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Abstract

Modeling how visual saliency guides the deployment of attention over visual scenes
has attracted much interest recently — among both computer vision and experimen-
tal/computational researchers — since visual attention isa key function of both machine
and biological vision systems. Research efforts in computer vision have mostly been
focused on modeling bottom-up saliency. Strong influences on attention and eye move-
ments, however, come from instantaneous task demands. Here, we propose models of
top-down visual guidance considering task influences. The new models estimate the state
of a human subject performing a task (here, playing video games), and map that state to
an eye position. Factors influencing state come from scene gist, physical actions, events,
and bottom-up saliency. Proposed models fall into two categories. In the first category,
we use classical discriminative classifiers, including Regression, kNN and SVM. In the
second category, we use Bayesian Networks to combine all themulti-modal factors in
a unified framework. Our approaches significantly outperform 15 competing bottom-up
and top-down attention models in predicting future eye fixations on 18,000 and 75,00
video frames and eye movement samples from a driving and a flight combat video game,
respectively. We further test and validate our approaches on 1.4M video frames and 11M
fixations samples and in all cases obtain higher prediction scores that reference models.

1 Introduction

The human visual system is highly efficient in dealing with huge amounts of visual infor-
mation. This is due to a mechanism called visual attention that guides eye gaze toward
objects/locations of interest in the scene. Two different types of attention processing are:
bottom-up mechanisms (involuntary and very sensitive to salient stimuli) and top-down
mechanisms (voluntary, knowledge- and goal-oriented) [10] [20].

Bottom-up saliency mechanisms are based on within-image competitions in which some
items stand out from their surrounding regions. They correlate best with fixations during
free viewing [11] [34]. Example applications of bottom-up saliency modeling are: ob-
ject/person detection, segmentation and recognition [28], robotics localization [37], image
re-targeting [33], thumbnailing [22], image and video compression [15], non-photo-realistic
rendering [5] and seam carving [32].

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Left: Sample frames along with corresponding saliency maps of models. Right:
AUC scores (chance level is 0.5, higher scores indicate better models) and NSS scores
(chance level is 0.0, higher is better; see Sec.3.2) of 14 saliency models over 3D Driv-
ing School and Top Gun games. Some models are able to detect the traffic light sign as
salient, which happens to be task-related in the sample shown image. Overall performance
of models is very poor compared to the inter-observer (MEP) model.

In complex real world tasks, top-down factors often predominate bottom-up factors. In
Fig. 1, some major bottom-up saliency models were applied for saliency prediction in two
tasks: urban driving and a target shooting game. As results show, performance of these
bottom-up models was poor compared to simple predictors, which are the mean eye position
map of other subjects (called MEP model, cf. Sec.2.1) and a Gaussian blob at the center
of the image [39]. The best bottom-up model over these data (GBVS) achieved 1.01 NSS
score (i.e., saliency at human fixated locations was 1.1 standard deviations above the mean
at all image locations) for the driving game (3DDS), and 0.99over the flight combat game
(TG). In contrast, the simple MEP model scored NSS of 2.03 and2.3 over 3DDS and TG,
respectively. These results highlight the poor predictionpower of saliency models, when
humans are actively engaged in a task and thus strongly top-down driven1.

How do humans decide where to look or what to attend to in different situations when
performing a complex task? This is a hard question since top-down attention engages many
different high level brain and body structures and functions, which have been long studied
but not yet fully elucidated by cognitive science and AI researchers. In the lack of a general
answer, for some tasks, however, mechanisms have been discovered in controlled laboratory
setups (e.g., ’block copying’ [4], ’making tea’ [17], ’driving’ [ 18], and ’reading’ [29]). De-
spite task-based differences, some task-independent top-down mechanisms have been enu-
merated. For instance, Land and Hayhoe [17], classified eye fixations into four categories:
Locating (searching for) a needed object (e.g., milk in the fridge), Directing the hand (grab-
bing something from shelf), Guiding (lid onto kettle), and Checking (water depth, spout).
Then, they proposed a schema for how to compose these so-called object-related actions
(ORA) to perform a task. In a behavior-based realm, this corresponds to breaking down a
complex task into a series of basis functions (micro behaviors, e.g., grasping), and using
arbitration on top to choose one of these behaviors at a time and reach a macro behavior (see

