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Abstract
We introduce a new task-independent framework to
model top-down overt visual attention based on graph-
ical models for probabilistic inference and reasoning.
We describe a Dynamic Bayesian Network (DBN)
that infers probability distributions over attended ob-
jects and spatial locations directly from observed data.
Probabilistic inference in our model is performed over
object-related functions which are fed from manual an-
notations of objects in video scenes or by state-of-the-
art object detection models. Evaluating over ∼3 hours
(appx. 315,000 eye fixations and 12,600 saccades)
of observers playing 3 video games (time-scheduling,
driving, and flight combat), we show that our approach
is significantly more predictive of eye fixations com-
pared to: 1) simpler classifier-based models also devel-
oped here that map a signature of a scene (multi-modal
information from gist, bottom-up saliency, physical ac-
tions, and events) to eye positions, 2) 14 state-of-the-
art bottom-up saliency models, and 3) brute-force algo-
rithms such as mean eye position. Our results show that
the proposed model is more effective in employing and
reasoning over spatio-temporal visual data.

Introduction and Background
To tackle information overload, biological vision systems
have evolved a remarkable capability known as visual atten-
tion that gates relevant information to subsequent complex
processes (e.g., object recognition). Knowledge of the task is
a crucial factor in this selection mechanism. A considerable
amount of experimental and computational research have
been conducted in past decades to understand and model vi-
sual attention mechanisms, yet progress has been most rapid
in modeling bottom-up attention and simple tasks such as
visual search and free viewing. Furthermore, the field lacks
principled computational top-down frameworks which are
applicable independently of task type. Aside from being an
interesting yet challenging scientific problem, from an engi-
neering perspective, there are numerous applications for top-
down attention modeling in computer vision and robotics,
including video compression, object localization, scene un-
derstanding, interactive computer graphics, flight and driv-
ing simulators, and visual prosthetics (Toet 2011).
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A rich qualitative understanding of gazing strategies for
some tasks (e.g., tea and sandwich making, reading) is
available (Land and Hayhoe 2001). For instance, Land and
Lee (1994) proved that drivers track the tangent of the road
when steering on a curvy cross-country road. In a block-
copying task, Ballard, Hayhoe, and Pelz (1995) showed that
the algorithm could be decoded from patterns of eye move-
ments. Mennie, Hayhoe, and Sullivan (2007) explained the
predictive nature of look-ahead fixations in walking. Land
and Hayhoe (2001) classified eye fixations into four general
categories: locating a needed object (e.g., milk in the fridge),
directing the hand (grabbing something from shelf), guid-
ing (lid onto kettle), and checking (water depth, spout), and
proposed a schema for composing these so-called “object-
related actions” to perform a task. Some computational mod-
els have been proposed to quantify these behaviors, though
their generalizations across tasks remain limited. For in-
stance, HMM models have been successfully applied to fix-
ation prediction in reading (E-Z reader model by Reichle,
Rayner, and Pollatsek (2003)). Renninger et al. (2005) sug-
gested that observers fixate on locations that reduce lo-
cal uncertainty in an object classification task. In a reward
maximization framework, Sprague and Ballard (2003) de-
fined three basic visual behaviors (litter collection, obsta-
cle avoidance, and sidewalk following) for an avatar, and
used reinforcement learning (RL) to coordinate these be-
haviors and perform a sidewalk navigation task. Butko and
Movellan (2009) proposed a POMDP approach for visual
search. Erez et al. (2011) proposed a similar approach for a
synthetic eye-hand coordination task. In Navalpakkam and
Itti (2005) some guidelines for top-down attention model-
ing are proposed when the task algorithm is known. Peters
and Itti (2007) learned a spatial attention model by map-
ping a signature of scene (gist) to gaze fixation in naviga-
tion and exploration tasks. McCallum (1995) proposed the
U-Tree algorithm for selective attention by discretizing the
state-space of an RL agent to minimize the temporal dif-
ference error. Rimey and Brown (1994) modeled top-down
attention with a Bayesian network for an object manipula-
tion task. Cagli et al. (2009) proposed a Bayesian approach
for sensory-motor coordination in drawing tasks. Inspired
by the visual routines theory (Ullman 1984), Yi and Bal-
lard (2009) programmed a DBN for recognizing the steps
in a sandwich making task. Difficulties with models based
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on visual routines ideas are defining task modules, reward
functions, and the use of very simple scene/object process-
ings. Due to these obstacles, such models have rarely been
applied to explain human saccades. In contrary, we follow
data-driven approaches by learning models directly from hu-
man eye data for gaze prediction in novel situations.

