adjusting left, adjusting
right, stop sign, traffic check and error frames due to unetgueevents that terminate the
games like hitting other cars}. Hence this is only a scalatuee.

2.2 Classifiers

The protocol for making classifiers is as follows. OwesubjectsH;,i =1---n, in a leave-
one-out approach, a model is learned from the data of othgestsH;,i =1---n,i # j and
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tested over the remainingth subject. The final result is the average over all thpte
subjects. To learn a model, features are mapped to 2D eytomssiThe classifiers estimate

p(X|]) = L)() whereS is a feature vector (or combination of them) estimating scibj

state. P(X) is the prior over eye positions (the MEP model computed otleerosubjects
than the one under test) and is biased by likelihp68 |X) (probability of state given eye
position). In the case whef® is only the Gist, our method reduces to the approachdh [

Regression(REG):Assuming a linear relationship between feature vedibrand eye
fixationsN, we solve the equatiob x W = N. The solution isW = M* x N, whereM™
is the (least-squares) pseudo-inverse of maitrixWhen the feature vector Is(a constant
scalar), the solution (predicted map) is simply the aveiafgal eye position vectors ii.
This classifier is equivalent to the MEP model. We used SVDnd fihe pseudo inverse of
matrix M. An important point here is that we set eigenvalues smditm half of the biggest
eigenvalue to zero to avoid numerical instability. Ved®owhich is the eye position over the
640x 480 image is downsampled to 2015 and transformed into a>4 300 vector with a
1 at the actual eye position and zeros elsewhere. In testimgyedict eye positions for new
test frames, feature vectors (as above) are first extraatetattention maps are generated
by applying the learned mapping: Liétbe the feature vector matrix for a test subject ®nd
its corresponding predicted eye fixations; théa- U x W. The maximum of the attention
map indicates the model’s predicted most likely fixated fioca

kNN: The idea here is to look into training data and find similaghborhoods to the
current test frame and then make attention maps from theciassd eye fixations. This
resembles a local MEP model, where we make a map with 1’s daefixacations and zeros
elsewhere. Then to generate an attention map, we convadvatp it with a Gaussian filter.
For fast testing, we did as follows. Let matxdenote similarities (dot product) of all test
frames of one subject to all training frames. TH@r=U x M" where matrixU is of size
|U| x |[M'| with |U]| as the number of frames for a subject. Zdie a matrix of sizéQ| x 300
of zeros. Forj = 1---k, (k number of neighbors in kNN, here 10) maxima of all rowin
are calculated, which indicate thie- th most similar training frame to each test frame. Then
Z is convolved with a linearized Gauss kernel(B800) and updated ovgr Each time after
updating, the value at the— 1 th location is set to a large negative value to not be chose
in the next round (nexf). Note that with performing operations on matrices in thishfion,
there is no need to loop through test frames.

SVM: To use SVM, we first reduced the high-dimensional featuréoracsing PCA to
preserve 95% of variance. Then a linear multi-class SVM waised from other subjects
with 300 output classes. Due to the high number of classesiagel amount of data using
SVM is slow. Experimenting over a subset of the data with feselution eye fixation maps
(4 x 3 and 8x 6 hence number of classes 12 and 48) and with polynomial arfdlkeBhels
did not improve the results.

3 Experiments

3.1 Data Gathering

Video games are suitable stimuli for studying task-driveeardgion because they are interac-
tive, have near-natural renderings and statistics andaamyete control and work with in the
lab compared with real-world setups. We chose driving,esihis a demanding task requir-
ing coordinated action and active attention for an expegdrdriver. We also evaluated our
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Our Data Peters & Itti 2007 Peters & Itti 2008
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Figure 2: Sample frames, mean eye positions and mean baiposatiency maps of used
datasets with their statistics summarized in the bottaghttiable.

approaches over some other already available datasets.

Participants were 10 subjects 18-25 years old with validingi license and at least 2
years of driving experience. Experimental protocol wasrapgd by our University’s In-
stitutional Review Board. Subjects were compensated fir frarticipation. Each subject
played each of the 3 games: 3D Driving School (3DDS), 18 WhekSteel (18 WOS), and
Test Drive Unlimited (TDU). We have also recorded data owar d6ther games: Driver Test
(DT) and Need for Speed Most Wanted (NFSMW) (Fiy.Due to huge amount of data, we
limit our analysis to the first three games. There was a 5-raining session for each game
in which subjects were introduced to the goal of the gamestuduttons, etc. After training,
subjects played the game for another 5 minutes. At the bagjrof the test session, the eye
tracker was calibrated using 9-point calibration. Tragnand testing phases were from the
same game but different situations. Subject’s distance Boreen was 130 cm yielding field
of view of 43* x 25°. The overall recording (over 3 games) resulted in 2.5 houis6é GB
video, 192,000 frames, 1,536,000 fixations, and 10,51 8sksc