1To compare bottom-up saliency models over our data, we askedtheir authors for the implementation code,
including: Torralba et. al [40], SUN [44], Walther [42], Juddet al. [38], Bian et al, [27], AWS [3], SDSR [35],
GBVS [12], AIM [ 25], Global Rarity (GR) [21], Local Rarity (LR) [21], Hou [43], PQFT [9], and iNVT [11].
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[23] for an application of this approach in attention modeling).
While most modeling studies have had limited scope and been focused on a specific task,

in this paper, we elaborate on general influences of multi-modal information onto top-down
spatial attention. We learn models that generate a likelihood over locations to be fixated in
each situation. Eye movements of human subjects were gathered while they played different
types of video games. Our models output an attention guidance map, similar to bottom-
up saliency maps, but with the difference that top-down influences determine interesting
hotspots in our maps (regions of predicted high probabilityof being fixated) as opposed
to bottom-up saliency cues. Modeling top-down attention, besides helping interpret experi-
mental studies, has applications including interactive computer graphics environments (video
game playing and virtual reality), flight and driving simulators, and visual prosthetic devices.

Related Work: The conventional features used to extract bottom-up saliency include
intensity, orientation, color and motion information [11] [10]. In addition, saliency mod-
els have been proposed based on following concepts: Self-similarity in visual informa-
tion [35], Rarity [21], Surprise [16], Information maximization (AIM) [25], Symmetry [7],
Bayesian [44], Spectral residual saliency (Fourier) [43], and many others. Some models train
a classifier to distinguish fixated patches from random patches. When facing a scene, they
assign to each patch the probability of that patch to be fixated [41] [38] [6]. The concept of
saliency detectors operating in spatiotemporal neighborhoods has recently begun to be used
for spatiotemporal analysis with emerging applications tovideo classification, event detec-
tion and activity recognition [14]. Examples are the extension of the Harris corner detector
to 3D by Laptev [19], spatiotemporal extension of the salient point detector of Kadir and
Brady by Oikonomopouloset al. [26]. Willems et al. proposed a computationally efficient
space-time detector based on the determinant of the 3D Hessian matrix [8]. Some saliency
models have incorporated these ideas (e.g., [14]).

Some architectures for modeling top-down attention have been introduced. Peters and
Itti [ 13] introduced a model that maps a signature of a scene (“Gist” using pyramid features of
basic saliency model [11] or Fourier features) to the eye position using a regressionclassifier.
A combined map of the pointwise product of the learned top-down map and bottom-up
saliency map scored higher prediction accuracy. Proposed models here are in-line with this
study, with the contributions that we use stronger classifiers and richer information indicative
of state at each time. Navalpakkam and Itti [24] proposed a cognitive model of task-driven
attention but it has not been fully implemented to generate top-down maps. Sprague and
Ballard [23] defined some basic visual behaviors (routines) such as litter collection, obstacle
avoidance, sideway walking, for an avatar and proposed a reinforcement learning approach
for how to coordinate these behaviors to perform a simple task in a virtual environment.

2 Top-down Attention Modeling

To fulfill task demands, humans have to perform actions whileattending to different items
based on an internal model that changes state over time. Thisstate transition is influenced
by environmental variables and subjective factors. Since there is a high correlation among
subjects in performing the same task, we estimate the state from data of other subjects in a
similar situation. Formally, we calculate the probabilityof image locationX to be attended
in stateSt (p(X |St)). Since we don’t have direct access toSt , we estimate it from observable
variables. In the first class of proposed models, we follow a discriminative approach, where
we directly calculate the above probability from data. In section3.3, we propose a generative
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model using Bayesian Networks to model interaction of important variables in a task.