Our primary goal is to present a general framework for
interpreting human eye movement behavior that explicitly
represents demands of many different tasks, perceptual un-
certainty, and time. This approach allows us to model visuo-
motor sequences over long time scales, which has been typi-
cally ignored in vision sciences. For that, we employ graph-
ical models which have been widely used in different do-
mains, including biology, time series modeling, and video
processing. Since objects are essential building blocks in
scenes, it is reasonable to assume that humans have instanta-
neous access to task-driven object-level variables (e.g., (Ein-
hauser, Spain, and Perona 2008)), as opposed to only gist-
like (scene-global) representations (Torralba et al. 2006).
Our proposed approach thus is object-based, in which a
Bayesian framework is developed to reason over objects (it
is also possible to add other variables such as gist, saliency
map, actions, and events). We compare this approach to sev-
eral spatial models that learn a mapping from scene signa-
tures to gaze position. In this study, we use an object recog-
nition oracle from manually tagged video data to carefully
investigate the prediction power of our approach. For some
of the tasks and visual environments tested here (older 2D
video games), simple object recognition algorithms are ca-
pable of providing highly reliable object labels, but for more
complex environments (modern 3D games) the best avail-
able algorithms still fall short of what a human annotator
can recognize. Therefore, we also perform an uncertainty
analysis when variables are fed from outputs of two highly
successful object detection approaches (Boosting and De-
formable Part Model (Felzenszwalb et al. 2010)).

Psychophysics and Data Collection
We chose video games because they resemble real-world in-
teractive tasks in terms of having near-natural renderings,
noise, and statistics. Participants (12 male, 9 female, 18-25
years old) played 3 PC video games under an IRB approved
protocol and were compensated for their participation. Stim-
uli consisted of: 1) a time-scheduling game (Hot Dog Bush
(HDB)), in which subjects had to serve customers food and
drinks; 2) a driving game (3D Driving School (3DDS)) in
which subjects were supposed to drive a car in an urban en-
vironment, following all traffic rules; and 3) a flight combat
game (Top-Gun (TG)) where players control a simulated
fighter plane with the goal of destroying specific enemy tar-
gets. In the training session for each game, subjects were
introduced to the goal of the game, rules, and how to han-
dle buttons, etc. All subjects were novice computer gamers
and had no prior experience with our games, but some had
limited experience with other games. Subjects had different
adventures in games. After training, in a test session sub-
jects played the game (but a different scenario) for several
minutes. Table 1 shows summary statistics of our data.

At the beginning of the test session, the eye tracker (PC1,

Game # Sacc. # Subj Dur. (train-test) # Frames (fixs) Size Action
HDB 1569 5 5-5min 35K 26.5GB 5D-Mouse
3DDS 6382 10 10-10 180K 110 2D-Joystick

TG 4602 12 5-5 45K 26 2D-Joystick

Table 1: Summary statistics of our data including overall number
of saccades, subjects, durations per subject, frames (and hence fix-
ations, one to one relationship), sizes in GB, and action types.