Subjects played driving games on PC1 with Windows XP runtiieggames. An array
of wheel, pedal and other actions (signal, mirror, etc) veagéd with frequency of 62Hz.
Frames were recorded on PC2 running Linux Mandriva OS. Gamells were shown to
the subject at 30Hz. This machine sent a copy of each franfetb@D monitor and saved
one copy to the hard disk. PC2 also instructed the eye trdEXe3) to record eye positions.
PC2 had a dual-CPU processor and uSEHED- FI FOscheduling to ensure microsecond-
accurate timing. Each subject’s right eye position was e at 240 Hz with a hardware-
based eye-tracking system (ISCAN Inc. RK-464). Subjeaselusing the Logitech Driving
Force GT steering wheel, automatic transmission, brakegasdpedals, 11-inch rubber-
overmold rim, 900 degrees rotation (only 360 degrees; 180180 right; were used in
experiments), Force Feedback, connected via USB to the PC1.

Peters and Itti 2007: Contains 5-minute segments of game playing of Nintendo game
(Super Mario Kart (SMK), Pac Man World (PMW), Mario Sunsh{iMSS), Hulk, and Wave
Race (WR). Subjects played overall 24 sessions (unequdbeuaf sessions)If].

Peters and Itti 2008: Six subjects played 3 GameCube games: A first person shooting
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game (fps) called James Bond Agent Under Fire (JBAUF), axgagame called Need For
Speed Underground (NFSU) and a flight combat game called Top(GG). None of the
subjects had prior experience with these games. For each,gaibjects first practiced the
game for several one-hour sessions on different days @atilhing a success criterion, and
then returned for a one-hour eye tracking session with #uaeg Within each game, subjects
played 3 game levels, and during eye tracking, each sublggeg each game level twice.
Thus, in total, recorded data set consists of video framesege tracking data from 108
clips (6 subjects< 3 games per subject 3 levels per game 2 clips per level) B1].

Sample frames with the mean eye position (MEP), averagetetip maps as well as
statistics of all are shown in Fig. There are also some other eye movements datasets tl
have mainly been collected for studying top-down attentfdmme could be found herg][

3.2 Evaluation Metrics

To quantify how well a model can predict the actual human egesing positions, we used
two metrics: 1) Normalized scan-path saliency (NSS) and2E Acore.

NSS:NSS is the response value at the human eye posit@ny), in a model’s predicted
gaze density map that has been normalized to have zero mdamérstandard deviation
NSS= Gis(S(xh,yh) — Us), NSS= 1 indicates that the subject’s eye positions fall in a regior
whose predicted density is one standard deviation abovageevhileNSS = 0 indicates
that the model performs no better than picking a randomiposiin the map.

One issue when evaluating saliency models is center-biahwieans a majority of eye
data happens to be in the centgg][ Over video games, game designers often put the inte
esting and task-relevant items at the cengay.( main actor, road, commands). Therefore, &
trivial model like MEP or Gaussian Blob usually scores hiGenter-bias is tightly related to
another problem which is observer agreement that showsigspreak in the eye data. This
peak generates many true positives for the MEP model, anceh@gh scores (any type of
score) over many frames. Since the chance of making falgévesss thus small for MEP
(because of less data at the tails of distribution), thelesis opportunity for models to show
their superiority over MEP or Gaussian. One remedy is to ammmodels over data with
uniform overall distributions, which is hard to control. & bther possibility is to design new
scores or evaluation approaches. To stretch the diffesdmemveen sophisticated computa-
tional models and brute-force models, each time we discattigse fixations that were in
topa%,a <€ {0,10,20,...90} of the MEP map (note, this is different than percentile).sThi
gives an idea of how well models predicted “non-trivial” fiias, i.e., away from the central
peak of MEP data. Then to summarize these values we choseste statistic.

AUC: Using the AUC metric, a model’s saliency map is treated aimar classifier on
every pixel in the image; pixels with larger saliency valtlean a threshold are classified as
fixated while the rest of the pixels are classified as nondkaHuman fixations are used as
ground truth. By varying the threshold, the ROC curve is draw the false positive rate vs.
true positive rate, and the area under this curve (AUC) até& how well the saliency map
predicts actual human eye fixations. Perfect predictioresponds to a score of 1.