2.1 Features

Employed features are from vision and action modalities. For description of the scene we use
light-weight yet highly discriminant features. For driving games, we have collected action
data which we combine with annotated scene events (e.g., stop sign) for state determination.

Mean eye position(MEP). MEP (mean of the distribution of all human fixated loca-
tions) is an oracle prediction derived from the human data itself (as opposed to computed
by an algorithm). One difference between MEP map in dynamic environments and static
images (also called inter-observer model) is that MEP in static images outperforms all other
models. The same statement applies over movies when fixations on a frame could be used
to build an inter-observer map. However, in dynamic environments used in this paper, since
frames are generated dynamically under each player’s control, aligning frames across sub-
jects is not possible. Therefore if a method could dynamically predict eye movements on a
frame by frame basis then achieving a higher accuracy than MEP is possible.

Gist (G). Gist (scene context) is a very rough representation of a scene and does not
contain much details about individual objects or semanticsbut can provide sufficient infor-
mation for coarse scene discrimination (e.g., indoor vs. outdoor or category of the scene).
The pyramid-based feature vector (pfx) [36], relies on 34 feature pyramids from the bottom-
up saliency model: 6 intensity channels, 12 color channels (first 6 red/green and next 6
blue/yellow color opponency), and 16 orientations. For each feature map, there are 21 val-
ues that encompass average values of various spatial pyramids: value 0 is the average value
of the entire feature map, values 1 to 4 are the average valuesof each 2×2 quadrant of the
feature map and values 5 to 20 are the average value for each ofthe 4×4 grids of the feature
map leading to overall of 34×21= 714 elements. It is possible to reduce dimensionality of
this vector while maintaining discriminability.

Bottom-up saliency map (BU). This model includes 12 feature channels sensitive to
color contrast (red/green and blue/yellow), temporal luminance flicker, luminance contrast,
four orientations(0◦,45◦,90◦,135◦), and four oriented motion energies (up, down, left,
right). After center-surround difference operations and across scale competitions, a unique
saliency map is created and subsampled to a 20×15 feature map which is linearized to a
vector of 1×300 [11]. We used the original bottom-up saliency map both as a signature of
the scene and a saliency predictor.

Physical actions (A). In the driving experiment, action is a 22D feature vector containing
wheel positions, pedals (brake and gas), left and right signals, mirrors and left and right
views, gear change, etc which are wheel buttons that subjects used for driving. Note that in
general, physical actions recorded in this way are different than actions that happen in the
game but they convey some knowledge about them.

Labeled events (E). Each frame of games was manually labeled as belonging to oneof
different events such as {left turn, right turn, going straight, red light, adjusting left, adjusting
right, stop sign, traffic check and error frames due to unexpected events that terminate the
games like hitting other cars}. Hence this is only a scalar feature.

2.2 Classifiers

The protocol for making classifiers is as follows. Overn subjectsHi, i = 1· · ·n, in a leave-
one-out approach, a model is learned from the data of other subjectsHi, i = 1· · ·n, i 6= j and
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tested over the remainingj-th subject. The final result is the average over all thesej-th
subjects. To learn a model, features are mapped to 2D eye positions. The classifiers estimate
p(X |St) =

p(St |X)p(X)
p(St)

whereSt is a feature vector (or combination of them) estimating subject

state. P(X) is the prior over eye positions (the MEP model computed over other subjects
than the one under test) and is biased by likelihoodp(St |X) (probability of state given eye
position). In the case whereSt is only the Gist, our method reduces to the approach in [13].