Windows 95) was calibrated. Subjects were seated at a view-
ing distance of 130 cm corresponding to a field of view of
43◦×25◦). A chin-rest (head-rest in 3DDS) was used to sta-
bilize their heads. Stimuli were presented at 30 Hz on a 42”
computer monitor at a resolution of 640×480 pixels and re-
fresh rate of 60 Hz. Frames were captured at 30 Hz using a
computer (PC2, Linux Mandriva OS) under SCHED-FIFO
scheduling (to ensure microsecond accuracy) which sent a
copy of each frame to the LCD monitor and saved one copy
to the hard disk for subsequent processing. Finally, subjects’
right eye positions were recorded at 240 Hz (ISCAN Inc.
RK-464 eye tracker, PC1). Subjects played games on PC3
with Windows XP where all their joystick/steering/buttons
actions were logged at 62 Hz. In 3DDS, subjects drove us-
ing the Logitech Driving Force GT steering wheel, auto-
matic transmission, brake and gas pedals, 360 degrees rota-
tion (180 left, 180 right), with force feedback. In HDB and
TG games, subjects used mouse and joystick for game play-
ing, respectively. Multi-modal data including frames, physi-
cal actions, and eye positions were recorded.

Modeling Top-down Visual Attention
We aim to predict both next object (what) and next spatial
location (where) that should be attended under the influence
of a task. We focus on predicting saccades which are jumps
in eye movements to bring relevant objects to the fovea1.

In its most general form, gaze prediction is to estimate
P(Rt+1|St+1) where Rt+1 is the next attended object Yt+1 or
next attended spatial location Xt+1, and St+1 is the subject’s
mental state. However, since it is not possible to directly ac-
cess hidden (latent) variable St+1, we estimate P(Rt+1) di-
rectly from observable variables. Two modes for gaze pre-
diction are possible: 1) memory-dependent, and 2) mem-
oryless. The only difference is that in memoryless mode,
information of previous actions and gazes is not available
(only current time is used). In memory-dependent mode,
goal is to predict gaze one step ahead.

Due to the noise in eye tracking, subjectivity in per-
forming a task, and high-level gaze programming strate-
gies, saccades do not always land on specific objects. One
way to solve this problem is to ask humans to review the
data, decide which object has been attended, and then take
their average decisions. Instead, we followed a simpler and
more objective approach by defining a function that as-
signs a probability to objects in the scene being attended,
based on their inverse distance to the eye position X , i.e.,
z(o j) = 1/eαd(X ,C(o j)) where C(o j) is the center of the ob-

1Saccades were defined by a velocity threshold of 20◦/s and
amplitude threshold of 2◦ similar to (Berg et al. 2009).
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Figure 1: (a) A time series plot of probability of objects being
attended and a sample frame with tagged objects and eye fixation
overlaid. (b) Graphical representation of three DBNs unrolled over
two time-slices. Xt is the current saccade position, Yt is the cur-
rently attended object, and F i

t is the function that describe object
i at the current scene. Ht is the hidden variable in HMM which is
learned using EM algorithm. All variables are discrete (see text).

ject o j and d is the Euclidean distance. Parameter α con-
trols the spatial decay with which an object is considered
as attended for a given gaze location (here α = 0.1). This
way, closer objects to the gaze position will receive higher
probabilities. These values are then normalized to generate
a pdf: P(o j) = z(o j)/∑

N
i=1 z(oi); N is the total number of

objects. Figure 1.a shows a sample time line of attended ob-
jects probabilities over HDB for ∼ 1,000 frames along with
a sample tagged frame. The object under the mouse position
when clicking was considered as the selected object.

We follow a leave-one-out approach, training models
from data of n− 1 subjects and evaluating them over the
remaining n-th one. The final score is the mean over n cross-
validations. Object-based attention model is developed over
HDB and classifier-based models are over all games.

Proposed Object-based Bayesian Framework
DBN is a generalized extension of Bayesian networks
(BN) to the temporal dimension representing stationary and
Markovian processes. For simplicity, we drop the index of
subject in what follows. Let Ot = [o1

t ,o
2
t , · · · ,oN

t ] be the vec-
tor of available objects in frame at time t. Usually some
properties (features) of objects within the scene are impor-
tant. Assuming that function f (o) denotes such property,
an object-level representation of this frame hence will be
Ft = { f i(o j