3.3 Results

Results of task-based saliency detection are summarizEayir8. All models performed
higher than chance. Over our data (all 3 games, 3rd raamaindc), KNN classifier achieved
the best score followed by Regression and SVM classifiersyitid Gist features, for both
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Figure 3: a) NSS scores over three video games for differ@ouats of data, b) Fixation
maps witha% of data discarded and c) Average NSS over saliency leveig 8nd NSS
score over all fixations (i.e 0% case) for classifiers.

new NSS and traditional NSS scores. Regression classifierEvient and Action features
performed higher than MEP and Gaussian models. The purerbatp saliency model
performed the worst again, highlighting that BU salienceslmot account for top-down
attention (This is the case across all games). Over othedatasets, due to higher center-
bias (verify from Fig. 2), models achieved almost similar scores at the 0% level oPME
Over the Peters & Itti 2007 data (1st row), the MEP model agddigher score over games
(except WR when Regression classifier outperformed). Heweith new NSS score, KNN
classifier with Gist features showed a big improvement. GhvePeters & Itti 2008 data (2nd
row), results are consistent with results over our data W classifier showed the best
performance over both scores (except TG when Regressibnbettom-up features won).
Overall, kNN classifier seems to be a better for eye fixati@ujation over these data.

In another experiment, we used the proposed models forgtiealiof the next action.
As shown in Fig.4.a, using employed features (here we also used 2D eye posiia
feature), a Regression classifier was able to predict ac{R2D vector of action) better than
a a model that is the average of actions (similar to MEP forpmgtions) in terms of NSS
score. BU map and Gist scene descriptors performed betardther features. Figl.b
shows an upper bound on NSS score when fixations of previaoses were considered as
predictors for the current frame (averaged across sukijeceach game). This is the score
of an optimal model that could consider subjectivity, n@ed task demands, and it provides
an interesting comparison point for our computational ni&de

Bayesian Networks: In this part, we propose a generative model based on Bayesiar
Networks to systematically learn relationships betweaiaées and eye position. To ac-
commodate features for use of Bayes Net, we clustered thediigensional Gist vector
using k-means to clusters (here = 20). Continuous wheel and pedal positions were dis-
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Figure 5: a) NSS and b) ROC curves over driving games with &s¢ learned Bayes Net.

cretized to 8 values. Number of events were 9. Due to high ¢exitp of these games
a manually-designed Bayes Net is less likely to produce gesdlts (We systematically
experimented with several network topologies). Thus, wetus variant of Markov Chain
Monte Carlo (MCMC) algorithm called Metropolis-HastindgHK) to search the space of all
DAGs in a network that has all variables (Gi&)( BU map B8), WheelV), PedalP) and
Event E)) connected to eye positioiX]. Learned network structures are shown in Eg.
The Bayesian Network approach resulted in higher NSS and §¥0(&s over all three driv-
ing games, compared to the other approaches, when usingrtieefeatures. In the Bayesian
Network model, MEP it is a prior distribution of data over gyesition variable so by de-
fault such a network is going to perform better than MEP. Rgolementation of Bayesian
Networks we used a Bayes Net toolbox freely availabje$ample frames of driving games
and their corresponding top-down attention maps genelstedodels are shown in Fi.

4 Discussion and Conclusion

In this paper, we proposed frameworks for learning tasletdasp-down spatial attention.
Our models outperform previous approaches and simple steurnodels. The slightly
higher performance of classic classifiers over the Bayesndelel is because of the lower-
dimensional features used in the Bayes Net; yet, when cardpasing the same features, the
Bayes Net outperformed all other approaches. Despitetiiggier computational cost which
may restrict the dimensionality of features that can be uBegiesian Networks and their
variants (Dynamic Bayesian Networks) give us the capghdireason over scene content at
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Original Frame GIst(REG) BU raw AlI(REG) AIIKNN) AlI(SVM) All(Bayes)

TDU #frame2000 18WOS # frame 2000 3DDS # frame 2000

Figure 6: Model prediction maps. Each red circle indicatesabserver’s actual eye position
superimposed with each map’s peak location (blue squares).

the object level, which is subject to our future work. Simégproaches have been followed
in the past for modeling reading task&9 and other cognitive task®.g., arranging items
on a table B0)). This study demonstrates that it is possible to developmatational models
which are capable of estimating state and predicting tageddent future eye movements
and actions of humans engaged in complex interactive tasks.
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