Regression(REG):Assuming a linear relationship between feature vectorsM and eye
fixationsN, we solve the equationM ×W = N. The solution is:W = M+×N, whereM+

is the (least-squares) pseudo-inverse of matrixM. When the feature vector isb (a constant
scalar), the solution (predicted map) is simply the averageof all eye position vectors inN.
This classifier is equivalent to the MEP model. We used SVD to find the pseudo inverse of
matrixM. An important point here is that we set eigenvalues smaller than half of the biggest
eigenvalue to zero to avoid numerical instability. VectorP which is the eye position over the
640×480 image is downsampled to 20×15 and transformed into a 1×300 vector with a
1 at the actual eye position and zeros elsewhere. In testing,to predict eye positions for new
test frames, feature vectors (as above) are first extracted,and attention maps are generated
by applying the learned mapping: LetU be the feature vector matrix for a test subject andV
its corresponding predicted eye fixations; thenV = U ×W . The maximum of the attention
map indicates the model’s predicted most likely fixated location.

kNN: The idea here is to look into training data and find similar neighborhoods to the
current test frame and then make attention maps from the associated eye fixations. This
resembles a local MEP model, where we make a map with 1’s at fixated locations and zeros
elsewhere. Then to generate an attention map, we convolve this map it with a Gaussian filter.
For fast testing, we did as follows. Let matrixQ denote similarities (dot product) of all test
frames of one subject to all training frames. ThenQ = U ×M

′
where matrixU is of size

|U |× |M
′
| with |U | as the number of frames for a subject. LetZ be a matrix of size|Q|×300

of zeros. Forj = 1· · ·k, (k number of neighbors in kNN, here 10) maxima of all rows inQ
are calculated, which indicate thej− th most similar training frame to each test frame. Then,
Z is convolved with a linearized Gauss kernel (1×300) and updated overj. Each time after
updating, the value at thej −1 th location is set to a large negative value to not be chosen
in the next round (nextj). Note that with performing operations on matrices in this fashion,
there is no need to loop through test frames.

SVM: To use SVM, we first reduced the high-dimensional feature vector using PCA to
preserve 95% of variance. Then a linear multi-class SVM was trained from other subjects
with 300 output classes. Due to the high number of classes andhuge amount of data using
SVM is slow. Experimenting over a subset of the data with low-resolution eye fixation maps
(4×3 and 8×6 hence number of classes 12 and 48) and with polynomial and RBF kernels
did not improve the results.

3 Experiments

3.1 Data Gathering

Video games are suitable stimuli for studying task-driven attention because they are interac-
tive, have near-natural renderings and statistics and are easy to control and work with in the
lab compared with real-world setups. We chose driving, since it is a demanding task requir-
ing coordinated action and active attention for an experienced driver. We also evaluated our
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Parameter Our Data Peters & Itti 2007 Peters & Itti 2008

Size 156 GB 124 GB 280 GB

Subjects 10 5 6

Games 5 5 3

Frames 192K 240K 1M

Fixations 1.5M 1.7M 8M

Duration 2.5 hr 2 hr 9.6 hr

Field of view 43o× 25o 28o × 21o 28o × 21o

Resolution 640× 480 640× 480 640× 480

Eye tracker ISCAN 64K ISCAN ISCAN

Viewing distance 130 cm 80 cm 80 cm

Avg saccade/game 350.6 267.5 -

Actions 22 - -

Events 9 - 3

Figure 2: Sample frames, mean eye positions and mean bottom-up saliency maps of used
datasets with their statistics summarized in the bottom-right table.

approaches over some other already available datasets.
Participants were 10 subjects 18-25 years old with valid driving license and at least 2

years of driving experience. Experimental protocol was approved by our University’s In-
stitutional Review Board. Subjects were compensated for their participation. Each subject
played each of the 3 games: 3D Driving School (3DDS), 18 Wheels of Steel (18 WOS), and
Test Drive Unlimited (TDU). We have also recorded data over two other games: Driver Test
(DT) and Need for Speed Most Wanted (NFSMW) (Fig.2). Due to huge amount of data, we
limit our analysis to the first three games. There was a 5-min training session for each game
in which subjects were introduced to the goal of the game, rules, buttons, etc. After training,
subjects played the game for another 5 minutes. At the beginning of the test session, the eye
tracker was calibrated using 9-point calibration. Training and testing phases were from the
same game but different situations. Subject’s distance from screen was 130 cm yielding field
of view of 43◦×25◦. The overall recording (over 3 games) resulted in 2.5 hours or 156 GB
video, 192,000 frames, 1,536,000 fixations, and 10,518 saccades.