t )} where i is a particular property function and j
is a particular object. In its simplest case, f could be just
the number of instances of an object in the scene. More
complex functions would take into account spatial relation-
ships among objects or task-specific object features (For ex-
ample, is ketchup empty or not?). Let Y1:T = [Y1,Y2, · · ·YT ]
be the sequence of attended objects, X1:T = [X1,X2, · · ·XT ]
be the sequence of attended spatial locations, and C1:T =
[C1,C2, · · ·CT ] be the selected objects by physical actions
(e.g., by clicking, grabbing). Here, we treat the selected ob-
ject as another object variable affecting the attended object.
It is also possible to read out the next selected object (action
in general) from our DBNs by slightly modifying the net-
work structure, but here we are only interested in predicting
the next attended object. Knowing the attended object, gaze

location could be directly inferred from that.
We studied three types of general DBNs (Figure 1.b):

1) an HMM with a hidden variable (brain state Ht ) con-
nected directly to the attended object and from there to gaze
position; 2) a DBN where the attended object is affected
by the previously attended object (i.e., P(Yt+1|Yt)), hence
prediction is only based on the sequence of attended ob-
jects; and 3) a DBN assuming that the attended object is
influenced by properties of current objects in the scene as
well as the previously attended object (i.e., P(Yt+1|Yt ,F1:N

t+1 ).
Given the following conditional independence assumptions:
1) Xt ⊥⊥ F i

t |Yt , 2) F i
t ⊥⊥ F j

t (due to general structure as-
sumption), 3) F i

t+1 ⊥⊥ F i
t (happens when there is no uncer-

tainty in case of having tagged data. It is not the case in gen-
eral), and 4) Xt+1 ⊥⊥ Xt |Yt+1, then the full joint probability
of the third DBN, to be learned, reduces to:

P(X1:T ,Y1:T ,F1:N
1:T ) = P(X1:T ,Y1:T |F1:N

1:T )P(F1:N
1:T )

= P(X1:T |Y1:T )P(Y1:T |F1:N
1:T )P(F1:N

1:T ) = (1)
N

∏
j=1

P(F j
1 )P(Y1|F j

1 )P(X1|Y1)
T

∏
t=2

N

∏
j=1

P(Yt |F j
t )P(Yt |Yt−1)

T

∏
t=2

P(Xt |Yt)

where F1:N
1:T = [F1:N

1 ,F1:N
2 , · · ·F1:N

T ] is the vector of func-
tions representing object properties over time.
Inference and learning. Learning in a DBN is to find two
sets of parameters (m;θ) where m represents the structure
of the DBN (e.g., the number of hidden and observable
variables, the number of states for each hidden variable,
and the topology of the network) and θ includes the state
transition matrix A (P(Si

t |Pa(Si
t))), the observation matrix B

(P(Oi
t |Pa(Oi

t))), and a matrix π modeling the initial state dis-
tribution (P(Si

1)) where Pa(Si
t) are the parents of Si

t (simi-
larly Pa(Oi

t) for observations). Learning is hence to adjust
the model parameters V = (m;θ) to maximize P(O|V ).

Since designing a different network for each task needs
task-specific expert knowledge, to make the problem
tractable, here we assume fixed structures (Figure 1.b) that
could generalize over many tasks. Therefore, the joint pdf
in Eq.1 reduces to predicting next attended object thanks to
independence assumptions. As an example, we derive the
formulation for the third case in Figure 1.b:

P(Yt+1|F1:N
1:t+1,Y1:t ,X1:t) % given all in f ormation in the past

= P(Yt+1|F1:N
1:t+1,Y1:t) % Yt+1 ⊥⊥ X1:t

= P(Yt+1|F1:N
t+1 ,Yt) % Yt+1 ⊥⊥ Y1:t−1 (2)

=
(
Π

N
j=1P(Yt+1|F j

t+1)
)
×P(Yt+1|Yt) % F i

t+1 ⊥⊥ F j
t+1, ∀ i 6= j

Xt is an integer between [1 300] (300 states). P(Y ) is ini-
tialized uniformly over the objects (time 0 and is equal to
P(o j) = 1/N, j = 1 : N, N = 15) and is updated over time.
The HMM model (case 1) has one hidden variable ([1 5])
and thus can be trained by exploiting the EM algorithm.

To avoid over-fitting parameters in conditional probabil-
ity tables while training, train data was randomly split into
k partitions, where DBN was trained over k− 1 partitions
and validated over the k-th partition. The model with best
validation performance was applied to the test data.
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Since variables in our DBN take discrete values, while
we have a pdf over the attended object Yt (ground-truth),
we follow a stochastic sampling approach similar to the
roulette-wheel algorithm. For a number of iterations, we
loop through the training frames (t = 1 · · ·T ) and generate
more training sequences. Let mt be the feature vector for the
frame at time t, a tuple <mt ,yt ,xt > is added to the sequence
(< yt ,xt > pair in the second DBN) where yt is the index of
an object sampled from J(Yt), the cumulative distribution of
Yt , and xt is the eye fixation at that time (Xt ). This way, ob-
jects with higher probability of being attended in a frame
will generate more training samples. The same strategy is
followed for classifier-based models (next section) for a fair
comparison with DBNs. Since DBN has access to the previ-
ous time information, a sample < [mt yt−1],yt ,xt > is added
to classifiers, where yt−1 and yt are sampled from J(Yt−1)
and J(Yt), resp. (yt−1 is not added in memoryless mode).

Classifier-based Models
For a detailed assessment of our Bayesian approach, we
developed several classifiers as well as brute-force con-
trol algorithms with the same input representations. Ac-
cording to the Bayes theorem, these classifiers estimate
P(R|M) = P(M|R)P(R)

P(M) (R being either X or Y ; and M be-
ing either the feature-based representation of a scene E,
or the object-based representation F , or a combination of
both). Since calculating P(M|R) and P(M) is impractical
due to high dimensionality of M, we follow a discrimi-
native approach to estimate the posterior P(R|M). Classi-
fiers calculate either P(X |E) (i.e., gaze directly from fea-
tures; similarly predicting attended object from E, P(Y |E))
or P(X |M) = P(M|Y )P(Y |X)

P(M) = P(Y |M)P(X |Y )
P(X) (i.e., a classifier

first predicts attended object from features and then a sec-
ond classifier maps the predicted attended object to gaze po-
sition). The following linear and non-linear classifiers were
developed for predicting attended object and location:
Mean eye position (MEP). This family of predictors ig-
nores feature vectors and simply uses the prior distribution
over all saccade positions, or attended objects over all train-
ing data (Ak.a human inter-observer model). Note that while
this model is easy to compute given human data, it is far
from a trivial model, as it embodies human visual-cognitive
processes which gave rise to the gaze.
Random predictor (R). At each time point, the next at-
tended object is drawn from a uniform distribution (with-
out replacement for the duration of the current frame) with
probability 1/N; N is the number of remaining objects in the
scene. For saccade prediction, this is a random map.
Gaussian (G). It has been shown that subjects tend to look
at the center of the screen (center-bias or photographer-bias
issue (Tatler 2007)), therefore a central Gaussian blob can
score better than almost all saliency models when datasets
are centrally biased (Figures 2 and 3). We thus also com-
pare our results with this heuristic model, which is simply a
Gaussian blob (σ = 3 pixels) at the image center.
Regression (REG). Assuming a linear relationship between
feature vectors M and R (X or Y ), we solve the equation
M×W = R. The solution is: W = M+×R, where M+ is the

(least-squares) pseudo-inverse of matrix M through SVD de-
composition. Vector X is the eye position over 20×15 map
which is downsampled from the 640× 480 image. Given
an eye position (u,v) with 1 ≤ u ≤ 20 and 1 ≤ v ≤ 15,
the gaze density map would then be represented by X =
[x1,x2, · · · ,x300] with xi = 1 for i = u+(v−1) ·20 and xi = 0
otherwise. Similarly Y = [y1,y2, · · · ,yN ] is the vector repre-
senting attended object (y j = 1 for j = argmax j P(Y ), and
zeros elsewhere). Note that, if a vector of constant features
(i.e., no scene information) is used as the M, the regression
model generates the MEP. To predict eye positions/attended
objects for test frames, feature vectors are first extracted, and
attention maps are generated by applying the learned map-
ping which are then resized back to 20×15 2D array.
kNN. We also implemented a non-linear mapping from fea-
tures to saccade locations. The attention map for a test frame
is built from the distribution of fixations of its most similar
frames in the training set. For each test frame, k most similar
frames (using the Euclidean distance) were found and then
the predicted map was the weighted average of the fixation
locations of these frames (i.e., X i = 1