Subjects played driving games on PC1 with Windows XP runningthe games. An array
of wheel, pedal and other actions (signal, mirror, etc) was logged with frequency of 62Hz.
Frames were recorded on PC2 running Linux Mandriva OS. Game stimuli were shown to
the subject at 30Hz. This machine sent a copy of each frame to the LCD monitor and saved
one copy to the hard disk. PC2 also instructed the eye tracker(PC3) to record eye positions.
PC2 had a dual-CPU processor and usedSCHED-FIFO scheduling to ensure microsecond-
accurate timing. Each subject’s right eye position was recorded at 240 Hz with a hardware-
based eye-tracking system (ISCAN Inc. RK-464). Subjects drove using the Logitech Driving
Force GT steering wheel, automatic transmission, brake andgas pedals, 11-inch rubber-
overmold rim, 900 degrees rotation (only 360 degrees; 180 left, 180 right; were used in
experiments), Force Feedback, connected via USB to the PC1.

Peters and Itti 2007: Contains 5-minute segments of game playing of Nintendo games
(Super Mario Kart (SMK), Pac Man World (PMW), Mario Sunshine(MSS), Hulk, and Wave
Race (WR). Subjects played overall 24 sessions (unequal number of sessions) [13].

Peters and Itti 2008: Six subjects played 3 GameCube games: A first person shooting
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game (fps) called James Bond Agent Under Fire (JBAUF), a racing game called Need For
Speed Underground (NFSU) and a flight combat game called Top Gun (TG). None of the
subjects had prior experience with these games. For each game, subjects first practiced the
game for several one-hour sessions on different days until reaching a success criterion, and
then returned for a one-hour eye tracking session with that game. Within each game, subjects
played 3 game levels, and during eye tracking, each subject played each game level twice.
Thus, in total, recorded data set consists of video frames and eye tracking data from 108
clips (6 subjects× 3 games per subject× 3 levels per game× 2 clips per level) [31].

Sample frames with the mean eye position (MEP), average bottom-up maps as well as
statistics of all are shown in Fig.2. There are also some other eye movements datasets that
have mainly been collected for studying top-down attention. Some could be found here [2].

3.2 Evaluation Metrics

To quantify how well a model can predict the actual human eye focusing positions, we used
two metrics: 1) Normalized scan-path saliency (NSS) and 2) AUC score.

NSS:NSS is the response value at the human eye position,(xh,yh), in a model’s predicted
gaze density map that has been normalized to have zero mean and unit standard deviation
NSS = 1

σs
(S(xh,yh)− µS), NSS = 1 indicates that the subject’s eye positions fall in a region

whose predicted density is one standard deviation above average whileNSS = 0 indicates
that the model performs no better than picking a random position on the map.

One issue when evaluating saliency models is center-bias which means a majority of eye
data happens to be in the center [39]. Over video games, game designers often put the inter-
esting and task-relevant items at the center (e.g., main actor, road, commands). Therefore, a
trivial model like MEP or Gaussian Blob usually scores high.Center-bias is tightly related to
another problem which is observer agreement that shows a strong peak in the eye data. This
peak generates many true positives for the MEP model, and hence high scores (any type of
score) over many frames. Since the chance of making false positives is thus small for MEP
(because of less data at the tails of distribution), there isless opportunity for models to show
their superiority over MEP or Gaussian. One remedy is to compare models over data with
uniform overall distributions, which is hard to control. The other possibility is to design new
scores or evaluation approaches. To stretch the differences between sophisticated computa-
tional models and brute-force models, each time we discarded those fixations that were in
top α%,α ∈ {0,10,20, ...90} of the MEP map (note, this is different than percentile). This
gives an idea of how well models predicted “non-trivial” fixations, i.e., away from the central
peak of MEP data. Then to summarize these values we chose the mean statistic.