k ∑
k
j=1 D(Mi,M j)−1X j

where X j is the fixation map of the j−th most similar frame
to frame i which is weighted according to its similarity to
frame i in feature space (i.e., D(Mi,M j)−1). We chose pa-
rameter k to be 10 which resulted in good performance over
train data as well as reasonable speed.
SVM. To ensure that SVM training did not overwhelm avail-
able computational resources, we first reduced the high-
dimensional feature vectors (i.e., E) using PCA by preserv-
ing 95% of variance. Then a polynomial kernel multi-class
SVM classifier was trained with p output classes. p is equal
to N = |Y |= 15 objects or |X |= 300 eye positions. We used
LibSVM, a publicly available Matlab version of SVM.
Naive Bayes (NB). In memoryless case when there is no
time dependency between attended objects, our DBN re-
duces to a static Bayes model incorporating only objects
at time t + 1. Assuming F i

t+1 ⊥⊥ F j
t+1 |Yt+1, this classifier

models P(Yt+1|F1:N
t+1 ) (probability of attended object given

the current scene information). Therefore, P(Yt+1|F1:N
t+1 ) =

1
Z ∏

N
i=1 P(F i

t+1|Yt+1) (Z is a normalization constant). With no
object information, this classifier reduces to priors P(Y ) and
P(X) which are equal to MEP. Here, as in DBN we also used
validation strategy to avoid overfitting while training.

Features
We employed features from visual and action modalities:
Gist. Gist is a light-weight yet highly discriminant repre-
sentation of the whole scene and does not contain details
about individual objects. We used gist descriptor of Siagian
and Itti (2007) which relies on 34 feature pyramids from the
bottom-up saliency model (Itti, Koch, and Niebur 1998): 6
intensity channels, 12 color channels (first 6 red/green and
next 6 blue/yellow color opponency), and 16 orientations.
For each feature map, there are 21 values that encompass
average values of various spatial pyramids: value 0 is the
average of the entire feature map, values 1 to 4 are the av-
erage values of each 2× 2 quadrant of the feature map and
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values 5 to 20 are the average values of the 4×4 grids of the
feature map leading to overall of 34×21 = 714 D values.
Bottom-up saliency map (BU). This model includes 12
feature channels sensitive to color contrast (red/green and
blue/yellow), temporal luminance flicker, luminance con-
trast, four orientations (0◦,45◦,90◦, and 135◦), and four
oriented motion energies (up,down, le f t, and right) in 9
scales. After center-surround difference operations in each
scale and across scale competitions, a unique saliency map
is created and subsampled to a 20× 15 map which is then
linearized to a 300 vector. We used the BU map both as a
signature of the scene and as a saccade predictor.
Physical actions (A). In the 3DDS game, this is a 22D
feature vector derived from wheel and buttons while sub-
jects were driving. The main elements of this vector include:
{wheel position, pedals (brake and gas), left and right sig-
nals, mirrors, left and right side views, and gear change}.
Other action vector components are: {wipers, light indica-
tors, horn, GPS, start-engine, radio volume and channel,
show-menu, look-back view, and view change}. Subjects
were encouraged not to use these latter buttons. In the HDB
game, actions were {mouse position (x,y), left, middle, and
right mouse clicks} by which subjects handled orders. Cur-
rently, there are no actions for the TG game.
Labeled events (L). Frames of 3DDS game were manually
labeled as belonging to one of different events: {left turn,
right turn, going straight, red light, adjusting left, adjusting
right, stop sign, traffic check, and error frames due to mis-
takes that terminate the game like hitting other cars or pass-
ing the red light}. Hence this is only a scalar feature.
Object features (F). This is a 15D vector of properties of
objects as discussed in previous sections (F1:N).