AUC: Using the AUC metric, a model’s saliency map is treated as a binary classifier on
every pixel in the image; pixels with larger saliency valuesthan a threshold are classified as
fixated while the rest of the pixels are classified as non-fixated. Human fixations are used as
ground truth. By varying the threshold, the ROC curve is drawn as the false positive rate vs.
true positive rate, and the area under this curve (AUC) indicates how well the saliency map
predicts actual human eye fixations. Perfect prediction corresponds to a score of 1.

3.3 Results

Results of task-based saliency detection are summarized inFig. 3. All models performed
higher than chance. Over our data (all 3 games, 3rd row ina andc), kNN classifier achieved
the best score followed by Regression and SVM classifiers, all with Gist features, for both
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Figure 3: a) NSS scores over three video games for different amounts of data, b) Fixation
maps withα% of data discarded and c) Average NSS over saliency levels (left) and NSS
score over all fixations (i.e 0% case) for classifiers.

new NSS and traditional NSS scores. Regression classifier with Event and Action features
performed higher than MEP and Gaussian models. The pure bottom-up saliency model
performed the worst again, highlighting that BU saliency does not account for top-down
attention (This is the case across all games). Over other twodatasets, due to higher center-
bias (verify from Fig. 2), models achieved almost similar scores at the 0% level of MEP.
Over the Peters & Itti 2007 data (1st row), the MEP model achieved higher score over games
(except WR when Regression classifier outperformed). However with new NSS score, kNN
classifier with Gist features showed a big improvement. Overthe Peters & Itti 2008 data (2nd
row), results are consistent with results over our data whenkNN classifier showed the best
performance over both scores (except TG when Regression with bottom-up features won).
Overall, kNN classifier seems to be a better for eye fixation prediction over these data.

In another experiment, we used the proposed models for prediction of the next action.
As shown in Fig.4.a, using employed features (here we also used 2D eye position as a
feature), a Regression classifier was able to predict actions (22D vector of action) better than
a a model that is the average of actions (similar to MEP for eyepositions) in terms of NSS
score. BU map and Gist scene descriptors performed better than other features. Fig.4.b
shows an upper bound on NSS score when fixations of previous frames were considered as
predictors for the current frame (averaged across subjectsfor each game). This is the score
of an optimal model that could consider subjectivity, noiseand task demands, and it provides
an interesting comparison point for our computational models.

Bayesian Networks: In this part, we propose a generative model based on Bayesian
Networks to systematically learn relationships between variables and eye position. To ac-
commodate features for use of Bayes Net, we clustered the high-dimensional Gist vector
using k-means tor clusters (herer = 20). Continuous wheel and pedal positions were dis-
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Figure 4: a) Action and Event prediction over driving games b) Upper-bound in NSS score.
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Figure 5: a) NSS and b) ROC curves over driving games with the best learned Bayes Net.

cretized to 8 values. Number of events were 9. Due to high complexity of these games
a manually-designed Bayes Net is less likely to produce goodresults (We systematically
experimented with several network topologies). Thus, we used a variant of Markov Chain
Monte Carlo (MCMC) algorithm called Metropolis-Hastings (MH) to search the space of all
DAGs in a network that has all variables (Gist (G), BU map (B), Wheel(W ), Pedal(P) and
Event (E)) connected to eye position (X). Learned network structures are shown in Fig.5.
The Bayesian Network approach resulted in higher NSS and ROCscores over all three driv-
ing games, compared to the other approaches, when using the same features. In the Bayesian
Network model, MEP it is a prior distribution of data over eyeposition variable so by de-
fault such a network is going to perform better than MEP. For implementation of Bayesian
Networks we used a Bayes Net toolbox freely available [1]. Sample frames of driving games
and their corresponding top-down attention maps generatedby models are shown in Fig.6.