Experiments and results
Scores. We used the Normalized Scan-path Saliency (NSS)
score (Peters et al. 2005) which is the response value at the
human eye position (xh,yh), in a model’s predicted gaze map
(s) that has been normalized to have zero mean and unit
standard deviation: NSS = 1

σs
(s(xh,yh)− µs). NSS = 1 in-

dicates that the subject’s eye position fall in a region where
predicted density is one standard deviation above average
while NSS ≤ 0 means that a model performs no better than
chance. Due to high subject agreement (peaks in MEP),
MEP and Gaussian (when peak is in the center) models gen-
erate many true positives which lead to high scores for them.
Since the chance of making false positives is thus small,
there is less opportunity for models to show their superiority
over MEP or Gaussian. To stretch the differences between
sophisticated and brute-force models, each time, we dis-
carded those saccades that were in top γ%,γ ∈ {0,10, ..90}
of the MEP map. This gives an idea of how well models
predicted “non-trivial” saccades, i.e., away from the cen-
tral peak of MEP data. To summarize these scores, we de-
fined Mean NSS (MNSS = 1

10 ∑
90
γ=0 NSS(γ)) as a represen-

tative score of a model. To evaluate object-based models,
for a frame, a hit is counted when the ground-truth attended
object (i.e., argmax j P(Y

′
)) is in top k maximums (accumu-

lative i.e., 1 : 2, 1 : 3, · · · , 1 : 15) of the predicted object pdf

Figure 2: Gaze prediction accuracies for HDB game. a) proba-
bility of correctly attended object in memory-dependent/saccade
mode, b) memoryless/saccade mode. Q[Ft Yt−1] means that model
Q uses both objects and previous attended object for prediction. c)
and d) MNSS scores for prediction of saccade position in memory-
dependent and memoryless modes. White legends on bars show
the mapping from feature types to gaze position X . For instance,
REG (Ft → Yt → Xt ) maps object features to the attended object
and then maps this prediction to the attended location using regres-
sion. Property functions f (.) in HDB indicate whether an object
exists in a scene or not (binary).

(i.e., argmax j P(Y )). Hits are then averaged over all gazes
for each k.
Gaze prediction. Figure 2 shows prediction accuracies of
models in all conditions (memory-dependent/memoryless;
object/saccade position) for HDB game. Bayesian models
performed the best in predicting the attended object followed
by SVM. All models performed significantly higher than
random, MEP, Gaussian, and a simple regression classifier
from gist to eye position (Peters and Itti 2007) using MNSS
score. Performances are higher in memory-dependent cases
as we expected which shows that information from previ-
ous step is helpful. DBN model in memory-dependent mode
and Naive Bayes (NB) in memoryless mode, scored the
best MNSS over saccades (followed by HMM in memory-
dependent and REG in memoryless modes). Results show

Figure 3: a) MNSS scores of our classifiers over 3DDS and TG
games, b) NSS scores (corresponding to γ = 0 in MNSS) of BU
models for saccade prediction over 3 games. Almost all BU models
perform lower than MEP and Gaussian, while our models perform
higher (same results using MNSS). Some models are worse than
random (NSS≤ 0) since saccades are top-down driven.
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Figure 5: Sample predicted saccade maps by explained models. Each red circle indicates the observer’s eye position superimposed with each
map’s peak location (blue squares). Smaller distance indicates better prediction.

Figure 4: Analysis of uncertainty over HDB game. a) Average
precision-recall curve over all 15 objects; red for boosting and blue
for DPM, b) Accuracy of correctly predicting the attended object.