4 Discussion and Conclusion

In this paper, we proposed frameworks for learning task-based top-down spatial attention.
Our models outperform previous approaches and simple heuristic models. The slightly
higher performance of classic classifiers over the Bayes Netmodel is because of the lower-
dimensional features used in the Bayes Net; yet, when compared using the same features, the
Bayes Net outperformed all other approaches. Despite theirhigher computational cost which
may restrict the dimensionality of features that can be used, Bayesian Networks and their
variants (Dynamic Bayesian Networks) give us the capability to reason over scene content at
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Figure 6: Model prediction maps. Each red circle indicates the observer’s actual eye position
superimposed with each map’s peak location (blue squares).

the object level, which is subject to our future work. Similar approaches have been followed
in the past for modeling reading tasks [29] and other cognitive tasks (e.g., arranging items
on a table [30]). This study demonstrates that it is possible to develop computational models
which are capable of estimating state and predicting task-dependent future eye movements
and actions of humans engaged in complex interactive tasks.

References

[1] http://code.google.com/p/bnt/.

[2] http://www.cis.rit.edu/pelz/scanpaths/scanpaths.htm.

[3] Garcia-Diaz A., Fdez-Vidal X. R., Pardo X. M., and Dosil R. Decorrelation and distinctiveness
providewith human-like saliency. InProc. ACIVS (LNCS), 2009.

[4] D. Ballard, M. Hayhoe, and J. Pelz. Memory representations in natural tasks.Journal of Cog.
Neurosci., 7(1):66–80, 1995.

[5] D. DeCarlo and A. Santella. Stylization and abstractionof photographs.ACM Transactions on
Graphics, 21(3):769–776, 2002.

[6] Vig E., Dorr M., Martinetz T., and Barth E. A learned saliency predictor for dynamic natural
scenes. InProc. ICANN, 2010.

[7] Kootstra G., Nederveen A., and de Boer B. Paying attention to symmetry. InProc. BMVC, 2008.

[8] Willems G., Tuytelaars T., and Gool. V. G. An efficient dense and scale-invariant spatio-temporal
interest point detector. InProc. LNCS, 2008.

[9] C. Guo and L. Zhang. A novel multiresolution spatiotemporal saliency detection model and its
applications in image and video compression.IEEE Transactions on Image Processing, 19(1):
185–198, 2010.

[10] L. Itti and C. Koch. Computational modeling of visual attention. Nat. Rev. Neurosci., 2(3):
194–203, 2001.

[11] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene
analysis.IEEE Transactions PAMI, 20(11):1254–1259, 1998.

http://code.google.com/p/bnt/
http://www.cis.rit.edu/pelz/scanpaths/scanpaths.htm


BORJI,et al.: COMPUTATIONAL MODELING OF TOP-DOWN VISUAL ATTENTION 11

[12] Harel J., Koch C., and Perona P. Graph-based visual saliency. InProc. NIPS, 2006.

[13] Peters R. J. and Itti L. Beyond bottom-up: Incorporating task-dependent influences into a com-
putational model of spatial attention. InProc. CVPR, 2007.

[14] Rapantzikos K., Avrithis Y., and Kollias S. Dense saliency-based spatiotemporal feature points
for action recognition. InProc. CVPR, 2009.

[15] Itti L. Automatic foveation for video compression using a neurobiological model of visual atten-
tion. IEEE Trans. Image Process, 13(10), 2004.

[16] Itti L. and Baldi P. A principled approach to detecting surprising events in video. InProc. CVPR,
2005.

[17] M. Land and M. Hayhoe. In what ways do eye movements contribute to everyday activities?
Vision Research, 41(25):3559–3565, 2001.

[18] M. F. Land and D. N. Lee. Where we look when we steer.Nature, 369:742–744, 1994.