that inferring attended object first and using it to predict
gaze position is more effective than directly mapping fea-
tures to gaze position (DBN and NB). HMM model scored
high on memory-dependent case but not as good in mem-
oryless case. A similar HMM with added connection be-
tween object Ft and hidden variables Ht raised the MNSS to
1.5 in memory-dependent/saccade case. Best performance
was achieved with 5 states for hidden variables in HMM. To
test to what degree gaze follows mouse in HDB, we imple-
mented two other algorithms: 1) by placing a Gaussian blob
at mouse position, and 2) learning a regression classifier
from mouse actions to eye position. These models scored
high but still lower than Bayesian models.
Performance over 3DDS and TG games. Figures 3.a
shows results over 3DDS and TG games using all features.
kNN classifier achieved the best MNSS followed by SVM
and Regression. Also, classifiers with event and action fea-
tures performed higher than MEP and Gaussian indicating
informativeness of these features for fixation prediction.
Model comparison. We ran 14 state-of-the-art BU models2

to compare saccade prediction accuracy over three games
(Figure 3.b). These models were the only ones that are
readily applicable to our data compared to top-down mod-
els which thus far have been specific each to a particular

2To compare bottom-up saliency models over our data, we con-
tacted model creators for codes, including: iNVT (Itti, Koch, and
Niebur 1998), AIM (Bruce and Tsotsos 2005), Hou et al. (Hou and
Zhang 2008), Local and Global Rarity (Mancas 2007), PQFT (Guo
and Zhang 2010), AWS (Garcia-Diaz et al. 2009), GBVS (Harel,
Koch, and Perona 2006), Bian et al. (Bian and Zhang 2009),
SDDR (Seo and Milanfar 2009), Judd et al. (Judd, Ehinger, and
Durand 2009), Torralba et al. (Torralba et al. 2006), Walther et
al. (SaliencyToolbox ), and SUN (Zhang et al. 2008).

task. Our models scored the best results compared with all
bottom-up models. These results highlight the poor predic-
tion power of bottom-up saliency models when humans are
actively engaged in a task (notice the big difference between
bottom-up, MEP, Gaussian, and our models).
Uncertainty Analysis. To analyze the degree to which
our model is dependent on the uncertainty of the vari-
ables, we trained two object detection models: 1) Boosting
model (BoostingToolbox) and 2) the Deformable Part Model
(DPM) (Felzenszwalb et al. 2010) to automatically fill the
variables instead of annotated data. Models were trained
over a small set of cross validation data different from test
frames. Average precision-recall curves of both models over
15 objects are shown in Figure 4.a. As opposed to Boosting,
DPM was very successful to learn the objects thus we only
used DPM. Detection performance was very high for each
object due to limited variation in object appearance. As we
expected, there was a graceful degradation in prediction of
the attended object but still performance of our DBN was
higher than the other models which indicates partial robust-
ness of our model (Figure 4.b).

Sample gaze maps of all models are shown in Figure 5.

Discussion and conclusion
Results show the superiority of the generative Bayesian
object-based approach to predict the next attended ob-
ject/gaze position over 3 different complex tasks and large
amount of data. This approach is applicable to many tasks
when objects are processed sequentially in a spatio-temporal
manner. Despite the promising results, there are some open
questions for future research. Current analysis focuses on
overt attention, however some parts of the scene are pro-
cessed by subjects without direct gaze, e.g., by covert at-
tention, which cannot be measured with an eye-tracker. A
more biologically plausible future extension would be using
foveated representation of the scene similar to (Najemnik
and Geisler 2005) and (Larochelle and Hinton 2010) where
object features in the periphery are accessible with less con-
fidence or lower resolution. Using deformable part model,
we were able to automatically detect objects in HDB with
high detection rates (i.e., precision-recall for each object)
yet there are still uncertainties in object variables. Having
a causality structure over object variables could eventually
give more evidence regarding the attended object (i.e., re-
leasing conditional independence assumptions). One prob-
lem we experienced, was learning the structure of DBN
since to date structure learning algorithms are limited to
certain network structures and variable types. Another area

1534



is investigation of generalization of proposed approaches.
By training classifiers over a game and applying to simi-
lar games, we found that they scored better than chance im-
plying that gist and action features to some extent capture
the semantics directing gaze. We aim to build a website for
sharing our codes, datasets (some used here) and evaluation
programs for raising interest in this field. Finally, current
work shows a promising direction to tackle this very com-
plex problem, and helps designing experiments that can fur-
ther shed light on mechanisms of top-down attention.
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