[19] I. Laptev. On space-time interest points.International Journal of Computer Vision, 64(2):107–
123, 2005.

[20] M M. Corbetta and G. L. Shulman. Control of goalâĂŘdirected and stimulusâĂŘdriven attention
in the brain.Nature Review Neuroscience, 3(3):201–215, 2002.

[21] M. Mancas. Computational attention: Modelisation andapplication to audio and image process-
ing, 2007. PhD. thesis.

[22] O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau. A coherent computational approach to model
bottom-up visual attention.IEEE Trans. Pattern Anal. Mach. Intell., 28(5):802–817, 2006.

[23] Sprague N. and Ballard D. H. Eye movements for reward maximization. InProc. NIPS, 2003.

[24] V. Navalpakkam and L. Itti. Modeling the influence of task on attention.Vision Research, 45(2):
205–231, 2005.

[25] Bruce N.D.B. and Tsotsos J.K. Saliency based on information maximization. InProc. NIPS,
2005.

[26] A. Oikonomopoulos, I. Patras, and M. Pantic. Spatiotemporal salient points for visual recognition
of human actions.IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
36(3):710–719, 2006.

[27] Bian P. and Zhang L. Biological plausibility of spectral domain approach for spatiotemporal
visual saliency. InProc. LNCS, 2009.

[28] Achanta R., Hemami S., Estrada F., and Susstrunk S. Frequency-tuned salient region detection.
In Proc. CVPR, 2009.

[29] K. Rayner. Eye movements in reading and information processing: 20 years of research.Psy-
chological Bulletin, 85:618–660, 1998.

[30] R. D. Rimey and C. M. Brown. Controlling eye movements with hidden markov models.Inter-
national Journal of Computer Vision, 7(1):47–65, 1991.

[31] Peters R.J. and Itti L. Congruence between model and human attention reveals unique signatures
of critical visual events. InProc. NIPS, 2008.



12 BORJI,et al.: COMPUTATIONAL MODELING OF TOP-DOWN VISUAL ATTENTION

[32] M. Rubinstein, A. Shamir, and S. Avidan. Improved seam carving for video retargeting.ACM
Transactions on Graphics (SIGGRAPH), 2008.

[33] Goferman S., Zelnik-Manor L., and Tal A. Context-awaresaliency detection. InProc. CVPR,
2010.

[34] D. S. Wooding S. Mannan, K. H. Ruddock. Fixation patterns made during brief examination of
2-d images.Perception, 27:1059–1072, 1997.

[35] H.J. Seo and P. Milanfar. Static and space-time visual saliency detection by self-resemblance.
Journal of Vision, 9(12):1–27, 2009.

[36] C. Siagian and L. Itti. Rapid biologically-inspired scene classification using features shared with
visual attention.IEEE Transactions PAMI, 29(2):300–312, 2007.

[37] C. Siagian and L. Itti. Biologically inspired mobile robot vision localization.IEEE Transactions
on Robotics, 25(4):861–873, 2009.

[38] Judd T., Ehinger K., Durand F., and Torralba A. Learningto predict where humans look. InProc.
ICCV, 2009.

[39] B. W. Tatler. The central fixation bias in scene viewing:selecting an optimal viewing position
independently of motor biases and image feature distributions. Journal of Vision, 7(4):1–17,
2007.

[40] A. Torralba. Modeling global scene factors in attention. Journal of Optical Society of America,
20(7):1407–1418, 2003.

[41] Kienzle W., Wichmann A. F.and Scholkopf B., and Franz M.O. A nonparametric approach to
bottom-up visual saliency. InProc. NIPS, 2007.

[42] D. Walther and C. Koch. Modeling attention to salient protoobjects.Neural Networks, 19(9):
1395–1407, 2006.

[43] Hou X. and Zhang L. Saliency detection: A spectral residual approach. InProc. CVPR, 2007.

[44] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. Sun: A bayesian framework
for saliency using natural statistics.Journal of Vision, 8(32):1–20, 2008.


